Jérôme Fortier, with Luigi Santocanale

Cuts in circular proofs

Delft - February 17, 2014

1 / 36

(Circular) Definition

A natural number is either 0, or of the form suc(n) where n is a natural number.

(Circular) Definition

A natural number is either 0, or of the form suc(n) where n is a natural number.

(Circular) Definition

A natural number is either 0, or of the form suc(n) where n is a natural number. \mathbb{N} is the least fixpoint of this definition!

Initial algebra!

(Circular) Definition

A natural number is either 0, or of the form suc(n) where n is a natural number. \mathbb{N} is the least fixpoint of this definition!

Initial algebra!

(Circular) Definition

A natural number is either 0, or of the form suc(n) where n is a natural number. \mathbb{N} is the least fixpoint of this definition!

Initial algebra!

$$1 + \mathbb{N} \xrightarrow{1+f} 1 + X \qquad f(0) = a$$

$$\{0, \operatorname{suc}\} \left(\int \operatorname{pre} \left\{ a, g \right\} \right) \qquad f(\operatorname{suc}(x)) = g(f(x))$$

$$\mathbb{N} \xrightarrow{-----} X$$

$$\mathbb{N} = \mu X.(1+X)$$

Other inductive types...

Other inductive types...

• $\mu X.(1 + A \times X) = A^* = \text{Finite words over } A$

$$\begin{array}{ccc} * & \mapsto & \varepsilon \\ \langle a, w \rangle & \mapsto & a \cdot w \end{array}$$

Other inductive types...

• $\mu X.(1 + A \times X) = A^* = \text{Finite words over } A$

$$\begin{array}{ccc} * & \mapsto & \varepsilon \\ \langle a, w \rangle & \mapsto & a \cdot w \end{array}$$

• $\mu X.(1 + A \times X \times X)$ = Finite binary labelled trees

 $* \mapsto \mathsf{Empty}\;\mathsf{tree}$

$$\langle a, T_1, T_2 \rangle \mapsto T_1 T_2$$

(Circular) Definition

A stream over an alphabet A is made of a head $a \in A$, and another stream called the tail.

(Circular) Definition

A stream over an alphabet A is made of a head $a \in A$, and another stream called the tail.

(Circular) Definition

A stream over an alphabet A is made of a head $a \in A$, and another stream called the tail. A^{ω} is the greatest fixpoint of this definition!

Final coalgebra!

(Circular) Definition

A stream over an alphabet A is made of a head $a \in A$, and another stream called the tail. A^{ω} is the greatest fixpoint of this definition!

Final coalgebra!

(Circular) Definition

A stream over an alphabet A is made of a head $a \in A$, and another stream called the tail. A^{ω} is the greatest fixpoint of this definition!

Final coalgebra!

$$A^{\omega} = \nu X.(A \times X)$$

Other coinductive types...

Other coinductive types...

• $\nu X.(A \times X \times X)$ = Infinite binary labelled trees

Lattice μ -terms are generated by the following grammar:

$$t := X \mid 1 \mid t \times t \mid 0 \mid t + t \mid \mu X.t \mid \nu X.t$$

Lattice μ -terms are generated by the following grammar:

$$t := X \mid 1 \mid t \times t \mid 0 \mid t + t \mid \mu X.t \mid \nu X.t$$

Example

$$t = \nu X.(A \times \mu Y.(1 + X \times Y))$$

Lattice μ -terms are generated by the following grammar:

$$t := X \mid 1 \mid t \times t \mid 0 \mid t + t \mid \mu X.t \mid \nu X.t$$

Example

$$t = \nu X.(A \times \mu Y.(1 + X \times Y))$$

Functorial interpretation

- ×,+ = Product / Coproduct;
- 0,1 = Initial / Final object;
- $\mu X.F(X), \nu X.F(X) = \text{Initial } F\text{-algebra} / \text{Final } F\text{-coalgebra}.$

Lattice μ -terms are generated by the following grammar:

$$t := X \mid 1 \mid t \times t \mid 0 \mid t + t \mid \mu X.t \mid \nu X.t$$

Example

$$t = \nu X.(A \times \mu Y.(1 + X \times Y))$$

Functorial interpretation

- $\bullet \times, + = Product / Coproduct;$
- 0,1 = Initial / Final object;
- $\mu X.F(X), \nu X.F(X) = \text{Initial } F\text{-algebra} / \text{Final } F\text{-coalgebra}.$

Definition

A category C is μ -bicomplete iff this interpretation makes sense in C.

$$t = \nu X.(A \times \mu Y.(1 + X \times Y))$$

$$t = \nu X.(A \times \mu Y.(1 + X \times Y))$$

S(t):

$$t = \nu X.(A \times \mu Y.(1 + X \times Y))$$

$$S(t)$$
: $X =_{\nu} A \times Y$

$$t = \nu X.(A \times \mu Y.(1 + X \times Y))$$

$$S(t): X =_{\nu} A \times Y$$

 $A =_{\nu} \sum_{a \in A} 1$

$$t = \nu X.(A \times \mu Y.(1 + X \times Y))$$

$$\mathcal{S}(t): \qquad X =_{\nu} \quad A \times Y$$
 $A =_{\nu} \quad \sum_{a \in A} 1$
 $Y =_{\mu} \quad 1 + Z$

$$t = \nu X.(A \times \mu Y.(1 + X \times Y))$$

$$\mathcal{S}(t): \qquad X =_{\nu} \quad A \times Y$$
 $A =_{\nu} \quad \sum_{a \in A} 1$
 $Y =_{\mu} \quad 1 + Z$
 $Z =_{\mu} \quad X \times Y$

$$t = \nu X.(A \times \mu Y.(1 + X \times Y))$$

$$S(t): X =_{\nu} A \times Y$$
 (2)
 $A =_{\nu} \sum_{a \in A} 1$ (2)
 $Y =_{\mu} 1 + Z$ (1)
 $Z =_{\mu} X \times Y$ (1)

Priority(
$$V$$
) is
$$\begin{cases} \text{even} & \text{, if } V =_{\nu} \dots \\ \text{odd} & \text{, if } V =_{\mu} \dots \end{cases}$$

$$t = \nu X.(A \times \mu Y.(1 + X \times Y))$$

$$S(t): X =_{\nu} A \times Y \qquad (2)$$

$$A =_{\nu} \sum_{a \in A} 1 \qquad (2)$$

$$Y =_{\mu} 1 + Z \qquad (1)$$

$$Z =_{\mu} X \times Y \qquad (1)$$

Priority(
$$V$$
) is
$$\begin{cases} \text{even} & \text{, if } V =_{\nu} \dots \\ \text{odd} & \text{, if } V =_{\mu} \dots \end{cases}$$

Parity games!

Parity games!

Parity games!

Player \oplus wins if:

At some point, Player ⊗ cannot play,

Parity games!

Player ⊕ wins if:

- At some point, Player ⊗ cannot play,
- Or the game is infinite, and the highest priority visited infinitely often is even.

Parity games!

Player ⊕ wins if:

- At some point, Player ⊗ cannot play,
- Or the game is infinite, and the highest priority visited infinitely often is even.

Player \otimes wins in the dual situation.

Parity games!

Player ⊕ wins if:

- At some point, Player ⊗ cannot play,
- Or the game is infinite, and the highest priority visited infinitely often is even.

Player ⊗ wins in the dual situation.

Theorem (Santocanale, 2002)

Solutions for variable V in $S(t) \simeq {The set of deterministic winning strategies for <math>\oplus$ from position V.

Therefore, we have a combinatorial (dynamic) characterization of the μ -defined objects.

Curry-Howard correspondence

Goal

Find a "good" (dynamic) syntax for expressing (and computing) functions (arrows) between objects of this kind.

Curry-Howard correspondence

Goal

Find a "good" (dynamic) syntax for expressing (and computing) functions (arrows) between objects of this kind.

Curry-Howard correspondence

Goal

Find a "good" (dynamic) syntax for expressing (and computing) functions (arrows) between objects of this kind.

Curry-Howard correspondence

Goal

Find a "good" (dynamic) syntax for expressing (and computing) functions (arrows) between objects of this kind.

Curry-Howard correspondence

Goal

Find a "good" (dynamic) syntax for expressing (and computing) functions (arrows) between objects of this kind.

Inference rules (Gentzen style)

Axioms:
$$\frac{s_{i} + t}{0 + t} LAx \qquad \frac{t + 1}{t + 1} RAx \qquad \frac{1}{t + t} Id$$
Product:
$$\frac{s_{i} + t}{s_{0} \times s_{1} + t} L \times_{i} \qquad \frac{s + t_{0} \quad s + t_{1}}{s + t_{0} \times t_{1}} R \times$$
Coproduct:
$$\frac{s_{0} + t \quad s_{1} + t}{s_{0} + s_{1} + t} L + \qquad \frac{s + t_{i}}{s + t_{0} + t_{1}} R +_{i}$$
Fixpoint:
$$\frac{F(X) + t}{X + t} LFix \qquad \frac{s + F(X)}{s + X} RFix \qquad \text{if } X = F(X)$$
Cut:
$$\frac{r + s \quad s + t}{x + t} Cut$$

Categorical interpretation

Axioms:
$$\frac{0 \xrightarrow{7_t} LAx}{0 \xrightarrow{7_t} t} \xrightarrow{LAx} \frac{1}{t \xrightarrow{t} 1} \xrightarrow{RAx} \frac{1}{t \xrightarrow{id_t} t} \text{ Id}$$
Product:
$$(\text{conjunction}) \frac{s_i \xrightarrow{f} t}{s_0 \times s_1} \xrightarrow{\text{pr}_i \cdot f} t \xrightarrow{L \times_i} \frac{s \xrightarrow{f} t_0 \quad s \xrightarrow{g} t_1}{s \xrightarrow{(f,g)} t_0 \times t_1} \text{R} \times \frac{s \xrightarrow{f} t_0}{s \xrightarrow{f \cdot in_i} t_0 \times t_1}$$
Coproduct:
$$(\text{disjunction}) \frac{s_0 \xrightarrow{f} t \quad s_1 \xrightarrow{g} t}{s_0 + s_1 \xrightarrow{f} t} \xrightarrow{L +} \frac{s \xrightarrow{f} t_i}{s \xrightarrow{f \cdot in_i} t_0 + t_1} \text{R}_{+i}$$
Fixpoint:
$$\frac{F(X) \xrightarrow{f} t}{X \xrightarrow{X^{-1} \cdot f} t} \xrightarrow{LFix} \frac{s \xrightarrow{f} F(X)}{s \xrightarrow{f \cdot (X)} X} \text{RFix} \quad \text{if } X =_{\mu} F(X)$$

$$\frac{F(X) \xrightarrow{f} t}{X \xrightarrow{\xi_X \cdot f} t} \xrightarrow{LFix} \frac{s \xrightarrow{f} F(X)}{s \xrightarrow{f \cdot (X)} X} \text{RFix} \quad \text{if } X =_{\nu} F(X)$$
Cut:
$$\frac{r \xrightarrow{f} s \quad s \xrightarrow{g} t}{f \cdot g} \text{Cut}$$

$$N =_{\mu} 1 + N$$

$$N =_{\mu} 1 + N$$

Solution:

$$1+\mathbb{N}\xrightarrow{\{\mathtt{0},\mathtt{suc}\}}\mathbb{N}$$

$$N =_{\mu} 1 + N$$

Solution:

$$1 + \mathbb{N} \xrightarrow{\{0, suc\}} \mathbb{N}$$

Let

$$double(0) = 0$$

 $double(suc(n)) = suc(suc(double(n)))$

$$N =_{\mu} 1 + N$$

Solution:

$$1 + \mathbb{N} \xrightarrow{\{0, suc\}} \mathbb{N}$$

Let

$$double(0) = 0 N \vdash N$$

$$double(suc(n)) = suc(suc(double(n)))$$

$$N =_{\mu} 1 + N$$

Solution:

$$1 + \mathbb{N} \xrightarrow{\{0, suc\}} \mathbb{N}$$

Let
$$\frac{1 + N \vdash N}{N \vdash N} LFix$$
double(0) = 0
$$double(suc(n)) = suc(suc(double(n)))$$

$$N =_{\mu} 1 + N$$

Solution:

$$1+\mathbb{N}\xrightarrow{\{0,\mathtt{suc}\}}\mathbb{N}$$

Let

Let
$$\frac{1 + N \vdash N}{N \vdash N} LFix$$

$$double(0) = 0$$

$$double(suc(n)) = suc(suc(double(n)))$$

 $1 \vdash N$

 $N \vdash N$

$$N =_{\mu} 1 + N$$

Solution:

$$N =_{\mu} 1 + N$$

Solution:

Let

$$\frac{1+\mathbb{N} \xrightarrow{\{0, suc\}} \mathbb{N}}{\frac{1+1}{1+N} \operatorname{RFix}} \frac{1+N+N}{\frac{1+N+N}{N+N} \operatorname{LFix}} L + \frac{1+N+N}{N+N} L$$

double(0) = 0

double(suc(n)) = suc(suc(double(n)))

$$N =_{\mu} 1 + N$$

Solution:
$$\frac{1+\mathbb{N} \xrightarrow{\{0, suc\}} \mathbb{N}}{1+\mathbb{N} \xrightarrow{\{1\vdash 1+N\}} \frac{\mathbb{R} + \mathbb{N}}{\mathbb{R} + \mathbb{N}}} \frac{\mathbb{R} + \mathbb{N}}{\mathbb{N} + \mathbb{N}} \frac{\mathbb{N} + \mathbb{N}}{\mathbb{N} + \mathbb{N}} \frac{\mathbb{N} + \mathbb{N}}{\mathbb{N} + \mathbb{N}} \mathbb{L} + \mathbb{N}$$
 Let
$$\frac{1+\mathbb{N} + \mathbb{N}}{\mathbb{N} + \mathbb{N}} \mathbb{L} + \mathbb{N}$$
 double(0) = 0

double(suc(n)) = suc(suc(double(n)))

$$N =_{\mu} 1 + N$$

$$1+\mathbb{N}\xrightarrow{\{\mathtt{0},\mathtt{suc}\}}\mathbb{N}$$

Let

$$double(0) = 0$$

$$double(suc(n)) = suc(suc(double(n)))$$

$$\frac{\frac{1}{1\vdash 1} \operatorname{RAx}}{\frac{1\vdash 1+N}{1\vdash N} \operatorname{RFix}} \frac{N\vdash 1+N}{N\vdash N} \operatorname{RFix} \frac{N\vdash 1+N}{N\vdash N} \operatorname{LFix} \frac{1+N\vdash N}{N\vdash N} \operatorname{LFix}$$

$$N =_{\mu} 1 + N$$

$$1+\mathbb{N}\xrightarrow{\{0,\mathtt{suc}\}}\mathbb{N}$$

Let

$$double(0) = 0$$

$$double(suc(n)) = suc(suc(double(n)))$$

$$\frac{\frac{1}{1\vdash 1} \overset{RAx}{R+0}}{\frac{1\vdash 1+N}{1\vdash N}} \overset{R+0}{\text{RFix}} \qquad \frac{\frac{N\vdash N}{N\vdash 1+N}}{\frac{N\vdash N}{N\vdash N}} \overset{R+1}{\text{RFix}}$$

$$\frac{1\vdash N\vdash N}{N\vdash N} \overset{L+ix}{\text{LFix}}$$

$$N =_{\mu} 1 + N$$
Solution:
$$\frac{1}{1 + N} \xrightarrow{\{0, suc\}} N$$

$$\frac{1}{1 + N} \xrightarrow{R} \xrightarrow{R} \frac{N \vdash 1 + N}{N \vdash N} \xrightarrow{RFix} \frac{N \vdash 1 + N}{N \vdash N} \xrightarrow{RFix} \xrightarrow{N \vdash 1 + N} \xrightarrow{RFix} \frac{1 \vdash N \vdash N}{N \vdash N} \xrightarrow{LFix} \xrightarrow{LFix}$$

$$\text{double}(0) = 0$$

$$\text{double}(suc(n)) = suc(suc(double(n)))$$

$$\begin{array}{c} N =_{\mu} 1 + N \\ \text{Solution:} \\ 1 + \mathbb{N} \xrightarrow{\{0, \text{suc}\}} \mathbb{N} \\ \text{Let} \\ \text{double}(0) = 0 \\ \frac{1}{1 + N} \frac{1 + N}{1 + N} \frac{R + N}{R + N} \\ \frac{1 + N + N}{1 + N} \frac{R + N}{R + N} \\ \frac{1 + N + N}{N + N} \frac{R + N}{N + N} \\ \text{LFix} \\ \text{double}(0) = 0 \\ \text{double}(\text{suc}(n)) = \text{suc}(\text{suc}(\text{double}(n))) \end{array}$$

Solution:
$$\frac{1}{1+N} \xrightarrow{\{0, suc\}} \mathbb{N} \qquad \frac{1}{1+1} \xrightarrow{RAx} \frac{N \vdash N}{N \vdash 1+N} \xrightarrow{RFix} \frac{N \vdash N}{N \vdash N} \xrightarrow{RFix} \frac{1}{1+N} \xrightarrow{RFix} \frac{1+N \vdash N}{N \vdash N} \xrightarrow{RFix} \frac{1+N \vdash N}{N \vdash N} \xrightarrow{LFix} \frac{1+N \vdash N}{N \vdash N} \xrightarrow{L$$

Proofs \Rightarrow Systems of equations

$$egin{array}{lll} f_8 &=& f_0 \cdot ext{in}_1 \ f_7 &=& f_8 \cdot \zeta_N \ f_6 &=& f_7 \cdot ext{in}_1 \ f_5 &=& f_6 \cdot \zeta_N \ \end{array} \ egin{array}{lll} f_4 &=& !_1 \ f_3 &=& f_4 \cdot ext{in}_0 \ f_2 &=& f_3 \cdot \zeta_N \ \end{array} \ egin{array}{lll} f_1 &=& \{f_2, f_5\} \ f_0 &=& \zeta_N^{-1} \cdot f_1 \ \end{array}$$

Proofs \Rightarrow Systems of equations

$$\frac{1 \xrightarrow{f_{4}} RAx}{1 \xrightarrow{f_{4}} 1} R+0$$

$$\frac{1 \xrightarrow{f_{5}} 1+N}{1 \xrightarrow{f_{5}} N} RFix$$

$$\frac{1+N \xrightarrow{f_{5}} N}{1 \xrightarrow{f_{5}} N} L+1$$

$$\frac{1+N \xrightarrow{f_{5}} N}{1 \xrightarrow{f_{5}} N} LFix$$

Solution:
$$f_0 = double$$

$$X =_{\nu} 2 \times X \times X$$
$$2 =_{\nu} 1 + 1$$

$$X =_{\nu} 2 \times X \times X$$
$$2 =_{\nu} 1 + 1$$

Solution (Kupke-Rutten, 2012)

$$S \xrightarrow{\langle \text{head}, \text{even}, \text{odd} \rangle} 2 \times S \times S$$

$$X =_{\nu} 2 \times X \times X$$
$$2 =_{\nu} 1 + 1$$

Solution (Kupke-Rutten, 2012)

$$S \xrightarrow{\langle \text{head,even,odd} \rangle} 2 \times S \times S$$

Thue-Morse stream

$$\sigma = \langle 0, \sigma, \tau \rangle$$

$$\tau = \langle 1, \tau, \sigma \rangle$$

Sylesay No.

Guard condition

Idea: Each turn in a cycle must either read a part of an inductive input or write a part of a coinductive output.

Guard condition

Idea: Each turn in a cycle must either read a part of an inductive input or write a part of a coinductive output.

Definition

A path in Π has a left μ -trace if it

- contains a left fixpoint rule, and the highest priority is odd;
- turns left at every cut.

Guard condition

Idea: Each turn in a cycle must either read a part of an inductive input or write a part of a coinductive output.

Definition

A path in Π has a left μ -trace if it

- contains a left fixpoint rule, and the highest priority is odd;
- turns left at every cut.

Definition

A path in Π has a right ν -trace if it

- contains a right fixpoint rule, and the highest priority is even;
- turns right at every cut.

Guard conditions

The following are equivalent.

Guard conditions

The following are equivalent.

1 Every cycle in Π either has a left μ -trace or a right ν -trace.

Guard conditions

The following are equivalent.

- **①** Every cycle in Π either has a left μ -trace or a right ν -trace.
- **2** Every infinite path Γ in Π has a tail Γ' that has either a left μ -trace or a right ν -trace and every fixpoint rule in Γ' occurs infinitely often.

Guard conditions

The following are equivalent.

- **①** Every cycle in Π either has a left μ -trace or a right ν -trace.
- ② Every infinite path Γ in Π has a tail Γ' that has either a left μ -trace or a right ν -trace and every fixpoint rule in Γ' occurs infinitely often.
- **3** Every strongly connected component of Π either has a left μ -trace or a right ν -trace.

Guard conditions

The following are equivalent.

- **①** Every cycle in Π either has a left μ -trace or a right ν -trace.
- ② Every infinite path Γ in Π has a tail Γ' that has either a left μ -trace or a right ν -trace and every fixpoint rule in Γ' occurs infinitely often.
- **3** Every strongly connected component of Π either has a left μ -trace or a right ν -trace.

Definition

A circular proof is a finite pre-proof that satisfies the guard conditions.

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free μ -bicomplete category \mathcal{M} .

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free μ -bicomplete category \mathcal{M} .

Proof.

By induction on $\sharp(\Pi) = (\sharp_L(\Pi) + \sharp_R(\Pi), card(\Pi))$.

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free μ -bicomplete category \mathcal{M} .

Proof.

By induction on $\sharp(\Pi) = (\sharp_L(\Pi) + \sharp_R(\Pi), card(\Pi))$.

• If Π is not strongly connected: we can split Π in two parts Π_1 , Π_2 s.t. $\operatorname{card}(\Pi_1), \operatorname{card}(\Pi_2) < \operatorname{card}(\Pi)$.

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free μ -bicomplete category \mathcal{M} .

Proof.

By induction on $\sharp(\Pi) = (\sharp_L(\Pi) + \sharp_R(\Pi), \operatorname{card}(\Pi))$.

• If Π is not strongly connected: we can split Π in two parts Π_1 , Π_2 s.t. $\operatorname{card}(\Pi_1), \operatorname{card}(\Pi_2) < \operatorname{card}(\Pi)$. We then *glue* the two solutions together using the Bekič Lemma.

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free μ -bicomplete category \mathcal{M} .

Proof.

By induction on $\sharp(\Pi) = (\sharp_L(\Pi) + \sharp_R(\Pi), \operatorname{card}(\Pi))$.

- If Π is not strongly connected: we can split Π in two parts Π_1 , Π_2 s.t. $\operatorname{card}(\Pi_1), \operatorname{card}(\Pi_2) < \operatorname{card}(\Pi)$. We then *glue* the two solutions together using the Bekič Lemma.
- If Π is strongly connected: take a cycle Γ that covers Π .

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free μ -bicomplete category \mathcal{M} .

Proof.

By induction on $\sharp(\Pi) = (\sharp_L(\Pi) + \sharp_R(\Pi), card(\Pi))$.

- If Π is not strongly connected: we can split Π in two parts Π_1 , Π_2 s.t. $\operatorname{card}(\Pi_1), \operatorname{card}(\Pi_2) < \operatorname{card}(\Pi)$. We then *glue* the two solutions together using the Bekič Lemma.
- If Π is strongly connected: take a cycle Γ that covers Π. If Γ has a left μ-trace, split Π in parts Π_i s.t. ∀i, ‡_L(Π_i) < ‡(Π).

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free μ -bicomplete category \mathcal{M} .

Proof.

By induction on $\sharp(\Pi) = (\sharp_L(\Pi) + \sharp_R(\Pi), \operatorname{card}(\Pi))$.

- If Π is not strongly connected: we can split Π in two parts Π_1 , Π_2 s.t. $\operatorname{card}(\Pi_1), \operatorname{card}(\Pi_2) < \operatorname{card}(\Pi)$. We then *glue* the two solutions together using the Bekič Lemma.
- If Π is strongly connected: take a cycle Γ that covers Π . If Γ has a left μ -trace, split Π in parts Π_i s.t. $\forall i, \sharp_L(\Pi_i) < \sharp(\Pi)$. Then glue the parts together with the Yoneda Lemma.

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free μ -bicomplete category \mathcal{M} .

Proof.

By induction on $\sharp(\Pi) = (\sharp_L(\Pi) + \sharp_R(\Pi), \operatorname{card}(\Pi))$.

- If Π is not strongly connected: we can split Π in two parts Π_1 , Π_2 s.t. $\operatorname{card}(\Pi_1), \operatorname{card}(\Pi_2) < \operatorname{card}(\Pi)$. We then *glue* the two solutions together using the Bekič Lemma.
- If Π is strongly connected: take a cycle Γ that covers Π . If Γ has a left μ -trace, split Π in parts Π_i s.t. $\forall i, \sharp_L(\Pi_i) < \sharp(\Pi)$. Then glue the parts together with the Yoneda Lemma. If Γ as a right ν -trace, same reasoning.

Fullness Theorem (F.-S. 2013)

Every arrow $f: s \to t$ of \mathcal{M} is the solution of a circular proof.

Fullness Theorem (F.-S. 2013)

Every arrow $f: s \to t$ of \mathcal{M} is the solution of a circular proof.

Proof.

Obvious for most diagrams (by contruction of the rules).

Fullness Theorem (F.-S. 2013)

Every arrow $f: s \to t$ of \mathcal{M} is the solution of a circular proof.

Proof.

Obvious for most diagrams (by contruction of the rules).

Except for this one!

Fullness Theorem (F.-S. 2013)

Every arrow $f: s \to t$ of \mathcal{M} is the solution of a circular proof.

Proof.

Obvious for most diagrams (by contruction of the rules).

Except for this one!

Fullness Theorem (F.-S. 2013)

Every arrow $f: s \to t$ of \mathcal{M} is the solution of a circular proof.

Proof.

Obvious for most diagrams (by contruction of the rules).

Except for this one!

Cut-elimination

Cut-elimination

Theorem (Santocanale, 2001)

There is no cut-free circular proof whose interpretation in Sets is the diagonal $\Delta: \mathbb{N} \to \mathbb{N}^2$.

Diagonal map (with cuts)

$$\begin{array}{c} \Delta : \mathbb{N} \rightarrow \mathbb{N}^{2} \\ n \mapsto (n,n) \\ &\stackrel{1 \vdash 1}{\underset{1 \vdash 1 + N}{R}} \underset{R \vdash 0}{\overset{1}{\underset{1 \vdash 1 + N}{R}}} \\ &\stackrel{1}{\underset{1 \vdash 1 + N}{R}} \underset{R \vdash 1}{\overset{R \vdash 1}{\underset{1 \vdash 1 + N}{R}}} \\ &\stackrel{1}{\underset{1 \vdash 1 + N}{R}} \underset{R \vdash 1}{\overset{R \vdash 1}{\underset{1 \vdash 1 + N}{R}}} \\ &\stackrel{1}{\underset{1 \vdash 1}{\underset{1 \vdash N}{R}}} \\ &\stackrel{1}{\underset{1 \vdash N \vdash N}{R}} \\ &\stackrel{1}{\underset{1 \vdash N \vdash$$

Cut-elimination

Cut-elimination

Strategy: "Push" the cuts away from the root.

Strategy: "Push" the cuts away from the root.

Main difficulties:

• We must use lazy evaluation (hence the output is infinite).

Strategy: "Push" the cuts away from the root.

Main difficulties:

- We must use lazy evaluation (hence the output is infinite).
- Cut VS Cut

$$\frac{t_0 \vdash t_1 \quad t_1 \vdash t_2}{\frac{t_0 \vdash t_2}{t_0 \vdash t_3}} \texttt{Cut} \qquad \underbrace{t_2 \vdash t_3}_{\texttt{Cut}} \texttt{Cut}$$

Strategy: "Push" the cuts away from the root.

Main difficulties:

- We must use lazy evaluation (hence the output is infinite).
- Cut VS Cut

$$\frac{t_0 \vdash t_1 \quad t_1 \vdash t_2}{\frac{t_0 \vdash t_2}{t_0 \vdash t_3}} \, \mathtt{Cut} \qquad \Longrightarrow \qquad \underbrace{t_1 \vdash t_2 \quad t_2 \vdash t_3}_{t_0 \vdash t_3} \, \mathtt{Cut} \qquad \Longleftrightarrow \qquad \underbrace{t_0 \vdash t_1} \qquad \underbrace{t_1 \vdash t_2 \quad t_2 \vdash t_3}_{t_0 \vdash t_3} \, \mathtt{Cut}$$

Strategy: "Push" the cuts away from the root.

Main difficulties:

- We must use lazy evaluation (hence the output is infinite).
- Cut VS Cut

$$\frac{t_0 \vdash t_1 \quad t_1 \vdash t_2}{t_0 \vdash t_2} \text{Cut} \qquad \Rightarrow \qquad \underbrace{t_0 \vdash t_1}_{t_0 \vdash t_3} \text{Cut} \qquad \Leftrightarrow \qquad \underbrace{t_0 \vdash t_1}_{t_0 \vdash t_3} \text{Cut} \qquad \text{Cut}$$

$$\frac{t_0 \vdash t_1 \quad t_1 \vdash t_2 \quad t_2 \vdash t_3}{t_0 \vdash t_3} \operatorname{Cut}$$

Definition

A tape is a finite list $M := [u_1, \ldots, u_n]$ of composable vertices of Π .

Definition

A tape is a finite list $M := [u_1, \ldots, u_n]$ of composable vertices of Π .

Cut Man - A tape automaton

Definition

A tape is a finite list $M := [u_1, \ldots, u_n]$ of composable vertices of Π .

Cut Man - A tape automaton

• Finite state machine (over a circular proof Π).

Definition

A tape is a finite list $M := [u_1, \ldots, u_n]$ of composable vertices of Π .

Cut Man - A tape automaton

- Finite state machine (over a circular proof Π).
- Carries a tape (of states) in memory.

Definition

A tape is a finite list $M := [u_1, \ldots, u_n]$ of composable vertices of Π .

Cut Man - A tape automaton

- Finite state machine (over a circular proof Π).
- Carries a tape (of states) in memory.
- Outputs a branch (chosen nondeterministically) of the cut-free infinite proof tree.

$$\frac{0 \vdash t_1}{0 \vdash t_1} \xrightarrow{\text{LAx}} t_1 \vdash t_2 \cdots \underbrace{\text{Cut}}$$

$$\frac{0 \vdash t_1}{0 \vdash t_n} \xrightarrow{LAx} t_1 \vdash t_2 \cdots \underbrace{Cut} \qquad \frac{\bot Flip}{0 \vdash t_n} \bot LAx$$

$$\frac{\overbrace{0 \vdash t_1}^{\text{LAx}} \underbrace{t_1 \vdash t_2 \quad \cdots}_{0 \vdash t_n} \text{Cut}}{0 \vdash t_n} \xrightarrow{\text{Cut}} \frac{\text{LFlip}}{0 \vdash t_n} \text{LAx}$$

$$\frac{F(X) \vdash t_1}{X \vdash t_1} \text{LFix} \underbrace{t_1 \vdash t_2 \quad \cdots}_{X \vdash t_n} \text{Cut}$$

$$\frac{0 \vdash t_1}{0 \vdash t_n} \xrightarrow{LAx} \underbrace{t_1 \vdash t_2 \cdots}_{Cut} \xrightarrow{Cut} \xrightarrow{\text{Cut}} \frac{1}{0 \vdash t_n} LAx$$

$$\frac{(X) \vdash t_1}{X \vdash t_1} LFix \underbrace{t_1 \vdash t_2 \cdots}_{X \vdash t_n} Cut$$

$$\frac{X \vdash t_n}{X \vdash t_n} LFix$$

$$\frac{X \vdash t_n}{X \vdash t_n} LFix$$

$$\frac{X \vdash t_n}{X \vdash t_n} LFix$$

$$\frac{\overline{0 \vdash t_1} \overset{\text{LAx}}{t_1 \vdash t_2} \cdots}{0 \vdash t_n} \overset{\text{Cut}}{\longrightarrow} \frac{ \overset{\text{LFlip}}{\longrightarrow} }{0 \vdash t_n} \overset{\text{LAx}}{\longrightarrow} \frac{ }{0 \vdash t_n} \overset{\text{LAx}}{\longrightarrow} \overset{\text{LFlip}}{\longrightarrow} \frac{ }{X \vdash t_n} \overset{\text{LFlip}}{\longrightarrow} \overset{\text{Cut}}{\longrightarrow} \overset{\text{Cut}}{\longrightarrow} \frac{ }{X \vdash t_n} \overset{\text{LFlip}}{\longrightarrow} \overset{\text{Cut}}{\longrightarrow} \overset{\text{Cut}}{$$

Commutative reductions (left)

Commutative reductions (left)

$$\frac{\overline{0 \vdash t_1} \overset{LAx}{t_1 \vdash t_2} \cdots}{0 \vdash t_n} \overset{Cut}{\longrightarrow} \frac{ \overset{LFlip}{ }}{0 \vdash t_n} \overset{LAx}{ }$$

$$\frac{F(X) \vdash t_1}{X \vdash t_1} \overset{LFix}{LFix} \overset{t_1 \vdash t_2}{\longrightarrow} \cdots \overset{Cut}{\longrightarrow} \frac{ \overset{LFlip}{ }}{X \vdash t_n} \overset{F(X) \vdash t_1}{\longrightarrow} \overset{t_1 \vdash t_2}{\longrightarrow} \cdots \overset{Cut}{\longrightarrow} \frac{ X \vdash t_n}{X \vdash t_n} \overset{LFlip}{ } \overset{S_k \vdash t_1}{\longrightarrow} \overset{LFlip}{\longleftarrow} \overset{S_k \vdash t_1}{\longrightarrow} \overset{LFlip}{\longleftarrow} \overset{S_k \vdash t_1}{\longrightarrow} \overset{LFlip}{\longleftarrow} \overset{S_0 \vdash t_1}{\longrightarrow} \overset{t_1 \vdash t_2}{\longrightarrow} \cdots \overset{Cut}{\longrightarrow} \frac{ S_0 \vdash t_1}{\longrightarrow} \overset{t_1 \vdash t_2}{\longrightarrow} \cdots \overset{Cut}{\longrightarrow} \overset{S_0 \vdash t_1}{\longrightarrow} \overset{t_1 \vdash t_2}{\longrightarrow} \overset{Cut}{\longrightarrow} \overset{S_0 \vdash t_1}{\longrightarrow} \overset{Cut}{\longrightarrow} \overset{S_0 \vdash t_1}{\longrightarrow} \overset{t_1 \vdash t_2}{\longrightarrow} \overset{Cut}{\longrightarrow} \overset{S_0 \vdash t_1}{\longrightarrow} \overset{Cut}{\longrightarrow} \overset{Cu$$

Commutative reductions (right)

$$\frac{\cdots \quad t_{n-2} \vdash t_{n-1} \quad \overline{t_{n-1} \vdash 1}}{t_0 \vdash 1} \overset{\mathsf{RAx}}{\mathsf{Cut}} \qquad \frac{\mathsf{RFlip}}{\mathsf{Tol}} \qquad \frac{\mathsf{RFlip}}{t_0 \vdash 1} \overset{\mathsf{RAx}}{\mathsf{RAx}}$$

$$\frac{\cdots \quad t_{n-2} \vdash t_{n-1} \quad t_{n-1} \vdash F(X)}{t_{n-1} \vdash X} \overset{\mathsf{RFlip}}{\mathsf{Cut}} \qquad \frac{\mathsf{RFlip}}{\mathsf{Tol}} \qquad \frac{\mathsf{RFlip}}{t_0 \vdash X} \overset{\mathsf{Cut}}{\mathsf{RFix}} \overset{\mathsf{Cut}}{\mathsf{RFix}} \overset{\mathsf{Cut}}{\mathsf{Cut}}$$

$$\frac{t_{n-1} \vdash s_k}{t_0 \vdash s_0 + s_1} \overset{\mathsf{R}_{+k}}{\mathsf{RFix}} \overset{\mathsf{RFlip}}{\mathsf{Cut}} \qquad \frac{t_{n-1} \vdash s_k}{t_0 \vdash s_0 + s_1} \overset{\mathsf{Cut}}{\mathsf{Cut}} \overset{\mathsf{Cut}}{\mathsf{Cut}} \overset{\mathsf{RFlip}}{\mathsf{Cut}} \overset{\mathsf{Cut}}{\mathsf{Cut}} \overset{\mathsf{Cut}}{\mathsf$$

Elimination of identities

$$\frac{\cdots \quad t_{i-1} \vdash s \quad \frac{}{s \vdash s} \text{ Id } s \vdash t_{i+2} \quad \cdots}{t_0 \vdash t_n} \text{Cut}$$

Elimination of identities

 $IdElim(M, i) = Remove u_i from M.$

Otherwise,
$$M = [R \dots RL \dots L]$$
.

Otherwise,
$$M = [R \dots RL \dots L]$$
.

$$\frac{ \cdots \frac{t_{i-1} \vdash s_0 \quad t_{i-1} \vdash s_1}{t_{i-1} \vdash s_0 \times s_1} \, \mathbf{R} \times \ \frac{s_k \vdash t_{i+1}}{s_0 \times s_1 \vdash t_{i+1}} \, \mathbf{L} \times_k}{t_0 \vdash t_n} }{\mathsf{Cut}}$$

$$\underbrace{ \cdots \frac{t_{i-1} \vdash s_0 \quad t_{i-1} \vdash s_1}{t_{i-1} \vdash s_0 \times s_1} \, \mathbb{R} \times \, \frac{s_k \vdash t_{i+1}}{s_0 \times s_1 \vdash t_{i+1}} \, \mathbb{L} \times_k}_{t_0 \vdash t_n} \, \overset{\mathsf{Reduce}}{\longrightarrow} \quad \underbrace{ \frac{ \vdash t_{i-1} \vdash s_k \quad s_k \vdash t_{i+1} \quad \cdots}{t_0 \vdash t_n} \, \mathsf{Cut} }_{\mathsf{Cut}}$$

$$\stackrel{\text{deduce}}{\Longrightarrow} \frac{\cdots \quad t_{i-1} \vdash s_k \quad s_k \vdash t_{i+1} \quad \cdots}{t_0 \vdash t_n}$$

$$\frac{t_{i-1} \vdash s_0 \quad t_{i-1} \vdash s_1}{t_{i-1} \vdash s_0 \times s_1} \operatorname{R} \times \frac{s_k \vdash t_{i+1}}{s_0 \times s_1 \vdash t_{i+1}} \operatorname{L} \times_k \dots \atop t_0 \vdash t_n}{\operatorname{Cut}} \xrightarrow{ \operatorname{Reduce} \atop t_0 \vdash t_n} \frac{\cdots \quad t_{i-1} \vdash s_k \quad s_k \vdash t_{i+1} \quad \cdots}{t_0 \vdash t_n} \operatorname{Cut}$$

$$\frac{t_{i-1} \vdash s_0 \quad t_{i-1} \vdash s_1}{t_{i-1} \vdash s_0 \times s_1} \operatorname{R} \times \frac{s_k \vdash t_{i+1}}{s_0 \times s_1 \vdash t_{i+1}} \operatorname{L} \times_k}{t_0 \vdash t_n} \operatorname{Cut} \xrightarrow{ \text{Reduce} } \frac{\cdots \quad t_{i-1} \vdash s_k \quad s_k \vdash t_{i+1} \quad \cdots}{t_0 \vdash t_n} \operatorname{Cut}$$

$$\frac{t_{i-1} \vdash s_k}{t_{i-1} \vdash s_0 + s_1} \operatorname{R} +_k \frac{s_0 \vdash t_{i+1} \quad s_1 \vdash t_{i+1}}{s_0 \vdash s_1 \vdash t_{i+1}} \operatorname{L} + \cdots}{t_0 \vdash t_n} \operatorname{Cut} \xrightarrow{ \text{Reduce} } \frac{\cdots \quad t_{i-1} \vdash s_k \quad s_k \vdash t_{i+1} \quad \cdots}{t_0 \vdash t_n} \operatorname{Cut}$$

$$\frac{t_{i-1} \vdash s_0 \quad t_{i-1} \vdash s_1}{t_{i-1} \vdash s_0 \times s_1} \, \mathbb{R} \times \underbrace{\frac{s_k \vdash t_{i+1}}{s_0 \times s_1 \vdash t_{i+1}} \, \mathbb{L} \times_k}_{s_0 \times s_1 \vdash t_{i+1}} \, \mathbb{L} \times_k} \cdots \, \mathbb{C}ut$$

$$\frac{t_{i-1} \vdash s_k}{t_0 \vdash t_n} \, \mathbb{R} +_k \underbrace{\frac{s_0 \vdash t_{i+1}}{s_0 + s_1 \vdash t_{i+1}} \, \mathbb{L} + \dots}_{t_0 \vdash t_n} \, \mathbb{C}ut } \xrightarrow{\mathbb{C}ut}$$

$$\frac{t_{i-1} \vdash s_k}{t_{i-1} \vdash s_0 + s_1} \, \mathbb{R} +_k \underbrace{\frac{s_0 \vdash t_{i+1}}{s_0 + s_1 \vdash t_{i+1}} \, \mathbb{L} + \dots}_{t_0 \vdash t_n} \, \mathbb{C}ut } \xrightarrow{\mathbb{C}ut}$$

$$\frac{t_{i-1} \vdash F(X)}{t_{i-1} \vdash X} \, \mathbb{R}Fix} \, \underbrace{\frac{F(X) \vdash t_{i+1}}{X \vdash t_{i+1}} \, \mathbb{L}Fix}_{t_1 \vdash t_n} \, \mathbb{C}ut } \xrightarrow{\mathbb{C}ut}$$

$$\frac{t_{i-1} \vdash s_0 \quad t_{i-1} \vdash s_1}{t_{i-1} \vdash s_0 \times s_1} \operatorname{R} \times \frac{s_k \vdash t_{i+1}}{s_0 \times s_1 \vdash t_{i+1}} \operatorname{L} \times_k \dots \underbrace{t_0 \vdash t_n} \operatorname{Cut}$$

$$\frac{t_{i-1} \vdash s_k}{t_0 \vdash t_n} \operatorname{R} +_k \frac{s_0 \vdash t_{i+1} \quad s_1 \vdash t_{i+1}}{s_0 + s_1 \vdash t_{i+1}} \operatorname{L} + \dots \underbrace{t_0 \vdash t_n} \operatorname{Cut}$$

$$\frac{t_{i-1} \vdash s_k}{t_{i-1} \vdash s_0 + s_1} \operatorname{RFix} \frac{F(X) \vdash t_{i+1}}{X \vdash t_{i+1}} \operatorname{LFix} \dots \underbrace{t_1 \vdash t_n} \operatorname{Cut}$$

$$\frac{t_{i-1} \vdash F(X)}{t_{i-1} \vdash X} \operatorname{RFix} \frac{F(X) \vdash t_{i+1}}{X \vdash t_{i+1}} \operatorname{LFix} \dots \underbrace{t_1 \vdash t_n} \operatorname{Cut}$$

$$\frac{\operatorname{Reduce}}{t_0 \vdash t_n} \stackrel{\dots \quad t_{i-1} \vdash F(X)}{t_0 \vdash t_n} \operatorname{Cut}$$

$$\frac{\operatorname{Reduce}}{t_0 \vdash t_n} \stackrel{\dots \quad t_{i-1} \vdash F(X)}{t_0 \vdash t_n} \operatorname{Cut}$$

• Internal phase: Perform internal transformations (Merge, IdElim, Reduce) while you can't do anything else.

- Internal phase: Perform internal transformations (Merge, IdElim, Reduce) while you can't do anything else.
- Production phase: Build a part of the output tree (LFlip, RFlip, IdOut) whenever you can!

- Internal phase: Perform internal transformations (Merge, IdElim, Reduce) while you can't do anything else.
- Production phase: Build a part of the output tree (LFlip, RFlip, IdOut) whenever you can!
- Repeat forever...

- Internal phase: Perform internal transformations (Merge, IdElim, Reduce) while you can't do anything else.
- Production phase: Build a part of the output tree (LFlip, RFlip, IdOut) whenever you can!
- Repeat forever...

Theorem (F.-S., 2013)

For every input tape M, the internal phase halts!

$$M_1 = \begin{bmatrix} u_{11} & u_{12} & u_{13} \end{bmatrix}$$

Merge \downarrow
 $M_2 = \begin{bmatrix} u_{21} & u_{22} & u_{23} & u_{24} \end{bmatrix}$

Merge \downarrow
 $M_3 = \begin{bmatrix} u_{31} & u_{32} & u_{33} & u_{34} & u_{35} \end{bmatrix}$

Reduce \downarrow
 $M_4 = \begin{bmatrix} u_{41} & u_{42} & u_{43} & u_{44} & u_{45} \end{bmatrix}$

IdElim \downarrow
 $M_5 = \begin{bmatrix} u_{51} & u_{52} & u_{53} & u_{54} \end{bmatrix}$

Reduce \downarrow
 $M_6 = \begin{bmatrix} u_{61} & u_{62} & u_{63} & u_{64} \end{bmatrix}$

$$M_1 = \begin{bmatrix} u_{11} & u_{12} & u_{13} \end{bmatrix}$$
 $Merge \Downarrow \qquad \qquad 1 \downarrow \qquad 2$
 $M_2 = \begin{bmatrix} u_{21} & u_{22} & u_{23} & u_{24} \end{bmatrix}$
 $Merge \Downarrow \qquad \qquad 1 \downarrow \qquad 2$
 $M_3 = \begin{bmatrix} u_{31} & u_{32} & u_{33} & u_{34} & u_{35} \end{bmatrix}$
 $Reduce \Downarrow \qquad \qquad \downarrow 0 \qquad \downarrow 0$
 $M_4 = \begin{bmatrix} u_{41} & u_{42} & u_{43} & u_{44} & u_{45} \end{bmatrix}$
 $IdElim \Downarrow \qquad \qquad M_5 = \begin{bmatrix} u_{51} & u_{52} & u_{53} & u_{54} \end{bmatrix}$
 $Reduce \Downarrow \qquad \qquad \downarrow 0 \qquad \downarrow 0$
 $M_6 = \begin{bmatrix} u_{61} & u_{62} & u_{63} & u_{64} \end{bmatrix}$

 \bullet Ψ is an infinite finitely branching tree.

- \bullet Ψ is an infinite finitely branching tree.
- The set $\mathcal{B}_{\infty}(\Psi)$ of its infinite branches is non-empty. (Kőnig)

- \bullet Ψ is an infinite finitely branching tree.
- The set $\mathcal{B}_{\infty}(\Psi)$ of its infinite branches is non-empty. (Kőnig)
- $\mathcal{B}_{\infty}(\Psi)$ is lexicographically ordered, it is a complete lattice.

- \bullet Ψ is an infinite finitely branching tree.
- The set $\mathcal{B}_{\infty}(\Psi)$ of its infinite branches is non-empty. (Kőnig)
- $\mathcal{B}_{\infty}(\Psi)$ is lexicographically ordered, it is a complete lattice.
- Infinite branches of Ψ , correspond to infinite paths in Π . Therefore, they satisfy the guard condition!

$$\mathcal{B}_{\infty}(\Psi) = \mu$$
-branches $\cup \nu$ -branches

- \bullet Ψ is an infinite finitely branching tree.
- The set $\mathcal{B}_{\infty}(\Psi)$ of its infinite branches is non-empty. (Kőnig)
- $\mathcal{B}_{\infty}(\Psi)$ is lexicographically ordered, it is a complete lattice.
- Infinite branches of Ψ , correspond to infinite paths in Π . Therefore, they satisfy the guard condition!

$$\mathcal{B}_{\infty}(\Psi) = \mu$$
-branches $\cup \nu$ -branches

Lemma (F.-S., 2013)

- **1** The least infinite branch of Ψ is a ν -branch.
- **2** Let E be a nonempty collection of ν -branches and let $\gamma = \bigvee E$. Then γ is a ν -branch.
- 3 If β is a ν -branch, then there exists another ν -branch $\beta' \succ \beta$.

Let

 $E= All the \nu-branches$

Let

 $E= All the \nu$ -branches

By 1 $E \neq \emptyset$.

Let

 $E= All the \nu$ -branches

By 1 $E \neq \emptyset$. Let $\gamma = \bigvee E$. By 2, γ is a ν -branch.

Let

E= All the ν -branches

By 1 $E \neq \emptyset$. Let $\gamma = \bigvee E$. By 2, γ is a ν -branch. Hence by 3, there is another ν -branch $\gamma' \succ \gamma$.

Let

E = All the ν -branches

By 1 $E \neq \emptyset$. Let $\gamma = \bigvee E$. By 2, γ is a ν -branch. Hence by 3, there is another ν -branch $\gamma' \succ \gamma$. But then, $\gamma' \in E$ and therefore $\gamma' \preceq \bigvee E = \gamma$.

Cut-eliminating infinite proof-trees

- We can cut eliminate a cut-free infinite proof against a fixed circular proof Π.
- We obtain a cut-free infinite proof.

Cut-eliminating infinite proof-trees

- We can cut eliminate a cut-free infinite proof against a fixed circular proof Π.
- We obtain a cut-free infinite proof.

Considering that for any μ -definable set X,

 $X \simeq \text{Winning strategies for} \oplus \text{in some game}$

Cut-eliminating infinite proof-trees

- We can cut eliminate a cut-free infinite proof against a fixed circular proof Π.
- We obtain a cut-free infinite proof.

Considering that for any μ -definable set X,

 $X \simeq \text{Winning strategies for } \oplus \text{ in some game}$

 \simeq Cut-free infinite valid proofs of $1 \vdash X$,

Cut-eliminating infinite proof-trees

- We can cut eliminate a cut-free infinite proof against a fixed circular proof Π.
- We obtain a cut-free infinite proof.

Considering that for any μ -definable set X,

 $X \simeq \text{Winning strategies for} \oplus \text{in some game}$

 \simeq Cut-free infinite valid proofs of $1 \vdash X$,

Cut-elimination is a generic algorithm for computing all the μ -definable functions.

• What are the set-theoretic functions that one can denote with circular proofs and computed with cut-elimination?

• What are the set-theoretic functions that one can denote with circular proofs and computed with cut-elimination?

 What are the set-theoretic functions that one can denote with circular proofs and computed with cut-elimination?

Primitive recursive $\leq \mu$ -definable \leq Recursive

• Which of those bounds are strict?

 What are the set-theoretic functions that one can denote with circular proofs and computed with cut-elimination?

- Which of those bounds are strict?
- Is the Ackermann function definable?

 What are the set-theoretic functions that one can denote with circular proofs and computed with cut-elimination?

- Which of those bounds are strict?
- Is the Ackermann function definable?
- What about streams?

 What are the set-theoretic functions that one can denote with circular proofs and computed with cut-elimination?

- Which of those bounds are strict?
- Is the Ackermann function definable?
- What about streams?
- And trees?

• What are the set-theoretic functions that one can denote with circular proofs and computed with cut-elimination?

Primitive recursive $\leq \mu$ -definable \leq Recursive

- Which of those bounds are strict?
- Is the Ackermann function definable?
- What about streams?
- And trees?

Regular tree $< \mu$ -definable

• What are the set-theoretic functions that one can denote with circular proofs and computed with cut-elimination?

Primitive recursive
$$\leq \mu$$
-definable \leq Recursive

- Which of those bounds are strict?
- Is the Ackermann function definable?
- What about streams?
- And trees?

Regular tree $< \mu$ -definable

• What about higher order pushdown trees?

• How can we enrich the proof system (and corresponding model) while keeping a productive cut-elimination procedure?

- How can we enrich the proof system (and corresponding model) while keeping a productive cut-elimination procedure?
- Find links with existing circularities (get a categorical perspective)

- How can we enrich the proof system (and corresponding model) while keeping a productive cut-elimination procedure?
- Find links with existing circularities (get a categorical perspective)
 - Add contexts, linear logic $s_1 \dots s_m \vdash t_1 \dots t_n$ (Baelde)

- How can we enrich the proof system (and corresponding model) while keeping a productive cut-elimination procedure?
- Find links with existing circularities (get a categorical perspective)
 - Add contexts, linear logic $s_1 \dots s_m \vdash t_1 \dots t_n$ (Baelde)
 - Add modalties $\Box t, \Diamond t, \dots$ (Walukiewicz)

- How can we enrich the proof system (and corresponding model) while keeping a productive cut-elimination procedure?
- Find links with existing circularities (get a categorical perspective)
 - Add contexts, linear logic $s_1 \dots s_m \vdash t_1 \dots t_n$ (Baelde)
 - Add modalties $\Box t, \Diamond t, \dots$ (Walukiewicz)
 - Add first order. (Brotherston-Simpson, Roşu, Lismont)

- How can we enrich the proof system (and corresponding model) while keeping a productive cut-elimination procedure?
- Find links with existing circularities (get a categorical perspective)
 - Add contexts, linear logic $s_1 \dots s_m \vdash t_1 \dots t_n$ (Baelde)
 - Add modalties $\Box t, \Diamond t, \dots$ (Walukiewicz)
 - Add first order. (Brotherston-Simpson, Roşu, Lismont)
- Philosophical question: What is the meaning of circularity in mathematical reasoning?

