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Abstract

We associate a canonical unital involutive quantale to a topological
groupoid. When the groupoid is also étale, this association is compatible
with but independent from the theory of localic étale groupoids and their
quantales [19] of P. Resende. As a motivating example, we describe the
connection between the quantale and the C*-algebra that both classify
Penrose tilings, which was left as an open problem in [15].
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1 Introduction

Groupoids, i.e. small categories such that every morphism is an iso, have been
first introduced by Brandt in 1926 as algebraic structures generalizing groups,
by allowing the group product to be partially defined. Groupoid can be usefully
seen as the ‘categorification’ of equivalence relations: indeed, since every mor-
phism is an iso, any two objects joined by at least one arrow are equivalent in “as
many ways” as there are arrows between them. Moreover, equivalence relations
can often be meaningfully represented as the orbit equivalence relations of some
nontrivial groupoids over their domains. This observation has led to important
applications of groupoids in algebraic and non-commutative geometry: when
an equivalence relation on a topological space induces a pathological quotient
space, the equivalence relation itself can be studied as a groupoid, as was done
for instance by Connes [2] with the classifying space K of Penrose tilings. The
main role of groupoids in Connes’ noncommutative geometry, particularly when
they are étale (see Definition 2.5 below) is their giving rise to C*-algebras, a
fact of which the space K of Penrose tilings is also an interesting example: in-
deed the C*-algebra A(K) associated with K seen as a groupoid classifies the
Penrose tilings up to isomorphism [2] (see also [17] and [16]). Thanks to their
connection with C*-algebras, when endowed with suitable topological or localic
structure, groupoids can also be regarded as noncommutative spaces. Finally,
in algebraic logic, discrete groupoids have been used in Jénsson and Tarski’s
representation theorems for certain classes of relation algebras [9)].

Quantales were introduced [13] as the noncommutative generalizations of
locales (i.e. point-free topologies) and have been investigated in close connection



with C*-algebras, in the context of a research program aimed at developing
noncommutative extensions of the Gelfand-Naimark duality (which establishes
a dual equivalence of categories between unital commutative C*-algebras and
compact Hausdorff spaces).

In this context, the hope was that the functor Maz, associating every C*-
algebra with the quantale of its closed linear subspaces, would provide the cor-
respondence from C*-algebras to unital involutive quantales generalizing the
commutative Gelfand duality in a natural way. However, although Maz is a
faithful complete invariant of C*-algebras, it does not preserve limits, so it does
not have a left adjoint, and hence it is not viable for establishing a dual equiv-
alence between C*-algebras and quantales.

In the quest for an alternative way of establishing a duality between quan-
tales and C*-algebras, Penrose tilings provided again an interesting case study:
Mulvey and Resende [15] associated the classifying space K of Penrose tilings
with a unital involutive quantale Pen, defined as the Lindenbaum-Tarski alge-
bra of a logic of finite observations on certain geometric properties of the tilings,
and canonically interpreted as a certain relational quantale Pen, thanks to the
fact that any relational representation of Pen factors through Pen. In particular
this holds for any irreducible relational representation of Pen, which is used in
[15] to show that these representations classify the Penrose tilings of the plane
up to isomorphism, exactly like Connes’ C*-algebra A(K) does. However the
precise relation between Pen and A(K) was left as an open problem in [15].
Since Pen is a different quantale than MazA(K), and both A(K) and Pen arise
from the same étale groupoid K, this case study suggested the possibility of an
alternative correspondence between C*-algebras and quantales using groupoids
as intermediate structures. This line of investigation was further developed by
Resende [19] who established an equivalence on objects between localic étale
groupoids and inverse quantale frames.

The aim of our own contribution is extending Resende’s correspondence
to non étale topological groupoids: in this paper, any topological groupoid is
associated with a unital involutive quantale (its topological groupoid quantale) in
a way that is alternative to [19] but compatible with it! when the groupoids are
étale. As a case study, we show that Pen is the topological groupoid quantale
associated with the classifying space of Penrose tilings, from which fact we derive
the relation between Pen and A(K)?.

2 Basic definitions and examples

A quantale Q (see [13], [20]) is a complete join-semilattice endowed with an
associative binary operation - that is completely distributive in each coordinate,
ie.

IWe will report about the comparison with the correspondence defined in [19] in a forth-
coming paper.

2In private communication, P. Resende informed us that the relation between Pen and
A(K) was independently known to him and Mulvey, but was not officially communicated.



Dl: ¢c-\VVI=V{c-q:qe I}

D2: \VI-c=\{qg-c:qel}
for every ¢ € Q, I C Q. Since it is a complete join-semilattice, Q is also a
complete, hence bounded, lattice. Let 0,1 be the lattice bottom and top of Q,
respectively. Conditions D1 and D2 readily imply that - is order-preserving in
both coordinates and, as \/ @ = 0, that ¢-0 =0=0-c¢ for every c € Q. Q is
unital if there exists an element e € Q for which

Uie-c=c=c-eforevery c€ Q,
and is involutive if it is endowed with a unary operation * such that, for every
c,q € Qand every I C Q,

I1: ¢ =c.

12: (c-q)* =¢*-c*.

13: (V1) = Vg :qel}.
Relevant examples of unital involutive quantales are:
1. The quantale P(R) of subrelations of a given equivalence relation R C X x X.
2. The quantale P(G), for every group G.
3. Any frame Q, setting - := A, x := id and e := 1g.

Definition 2.1. A groupoid is a tuple G = (Go, G1,m, d,r,u,()~1), such that:
G1. Gy and Gy are sets;

G2. d,r : Gy — Gy and u : Gy — Gy s.t. d(u(p)) = p = r(u(p)) for every
pe GO;

G3. m: (x,y) — xy is an associative map defined on {(z,y) | r(x) = d(y)} and
s.t. d(zy) = d(z) and r(xy) = r(y);

G4. zu(r(x))) =z = u(d(x))x for every x € Gy.;

G5. ()71 : Gy — Gy is an operator such that xz=! = u(d(z)), v71z = u(r(z)),
d(z71) =r(x) and r(z=1) = d(z) for every x € G;.

Let us list some relevant examples of groupoids:

Examples.
1. For any equivalence relation R C X x X, the tuple (X, R,0, 7,7, A, ()7 1)
defines a groupoid.
2. For any group (G,-,e,()71), the tuple ({e},G,-,d,r,u,()~!) is a groupoid,
and the equalities G4 and G5 just restate the group axioms.
3. The following example is a special but important case of the first one: every
topological space X can be seen as a groupoid by setting G; = Gy = X and
identity structure maps. In this case, Gy xg, G1 = {(z,z) | z € X} and zx =
for every z € X.
4. For any action G x X — X of a group G on a set X, one can naturally
associate the groupoid such that G; = G x X, Gy = X, its domain and range
maps are defined by d(g,z) = z and r(g,x) = gz, the unit map u(z) = (e, x)
with e € G is the identity element, and multiplication is defined by (g, x)-(h,y) =
(hg, ) iff y = gz.

Let us report some easy to show but useful facts about groupoids:

Lemma 2.2. For allp € Gy, z,y € G,
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1. u(p)™ = u(p),

2. x=zxx" 'z and 27! =z Lt

3. if zy~ Y a7ty € u[Go) then x =y,

4. if x = zyx and yry =y, then y =z 1,
5 (z Yl =z,

6. (zy)~t =y ta~L.

For every groupoid G, P(G1) can be given the structure of a unital involutive
quantale (see also [19] 1.1 for a more detailed discussion): indeed, the product
and involution on G; can be lifted to P(G1) as follows:

S T={x-ylzeS yeTand r(z) =d(y)} S*={z7|x €S}
Denoting by E the image of the structure map u : Go — G1, we get:
Fact 2.3. (P(G1),U,-, 0", E) is a unital involutive quantale.

Definition 2.4. A topological groupoid is a groupoid G such that Gy and G1
are topological spaces and the structure maps are continuous.

Definition 2.5. a topological groupoid G is étale if d : G1 — Gg is a local
homeomorphism (d is étale).

Since the involution in G; swaps the roles of d and r, if d is étale, then so is r.

3 Topological groupoid quantales

In this section we will define a general procedure that associates a unital invo-
lutive quantale with any topological groupoid G. Our method is based on the
following simple fact:

Fact 3.1. If Q = (Q,V,-,*,e) is a unital involutive quantale and S C @Q con-
tains e and is closed under - and *, then the sub-semilattice of (Q,\/) generated
by S is a unital involutive subquantale of Q.

So we will define the quantale Q(G) associated with a topological groupoid G as
the sub join-semilattice of (P(G1),J) generated by a suitable subset S C P(G).
The following definition will provide us with the building blocks for this subset:

Definition 3.2. A local section of d is a continuous map s : U — G defined
on some open subset U of Gy, s.t. dos = idy. A local section s is a local
bisection if ros: U — V is a local homeomorphism for some open subset V' of
Gp.

By G2, the structure map u is a local bisection. In the context of our first
example, local bisections can be identified with the graphs I'y = {(z, f(z)) | = €
U} of local homeomorphisms f : U — V such that I'y C R. In the context
of our second example, local bisections can be identified with the elements of
the group G. In the third example, the local bisections are the identity maps
1:U — U on open subsets U C X.



The subset S(G) C P(G1) of the images of the local bisections, besides contain-
ing E = u[Gp], is also closed under product and involution on P(G1): indeed
we first define composition and involution on local bisections as follows: If
s:U — Gy and t : U' — G, are local bisections, then the composition s - ¢ is

defined by
(s-1)(p) = s(p)t(r o s(p)) (1)

on the open set (r o s)7![U’]. Similarly, the involution of a local bisection
s:U — G is defined on the open set V' = (r o s)[U] by

s*(ros(p)) = s(p)~". (2)
Again, it is easy to verify that in the context of our first (second) example,
compositions and involutions of local bisections respectively correspond to com-
positions® (products) and inverses of the associated local homeomorphisms (el-
ements of the group G). It not difficult to show that:

Lemma 3.3. The following properties hold for every local bisections s and t:
1. s-t is a local bisection of d.

2. s-s* and s* - s coincide with u wherever defined.

8. s* is a local bisection of d.

It is well known and easy to see that the collection S(G) of G-sets is closed
under the product and involution of P(G1):

Lemma 3.4. For every local bisection s : U — Gy and t : U — Gq, let
S =s[U], T =t[U'], V be the domain of st and W = (r o s)[U] be the domain
of s*. Then:

1. (st)[V]=S-T={zy |z S,yeT and r(z) =d(y)}.

2. s*W]=8*={z"'|zeS}

The following facts (cf. [17] chapter I, Definition 2.6, Lemma 2.7 and Propo-
sition 2.8) will be used later on:

Fact 1. If Gg is locally compact and G is étale, the G-sets form a basis for the
topology of G1. Then in particular u[Gy] is open.

Fact 2. If, for a topological groupoid G, Gy is locally compact and there exists
a base of G-sets for the topology of G1, then G is étale.

Fact 3. Under the assumptions of Fact 2, every G-set is open in G.

We are ready to introduce our main definition, i.e. the unital involutive quantale
that we will associate with any topological groupoid G:

Definition 3.5. The topological groupoid quantale Q(G) associated with G is
the sub |J-semilattice of P(G1) generated by the collection S(G) of the G-sets.
Composition and involution in Q(G) are defined as the lifted operations from
G1. The unit eq(g) is E.

3Notation is treacherous here: if s and ¢ respectively correspond to the local homeomor-
phisms f and g, then the algebraic product s -t as defined in (1) set-theoretically corresponds
to the relational composition of the graphs I'y o I'y (and thus to the functional composition

go f).



By Fact 3.1 and Lemmas 3.3 and 3.4, Q(G) is indeed a unital involutive

subquantale of P(G1). The three basic examples of unital involutive quantales
given above can be retrieved as instances of topological groupoid quantales: If
X is a discrete space and R is an equivalence relation on X, then singletons
{(z,y)} C R are local bisections and so Q(G) = P(R). Similarly, if G is a
group, then Q(G) = P(G). As we remarked early on, for topological spaces X
seen as groupoids, local bisections are the identity maps ¢ : U — U on open
subsets. So Q(G) is the frame Q(X).
Example 1. Let (X, G) be as in example 4 section 2, with X a locally connected
topological space and G a group with the discrete topology. Then the local
bisections are the locally constant maps U — G with U C X an open set.
Hence Q(G) is given by the product topology on G; = G x X and it is obviously
étale.

Example 2. On the other hand, let R C X x X be the equivalence relation
induced by the action of G, i.e. xRy iff there exists g € G such that y = gz.
If R is endowed with the quotient topology with respect to the map (d,r) :
G x X — R, defined by (g,z) — (z, gz), then the first projection 71 : R — X
is not necessarily étale. For example, let X = C and G = {z € C | 2" = 1}
the group of nth roots of unity, with n > 2. Consider the action of G on X
given by the multiplication (z,x) +— zz. Then the induced equivalence relation
is R={(z,y) | y = 2z, z € G}. Take any z # w € G and consider the
two local bisections of the groupoid R defined respectively by z — (z, zz) and
x — (z,wz). They have images intersecting only at (0,0) € R,sod: R — X
cannot be étale and the topological groupoid quantale Q(R) is not a frame.

In the following section we introduce the quantale of Penrose tilings, our moti-
vating case study.

4 The quantale associated with Penrose tilings

Let X C 2% be the set of Penrose sequences [2][15], i.e. the sequences z =
(x1)ren such that 2, = 1 implies 2,41 = 0. X is a closed subset of 2% w.r.t.
the Tychonoff topology, so it is homeomorphic to the Cantor space 2%°. Con-
sider the equivalence relation R on X defined by xRy iff there exists some n € N
such that zp = yi for every k > n. The equivalence classes of R classify the
isomorphism classes of the Penrose tilings of the plane. In [15], Mulvey and
Resende defined a quantale Pen by generators and relations and proved that
its algebraically irreducible relational representations are in one-to-one corre-
spondence with the equivalence classes of R. This quantale admits a concrete
representation as a quantale Pen of subrelations of R, which is canonical, in the
sense that every relational representation of Pen factors through Pen. Hence
Pen classifies the isomorphism classes of Penrose tilings too. Pen is defined in
[15] as the subquantale of P(R) generated by the following relations: for every
n €N,

I, ={(z,y) € R |y, =0 and zy = y;, for any k > n}



sn={(z,y) € R |y, =1 and x, =y, for any k > n}

and their inverses [} and s;!. The following theorem is the central result of
this section, and its proof does not follow straightforwardly from the theory
developed in [15].

Theorem 4.1. The quantale Pen has the following properties:

1. Pen is | J-generated by the graphs Ty of the local homeomorphisms of the
form

f(€>$n+17xn+23"') = (naxn+1>xn+27"')7 (3)

with e,m € 2™,

2. Pen is a frame, and, as a topology on R, is finer than the inherited product
topology R C X x X.

3. If R is endowed with Pen as a topology, (X, R) is an étale groupoid.
4. Pen is the topological groupoid quantale associated with (X, R).

Proof. 1. Denoting € = (¢1,...,6,) and 7= (11, ...,7M,), let us define X; = [;!
if g, = 0 and X; = si_l if &, = 1. Similarly we define Y; = [; if 5; = 0
and Y; = s; if n; = 1. It is now a straightforward calculation to check that
I'r=X10---0X,0Y,0---0Y], and so I'y €Pen. Conversely, it is clear that
Sn, lp and their inverses are finite unions of graphs of homeomorphisms of the
form (3), which proves the statement.

2. Let R, be the subrelation of R defined by xR,y if x; = yj, for any k > n. It
is easy to see that graphs of homeomorphisms of the form (3) form a basis of the
inherited product topology of R,, C X x X. Moreover Ry C Ry C--- R, C ---
is a chain of open inclusions. From this it easily follows that Pen is the limit
topology lim R,, on R, that is, for S C R, S € Pen if and only if, for some
n, SN R, is an open subset of R,. Denoting, for any ¢ € 2™ the clopen
X.={zre X |z, =¢€, i=1,...,n} one can denote the elements of a basis
of the product topology for R by B, = (X. x X,;) N R. One sees easily that
B., N R, is open in R,, hence the limit topology just defined is finer than the
product topology for R. Finally, as a topology on R, Pen admits a basis of
G-sets, notably the sets of the form (3), so, by Fact 2. of section 3, we conclude
that R is étale over X.

8. Assume that s : U — R is a local bisection, with U open in X and R with
the topology given by Pen. Then its image S C R is a G-set, and by Fact 3 in
section 3, S is generated by the given basis of G-sets as in (3), that is, S € Pen.
Hence Pen is the topological groupoid quantale associated with K = (X, R). O

A question left open in [15] was to characterize the relation between Pen
and the C*-algebra A(K) that Connes associates with the space K = (X, R) of
Penrose tilings. We can now answer this question by saying that Pen = lim R,,,
i.e. Pen is the limit topology on R that Connes used to construct A(K) as
the completion of a space of continuous functions g : R — C. Intuitively, this



means that Pen encodes the purely topological content of A(K). For sake of
completeness, let us now remind the reader how A(K) is defined in [2]. Using
the limit topology lim R,,, the ring of complex-valued continuous functions with
compact support is introduced, the continuity of the functions in C.(R) being
assumed with respect to this limit topology. It is not difficult to see that C.(R) =
U,, C(R,). The convolution product of f,g € C.(R) is defined as

(f*9)(w,2) = fla,y)g(y. z

zRy

the sum containing only finitely many non-zero summands by the hypothesis
of compact support. Involution is defined as f*(z,y) = f(y,x). With these
operations C.(R) becomes a C*-algebra. The algebra C.(R) admlts canonical
irreducible representations in the Hilbert spaces (?(R[z]), R[x] being the equiv-
alence class of z € X. If v = (vy)yerp € P(R[z]) and f € C.(R), then
fv = ((fv):):er[e) is defined as (fv). = > f(z,y)vy. Then C.(R) inherits an
operator norm from the given representation on [?(R[z]). Then the reduced
norm on C.(R) is defined by taking the supremum of all the operator norms
arising in this way from the distinct equivalence classes R[z] (see [2], chapter
I, section 3 and [16] pp. 105-109). The C*-algebra A(K') associated with the
Penrose tilings is the norm-closure of C.(R) with respect to this reduced norm.
The fact that this C*-algebra is limit of the C(R,,) was used in [2] to compute
the group Ky of the C*-algebra of Penrose tilings.
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