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Natural numbers

(Circular) Definition
A natural number is either 0, or of the form suc(n) where n is a natural
number.

N is the least fixpoint of this definition!

Initial algebra!

1 + N

N

1 + X

X

{0, suc}

{0, suc} pre

1 + f

∃!f

{a, g}

f (0) = a
f (suc(x)) = g(f (x))

N = µX .(1 + X )
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Other inductive types...

µX .(1 + A× X ) = A∗ = Finite words over A

∗ 7→ ε

〈a,w〉 7→ a · w

µX .(1 + A× X × X ) = Finite binary labelled trees

∗ 7→ Empty tree

〈a,T1,T2〉 7→
a

T1 T2
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Streams

(Circular) Definition
A stream over an alphabet A is made of a head a ∈ A, and another stream
called the tail.

Aω is the greatest fixpoint of this definition!

Final coalgebra!

Aω

A× Aω

X

A× X

〈head, tail〉

cons 〈head, tail〉

∃!f

id× f

〈a, g〉

head(f (x)) = a(x)

tail(f (x)) = f (g(x))

Aω = νX .(A× X )
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Other coinductive types...

νX .(A× X × X ) = Infinite binary labelled trees

a

T1 T2

7→ 〈a,T1,T2〉
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Lattice µ-calculus

Lattice µ-terms are generated by the following grammar:

t := X | 1 | t × t | 0 | t + t | µX .t | νX .t

Example

t = νX .(A× µY .(1 + X × Y ))

Functorial interpretation
×,+ = Product / Coproduct;
0, 1 = Initial / Final object;
µX .F (X ), νX .F (X ) = Initial F -algebra / Final F -coalgebra.

Definition
A category C is µ-bicomplete iff this interpretation makes sense in C.
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Game semantics (in Sets)

t = νX .(A× µY .(1 + X × Y ))

S(t) :

X =ν A× Y (2)
A =ν

∑
a∈A 1 (2)

Y =µ 1 + Z (1)
Z =µ X × Y (1)

⇒

Priority(V ) is

{
even , if V =ν . . .

odd , if V =µ . . .

X A

Y 1

Z

2

1
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Game semantics (in Sets)

Parity games!

X A

Y 1

Z

2

1

Player ⊕ wins if:
At some point, Player ⊗ cannot play,
Or the game is infinite, and the highest
priority visited infinitely often is even.

Player ⊗ wins in the dual situation.

Theorem (Santocanale, 2002)

Solutions for variable V in S(t) ' The set of deterministic winning
strategies for ⊕ from position V .

Therefore, we have a combinatorial (dynamic) characterization of the
µ-defined objects.
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Curry–Howard correspondence

Goal
Find a "good" (dynamic) syntax for expressing (and computing) functions
(arrows) between objects of this kind.

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 9 / 36



Curry–Howard correspondence

Goal
Find a "good" (dynamic) syntax for expressing (and computing) functions
(arrows) between objects of this kind.

λ-calculus
Intuitionistic

Logic

Cartesian
Closed

Categories

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 9 / 36



Curry–Howard correspondence

Goal
Find a "good" (dynamic) syntax for expressing (and computing) functions
(arrows) between objects of this kind.

µ-calculus
Intuitionistic

Logic

Cartesian
Closed

Categories

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 9 / 36



Curry–Howard correspondence

Goal
Find a "good" (dynamic) syntax for expressing (and computing) functions
(arrows) between objects of this kind.

µ-calculus
Intuitionistic

Logic

µ-bicomplete
Categories

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 9 / 36



Curry–Howard correspondence

Goal
Find a "good" (dynamic) syntax for expressing (and computing) functions
(arrows) between objects of this kind.

µ-calculus Circular
Proofs

µ-bicomplete
Categories
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Inference rules (Gentzen style)

Axioms: LAx
0 ` t

RAx
t ` 1

Id
t ` t

Product:
(conjunction)

si ` t
L×i

s0 × s1 ` t

s ` t0 s ` t1
R×

s ` t0 × t1

Coproduct:
(disjunction)

s0 ` t s1 ` t
L+

s0 + s1 ` t

s ` ti
R+i

s ` t0 + t1

Fixpoint: F (X ) ` t
LFix

X ` t

s ` F (X )
RFix

s ` X
if X = F (X )

Cut: r ` s s ` t
Cut

r ` t
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Categorical interpretation

Axioms: LAx
0 ?t−→ t

RAx
t !t−→ 1

Id
t idt−→ t

Product:
(conjunction)

si
f−→ t

L×i

s0 × s1
pri ·f−−−→ t

s f−→ t0 s
g−→ t1

R×
s
〈f ,g〉−−−→ t0 × t1

Coproduct:
(disjunction)

s0
f−→ t s1

g−→ t
L+

s0 + s1
{f ,g}−−−→ t

s f−→ ti
R+i

s f ·ini−−−→ t0 + t1

Fixpoint:
F (X )

f−→ t
LFix

X
ζ−1
X ·f−−−→ t

s f−→ F (X )
RFix

s
f ·ζX−−→ X

if X =µ F (X )

F (X )
f−→ t

LFix
X

ξX ·f−−→ t

s f−→ F (X )
RFix

s
f ·ξ−1

X−−−→ X

if X =ν F (X )

Cut: r f−→ s s
g−→ t

Cut
r

f ·g−−→ t
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Primitive recursion

N =µ 1 + N

Solution:

1 + N {0,suc}−−−−→ N

Let

double(0) = 0
double(suc(n)) = suc(suc(double(n)))

RAx
1 ` 1

R +0
1 ` 1 + N

RFix
1 ` N

N ` N
R +1

N ` 1 + N
RFix

N ` N
R +1

N ` 1 + N
RFix

N ` N
L +

1 + N ` N
LFix

N ` N

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Primitive recursion

N =µ 1 + N

Solution:

1 + N {0,suc}−−−−→ N

Let

double(0) = 0
double(suc(n)) = suc(suc(double(n)))

RAx
1 ` 1

R +0
1 ` 1 + N

RFix
1 ` N

N ` N
R +1

N ` 1 + N
RFix

N ` N
R +1

N ` 1 + N
RFix

N ` N
L +

1 + N ` N
LFix

N ` N

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Primitive recursion

N =µ 1 + N

Solution:

1 + N {0,suc}−−−−→ N

Let

double(0) = 0
double(suc(n)) = suc(suc(double(n)))

RAx
1 ` 1

R +0
1 ` 1 + N

RFix
1 ` N

N ` N
R +1

N ` 1 + N
RFix

N ` N
R +1

N ` 1 + N
RFix

N ` N
L +

1 + N ` N
LFix

N ` N

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Primitive recursion

N =µ 1 + N

Solution:

1 + N {0,suc}−−−−→ N

Let

double(0) = 0
double(suc(n)) = suc(suc(double(n)))

RAx
1 ` 1

R +0
1 ` 1 + N

RFix
1 ` N

N ` N
R +1

N ` 1 + N
RFix

N ` N
R +1

N ` 1 + N
RFix

N ` N
L +

1 + N ` N
LFix

N ` N

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Primitive recursion

N =µ 1 + N

Solution:

1 + N {0,suc}−−−−→ N

Let

double(0) = 0
double(suc(n)) = suc(suc(double(n)))

RAx
1 ` 1

R +0
1 ` 1 + N

RFix
1 ` N

N ` N
R +1

N ` 1 + N
RFix

N ` N
R +1

N ` 1 + N
RFix

N ` N
L +

1 + N ` N
LFix

N ` N

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Primitive recursion

N =µ 1 + N

Solution:

1 + N {0,suc}−−−−→ N

Let

double(0) = 0
double(suc(n)) = suc(suc(double(n)))

RAx
1 ` 1

R +0
1 ` 1 + N

RFix

1 ` N

N ` N
R +1

N ` 1 + N
RFix

N ` N
R +1

N ` 1 + N
RFix

N ` N
L +

1 + N ` N
LFix

N ` N

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Primitive recursion

N =µ 1 + N

Solution:

1 + N {0,suc}−−−−→ N

Let

double(0) = 0
double(suc(n)) = suc(suc(double(n)))

RAx
1 ` 1

R +0

1 ` 1 + N
RFix

1 ` N

N ` N
R +1

N ` 1 + N
RFix

N ` N
R +1

N ` 1 + N
RFix

N ` N
L +

1 + N ` N
LFix

N ` N

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Primitive recursion

N =µ 1 + N

Solution:

1 + N {0,suc}−−−−→ N

Let

double(0) = 0
double(suc(n)) = suc(suc(double(n)))

RAx

1 ` 1
R +0

1 ` 1 + N
RFix

1 ` N

N ` N
R +1

N ` 1 + N
RFix

N ` N
R +1

N ` 1 + N
RFix

N ` N
L +

1 + N ` N
LFix

N ` N

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Primitive recursion

N =µ 1 + N

Solution:

1 + N {0,suc}−−−−→ N

Let

double(0) = 0
double(suc(n)) = suc(suc(double(n)))

RAx
1 ` 1

R +0
1 ` 1 + N

RFix
1 ` N

N ` N
R +1

N ` 1 + N
RFix

N ` N
R +1

N ` 1 + N
RFix

N ` N
L +

1 + N ` N
LFix

N ` N

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Primitive recursion

N =µ 1 + N

Solution:

1 + N {0,suc}−−−−→ N

Let

double(0) = 0
double(suc(n)) = suc(suc(double(n)))

RAx
1 ` 1

R +0
1 ` 1 + N

RFix
1 ` N

N ` N
R +1

N ` 1 + N
RFix

N ` N
R +1

N ` 1 + N
RFix

N ` N
L +

1 + N ` N
LFix

N ` N

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Primitive recursion

N =µ 1 + N

Solution:

1 + N {0,suc}−−−−→ N

Let

double(0) = 0
double(suc(n)) = suc(suc(double(n)))

RAx
1 ` 1

R +0
1 ` 1 + N

RFix
1 ` N

N ` N
R +1

N ` 1 + N
RFix

N ` N
R +1

N ` 1 + N
RFix

N ` N
L +

1 + N ` N
LFix

N ` N

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Primitive recursion

N =µ 1 + N

Solution:

1 + N {0,suc}−−−−→ N

Let

double(0) = 0
double(suc(n)) = suc(suc(double(n)))

RAx
1 ` 1

R +0
1 ` 1 + N

RFix
1 ` N

N ` N
R +1

N ` 1 + N
RFix

N ` N
R +1

N ` 1 + N
RFix

N ` N
L +

1 + N ` N
LFix

N ` N

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Primitive recursion

N =µ 1 + N

Solution:

1 + N {0,suc}−−−−→ N

Let

double(0) = 0
double(suc(n)) = suc(suc(double(n)))

RAx
1 ` 1

R +0
1 ` 1 + N

RFix
1 ` N

N ` N
R +1

N ` 1 + N
RFix

N ` N
R +1

N ` 1 + N
RFix

N ` N
L +

1 + N ` N
LFix

N ` N

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Primitive recursion

N =µ 1 + N

Solution:

1 + N {0,suc}−−−−→ N

Let

double(0) = 0
double(suc(n)) = suc(suc(double(n)))

RAx
1 ` 1

R +0
1 ` 1 + N

RFix
1 ` N

N ` N
R +1

N ` 1 + N
RFix

N ` N
R +1

N ` 1 + N
RFix

N ` N
L +

1 + N ` N
LFix

N ` N

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Proofs ⇒ Systems of equations

RAx
1 f4−→ 1

R+0

1 f3−→ 1 + N
RFix

1 f2−→ N

N f0−→ N
R+1

N f8−→ 1 + N
RFix

N f7−→ N
R+1

N f6−→ 1 + N
RFix

N f5−→ N
L+

1 + N f1−→ N
LFix

N f0−→ N



f8 = f0 · in1
f7 = f8 · ζN
f6 = f7 · in1
f5 = f6 · ζN

f4 = !1
f3 = f4 · in0
f2 = f3 · ζN

f1 = {f2, f5}
f0 = ζ−1

N · f1



Solution: f0 = double
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Stream differential equations

X =ν 2× X × X
2 =ν 1 + 1

Solution (Kupke–Rutten, 2012)

S
〈head,even,odd〉−−−−−−−−−→ 2× S × S

Thue-Morse stream

σ = 〈0, σ, τ〉
τ = 〈1, τ, σ〉

RAx
1 ` 1

R+0
1 ` 1 + 1

RFix
1 ` 2 1 ` X

RAx
1 ` 1

R+1
1 ` 1 + 1

RFix
1 ` 2 1 ` X 1 ` X

R×
1 ` 2× X × X

RFix
1 ` X

R×
1 ` 2× X × X

RFix
1 ` X
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Non-valid circular proofs

s ` t

ci
rc

ular proofs
w
orkbecau

se

RAx
1 ` 1

R+0
1 ` 1 + 1

RFix
1 ` 2

1 ` S

Id
S ` S

L×1
2× S ` S

LFix
S ` S

Cut
1 ` S

R×
1 ` 2× S

RFix
1 ` S

S
〈head,tail〉−−−−−−−→ 2× S

God exists

Fact
Bible says it is the word of God What Bible says is true

Cut
Bible is the word of God

Cut
What Bible says is true

Fact
Bible says that God exists

Cut
God exists
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Guard condition

Idea: Each turn in a cycle must either read a part of an inductive input or
write a part of a coinductive output.

Definition
A path in Π has a left µ-trace if it

contains a left fixpoint rule, and the highest priority is odd;
turns left at every cut.

Definition
A path in Π has a right ν-trace if it

contains a right fixpoint rule, and the highest priority is even;
turns right at every cut.
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Guard conditions
The following are equivalent.

1 Every cycle in Π either has a left µ-trace or a right ν-trace.
2 Every infinite path Γ in Π has a tail Γ′ that has either a left µ-trace or

a right ν-trace and every fixpoint rule in Γ′ occurs infinitely often.
3 Every strongly connected component of Π either has a left µ-trace or

a right ν-trace.

Definition
A circular proof is a finite pre-proof that satisfies the guard conditions.
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Semantical results

Soundness Theorem (F.–S. 2013)
Every circular proof denotes a unique arrow of the free µ-bicomplete
categoryM.

Proof.
By induction on ](Π) = (]L(Π) + ]R(Π), card(Π)).

If Π is not strongly connected: we can split Π in two parts Π1, Π2 s.t.
card(Π1), card(Π2) < card(Π).We then glue the two solutions together
using the Bekič Lemma.
If Π is strongly connected: take a cycle Γ that covers Π. If Γ has a left
µ-trace, split Π in parts Πi s.t. ∀i , ]L(Πi ) < ](Π). Then glue the parts
together with the Yoneda Lemma. If Γ as a right ν-trace, same
reasoning.
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Semantical results

Fullness Theorem (F.–S. 2013)
Every arrow f : s → t ofM is the solution of a circular proof.

Proof.
Obvious for most diagrams (by contruction of the rules).
Except for this one!

F (x) F (a)

x a

ζx

F (f )

f

α = JΠK

f = ζ−1
x · F (f ) · α

x ` a
····
Copycat

F (x) ` F (a)

··· Π

F (a) ` a
Cut

F (x) ` a
LFix

x ` a
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Proof.
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F (x) F (a)

x a

ξx

F (f )

f

α = JΠK

f = α · F (f ) · ξ−1
x

··· Π

a ` F (a)

a ` x
····
Copycat

F (a) ` F (x)
Cut

a ` F (x)
RFix

a ` x
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Cut-elimination

Theorem (Santocanale, 2001)
There is no cut-free circular proof whose interpretation in Sets is the
diagonal ∆ : N→ N2.
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Diagonal map (with cuts)

∆ : N→ N2

n 7→ (n, n)

N =µ 1 + N
M =µ N + M

RAx
1 ` 1

R+0
1 ` 1 + M

N ` M
R+1

N ` 1 + M
L+

1 + N ` 1 + M

RAx
1 ` 1

R+1
1 ` N + 1

RFix
1 ` N

R+0
1 ` N + M

RFix
1 ` M

RAx
1 ` 1

R+0
1 ` 1 + N

RFix
1 ` N

R+1
1 ` 1 + N

RFix
1 ` N

N ` N
R+1

N ` 1 + N
RFix

N ` N
L+

1 + N ` N
LFix

N ` N
R+0

N ` N + M
RFix

N ` M
R+1

N ` N + M
RFix

N ` M

M ` M
R+1

M ` N + M
RFix

M ` M
L+

N + M ` M
LFix

M ` M
L+

1 + M ` M
Cut

1 + N ` M
LFix

N ` M
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Cut-elimination

⇒
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Tape automaton

Strategy: “Push” the cuts away from the root.

Main difficulties:
We must use lazy evaluation (hence the output is infinite).
Cut VS Cut

t0 ` t1 t1 ` t2
Cut

t0 ` t2 t2 ` t3
Cut

t0 ` t3

⇒
⇐ t0 ` t1

t1 ` t2 t2 ` t3
Cut

t1 ` t3
Cut

t0 ` t3

⇓ Merge

t0 ` t1 t1 ` t2 t2 ` t3
Cut

t0 ` t3
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Tape automaton

Definition
A tape is a finite list M := [u1, . . . , un] of composable vertices of Π.

Cut Man - A tape automaton
Finite state machine (over a circular
proof Π).
Carries a tape (of states) in memory.
Outputs a branch (chosen
nondeterministically) of the cut-free
infinite proof tree.
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Commutative reductions (left)

LAx
0 ` t1 t1 ` t2 · · ·

Cut
0 ` tn

LFlip
=⇒ LAx

0 ` tn

F (X ) ` t1
LFix

X ` t1 t1 ` t2 · · ·
Cut

X ` tn

LFlip
=⇒

F (X ) ` t1 t1 ` t2 · · ·
Cut

X ` tn
LFix

X ` tn

sk ` t1
L×k

s0 × s1 ` t1 t1 ` t2 · · ·
Cut

s0 × s1 ` tn

LFlip
=⇒

sk ` t1 t1 ` t2 · · ·
Cut

sk ` tn
L×k

s0 × s1 ` tn

s0 ` t1 s1 ` t1
L+

s0 + s1 ` t1 t1 ` t2 · · ·
Cut

s0 + s1 ` tn

LFlip
=⇒

s0 ` t1 t1 ` t2 · · ·
Cut

s0 ` tn

s1 ` t1 t1 ` t2 · · ·
Cut

s1 ` tn
L+

s0 + s1 ` tn

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 25 / 36



Commutative reductions (left)

LAx
0 ` t1 t1 ` t2 · · ·

Cut
0 ` tn

LFlip
=⇒ LAx

0 ` tn

F (X ) ` t1
LFix

X ` t1 t1 ` t2 · · ·
Cut

X ` tn

LFlip
=⇒

F (X ) ` t1 t1 ` t2 · · ·
Cut

X ` tn
LFix

X ` tn

sk ` t1
L×k

s0 × s1 ` t1 t1 ` t2 · · ·
Cut

s0 × s1 ` tn

LFlip
=⇒

sk ` t1 t1 ` t2 · · ·
Cut

sk ` tn
L×k

s0 × s1 ` tn

s0 ` t1 s1 ` t1
L+

s0 + s1 ` t1 t1 ` t2 · · ·
Cut

s0 + s1 ` tn

LFlip
=⇒

s0 ` t1 t1 ` t2 · · ·
Cut

s0 ` tn

s1 ` t1 t1 ` t2 · · ·
Cut

s1 ` tn
L+

s0 + s1 ` tn

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 25 / 36



Commutative reductions (left)

LAx
0 ` t1 t1 ` t2 · · ·

Cut
0 ` tn

LFlip
=⇒ LAx

0 ` tn

F (X ) ` t1
LFix

X ` t1 t1 ` t2 · · ·
Cut

X ` tn

LFlip
=⇒

F (X ) ` t1 t1 ` t2 · · ·
Cut

X ` tn
LFix

X ` tn

sk ` t1
L×k

s0 × s1 ` t1 t1 ` t2 · · ·
Cut

s0 × s1 ` tn

LFlip
=⇒

sk ` t1 t1 ` t2 · · ·
Cut

sk ` tn
L×k

s0 × s1 ` tn

s0 ` t1 s1 ` t1
L+

s0 + s1 ` t1 t1 ` t2 · · ·
Cut

s0 + s1 ` tn

LFlip
=⇒

s0 ` t1 t1 ` t2 · · ·
Cut

s0 ` tn

s1 ` t1 t1 ` t2 · · ·
Cut

s1 ` tn
L+

s0 + s1 ` tn

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 25 / 36



Commutative reductions (left)

LAx
0 ` t1 t1 ` t2 · · ·

Cut
0 ` tn

LFlip
=⇒ LAx

0 ` tn

F (X ) ` t1
LFix

X ` t1 t1 ` t2 · · ·
Cut

X ` tn

LFlip
=⇒

F (X ) ` t1 t1 ` t2 · · ·
Cut

X ` tn
LFix

X ` tn

sk ` t1
L×k

s0 × s1 ` t1 t1 ` t2 · · ·
Cut

s0 × s1 ` tn

LFlip
=⇒

sk ` t1 t1 ` t2 · · ·
Cut

sk ` tn
L×k

s0 × s1 ` tn

s0 ` t1 s1 ` t1
L+

s0 + s1 ` t1 t1 ` t2 · · ·
Cut

s0 + s1 ` tn

LFlip
=⇒

s0 ` t1 t1 ` t2 · · ·
Cut

s0 ` tn

s1 ` t1 t1 ` t2 · · ·
Cut

s1 ` tn
L+

s0 + s1 ` tn

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 25 / 36



Commutative reductions (left)

LAx
0 ` t1 t1 ` t2 · · ·

Cut
0 ` tn

LFlip
=⇒ LAx

0 ` tn

F (X ) ` t1
LFix

X ` t1 t1 ` t2 · · ·
Cut

X ` tn

LFlip
=⇒

F (X ) ` t1 t1 ` t2 · · ·
Cut

X ` tn
LFix

X ` tn

sk ` t1
L×k

s0 × s1 ` t1 t1 ` t2 · · ·
Cut

s0 × s1 ` tn

LFlip
=⇒

sk ` t1 t1 ` t2 · · ·
Cut

sk ` tn
L×k

s0 × s1 ` tn

s0 ` t1 s1 ` t1
L+

s0 + s1 ` t1 t1 ` t2 · · ·
Cut

s0 + s1 ` tn

LFlip
=⇒

s0 ` t1 t1 ` t2 · · ·
Cut

s0 ` tn

s1 ` t1 t1 ` t2 · · ·
Cut

s1 ` tn
L+

s0 + s1 ` tn

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 25 / 36



Commutative reductions (left)

LAx
0 ` t1 t1 ` t2 · · ·

Cut
0 ` tn

LFlip
=⇒ LAx

0 ` tn

F (X ) ` t1
LFix

X ` t1 t1 ` t2 · · ·
Cut

X ` tn

LFlip
=⇒

F (X ) ` t1 t1 ` t2 · · ·
Cut

X ` tn
LFix

X ` tn

sk ` t1
L×k

s0 × s1 ` t1 t1 ` t2 · · ·
Cut

s0 × s1 ` tn

LFlip
=⇒

sk ` t1 t1 ` t2 · · ·
Cut

sk ` tn
L×k

s0 × s1 ` tn

s0 ` t1 s1 ` t1
L+

s0 + s1 ` t1 t1 ` t2 · · ·
Cut

s0 + s1 ` tn

LFlip
=⇒

s0 ` t1 t1 ` t2 · · ·
Cut

s0 ` tn

s1 ` t1 t1 ` t2 · · ·
Cut

s1 ` tn
L+

s0 + s1 ` tn

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 25 / 36



Commutative reductions (left)

LAx
0 ` t1 t1 ` t2 · · ·

Cut
0 ` tn

LFlip
=⇒ LAx

0 ` tn

F (X ) ` t1
LFix

X ` t1 t1 ` t2 · · ·
Cut

X ` tn

LFlip
=⇒

F (X ) ` t1 t1 ` t2 · · ·
Cut

X ` tn
LFix

X ` tn

sk ` t1
L×k

s0 × s1 ` t1 t1 ` t2 · · ·
Cut

s0 × s1 ` tn

LFlip
=⇒

sk ` t1 t1 ` t2 · · ·
Cut

sk ` tn
L×k

s0 × s1 ` tn

s0 ` t1 s1 ` t1
L+

s0 + s1 ` t1 t1 ` t2 · · ·
Cut

s0 + s1 ` tn

LFlip
=⇒

s0 ` t1 t1 ` t2 · · ·
Cut

s0 ` tn

s1 ` t1 t1 ` t2 · · ·
Cut

s1 ` tn
L+

s0 + s1 ` tn

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 25 / 36



Commutative reductions (left)

LAx
0 ` t1 t1 ` t2 · · ·

Cut
0 ` tn

LFlip
=⇒ LAx

0 ` tn

F (X ) ` t1
LFix

X ` t1 t1 ` t2 · · ·
Cut

X ` tn

LFlip
=⇒

F (X ) ` t1 t1 ` t2 · · ·
Cut

X ` tn
LFix

X ` tn

sk ` t1
L×k

s0 × s1 ` t1 t1 ` t2 · · ·
Cut

s0 × s1 ` tn

LFlip
=⇒

sk ` t1 t1 ` t2 · · ·
Cut

sk ` tn
L×k

s0 × s1 ` tn

s0 ` t1 s1 ` t1
L+

s0 + s1 ` t1 t1 ` t2 · · ·
Cut

s0 + s1 ` tn

LFlip
=⇒

s0 ` t1 t1 ` t2 · · ·
Cut

s0 ` tn

s1 ` t1 t1 ` t2 · · ·
Cut

s1 ` tn
L+

s0 + s1 ` tn

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 25 / 36



Commutative reductions (right)

· · · tn−2 ` tn−1
RAx

tn−1 ` 1
Cut

t0 ` 1

RFlip
=⇒ RAx

t0 ` 1

· · · tn−2 ` tn−1

tn−1 ` F (X )
RFix

tn−1 ` X
Cut

t0 ` X

RFlip
=⇒

·· · tn−2 ` tn−1 tn−1 ` F (X )
Cut

t0 ` F (X )
RFix

t0 ` X

· · · tn−2 ` tn−1

tn−1 ` sk
R+k

tn−1 ` s0 + s1
Cut

t0 ` s0 + s1

RFlip
=⇒ ·· · tn−2 ` tn−1

tn−1 ` sk
Cut

tn−1 ` sk
R+k

t0 ` s0 + s1

· · · tn−2 ` tn−1

tn−1 ` s0 tn−1 ` s1
R×

tn−1 ` s0 × s1
Cut

t0 ` s0 × s1

RFlip
=⇒

·· · tn−2 ` tn−1 tn−1 ` s0
Cut

t0 ` s0

· · · tn−2 ` tn−1 tn−1 ` s1
Cut

t0 ` s1
R×

t0 ` s0 × s1
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Elimination of identities

· · · ti−1 ` s
Id

s ` s s ` ti+2 · · ·
Cut

t0 ` tn

⇓IdElim

· · · ti−1 ` s s ` ti+2 · · ·
Cut

t0 ` tn

IdElim(M, i) = Remove ui from M.
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Essential reductions

Otherwise, M = [R . . . RL . . . L].

· · ·

ti−1 ` s0 ti−1 ` s1
R×

ti−1 ` s0 × s1

sk ` ti+1
L×k

s0 × s1 ` ti+1 · · ·
Cut

t0 ` tn

Reduce
=⇒ ·· · ti−1 ` sk sk ` ti+1 · · ·

Cut
t0 ` tn

· · ·

ti−1 ` sk
R+k

ti−1 ` s0 + s1

s0 ` ti+1 s1 ` ti+1
L+

s0 + s1 ` ti+1 · · ·
Cut

t0 ` tn

Reduce
=⇒ ·· · ti−1 ` sk sk ` ti+1 · · ·

Cut
t0 ` tn

· · ·

ti−1 ` F (X )
RFix

ti−1 ` X

F (X ) ` ti+1
LFix

X ` ti+1 · · ·
Cut

t1 ` tn

Reduce
=⇒ ·· · ti−1 ` F (X ) F (X ) ` ti+1 · · ·

Cut
t0 ` tn
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L+

s0 + s1 ` ti+1 · · ·
Cut

t0 ` tn

Reduce
=⇒ ·· · ti−1 ` sk sk ` ti+1 · · ·

Cut
t0 ` tn

· · ·

ti−1 ` F (X )
RFix

ti−1 ` X

F (X ) ` ti+1
LFix

X ` ti+1 · · ·
Cut

t1 ` tn

Reduce
=⇒ ·· · ti−1 ` F (X ) F (X ) ` ti+1 · · ·

Cut
t0 ` tn

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 28 / 36



Cut-elimination algorithm

Internal phase: Perform internal transformations (Merge, IdElim,
Reduce) while you can’t do anything else.
Production phase: Build a part of the output tree (LFlip, RFlip,
IdOut) whenever you can!
Repeat forever...

Theorem (F.–S., 2013)
For every input tape M, the internal phase halts!
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Proof. Suppose it does not halt...

Ψ := ∗

M1 = [ u11 u12 u13 ]

Merge ⇓
M2 = [ u21 u22 u23 u24 ]

Merge ⇓
M3 = [ u31 u32 u33 u34 u35 ]

Reduce ⇓
M4 = [ u41 u42 u43 u44 u45 ]

IdElim ⇓
M5 = [ u51 u52 u53 u54 ]

Reduce ⇓
M6 = [ u61 u62 u63 u64 ]

...
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Ψ is an infinite finitely branching tree.

The set B∞(Ψ) of its infinite branches is non-empty. (Kőnig)
B∞(Ψ) is lexicographically ordered, it is a complete lattice.
Infinite branches of Ψ, correspond to infinite paths in Π.
Therefore, they satisfiy the guard condition!

B∞(Ψ) = µ-branches ∪ ν-branches

Lemma (F.–S., 2013)

1 The least infinite branch of Ψ is a ν-branch.

2 Let E be a nonempty collection of ν-branches and let γ =
∨

E. Then γ is a
ν-branch.

3 If β is a ν-branch, then there exists another ν-branch β′ � β.
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So what?

Let
E = All the ν-branches

By 1 E 6= ∅. Let γ =
∨

E . By 2, γ is a ν-branch. Hence by 3, there is
another ν-branch γ′ � γ. But then, γ′ ∈ E and therefore γ′ �

∨
E = γ.
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Cut-eliminating infinite proof-trees

We can cut eliminate a cut-free infinite proof against a fixed circular
proof Π.
We obtain a cut-free infinite proof.

Considering that for any µ-definable set X ,

X ' Winning strategies for ⊕ in some game
' Cut-free infinite valid proofs of 1 ` X ,

Cut-elimination is a generic algorithm for computing all the µ-definable
functions.
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Computability problems

What are the set-theoretic functions that one can denote with circular
proofs and computed with cut-elimination?

Primitive recursive ≤ µ-definable ≤ Recursive

Which of those bounds are strict?
Is the Ackermann function definable?
What about streams?
And trees?

Regular tree < µ-definable

What about higher order pushdown trees?
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Proof-theoretic problems

How can we enrich the proof system (and corresponding model) while
keeping a productive cut-elimination procedure?
Find links with existing circularities (get a categorical perspective)

Add contexts, linear logic s1 . . . sm ` t1 . . . tn (Baelde)
Add modalties �t,♦t, . . . (Walukiewicz)
Add first order. (Brotherston–Simpson, Roşu, Lismont)

Philosophical question: What is the meaning of circularity in
mathematical reasoning?

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 35 / 36



Proof-theoretic problems

How can we enrich the proof system (and corresponding model) while
keeping a productive cut-elimination procedure?

Find links with existing circularities (get a categorical perspective)
Add contexts, linear logic s1 . . . sm ` t1 . . . tn (Baelde)
Add modalties �t,♦t, . . . (Walukiewicz)
Add first order. (Brotherston–Simpson, Roşu, Lismont)

Philosophical question: What is the meaning of circularity in
mathematical reasoning?

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 35 / 36



Proof-theoretic problems

How can we enrich the proof system (and corresponding model) while
keeping a productive cut-elimination procedure?
Find links with existing circularities (get a categorical perspective)

Add contexts, linear logic s1 . . . sm ` t1 . . . tn (Baelde)
Add modalties �t,♦t, . . . (Walukiewicz)
Add first order. (Brotherston–Simpson, Roşu, Lismont)

Philosophical question: What is the meaning of circularity in
mathematical reasoning?

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 35 / 36



Proof-theoretic problems

How can we enrich the proof system (and corresponding model) while
keeping a productive cut-elimination procedure?
Find links with existing circularities (get a categorical perspective)

Add contexts, linear logic s1 . . . sm ` t1 . . . tn (Baelde)

Add modalties �t,♦t, . . . (Walukiewicz)
Add first order. (Brotherston–Simpson, Roşu, Lismont)

Philosophical question: What is the meaning of circularity in
mathematical reasoning?

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 35 / 36



Proof-theoretic problems

How can we enrich the proof system (and corresponding model) while
keeping a productive cut-elimination procedure?
Find links with existing circularities (get a categorical perspective)

Add contexts, linear logic s1 . . . sm ` t1 . . . tn (Baelde)
Add modalties �t,♦t, . . . (Walukiewicz)

Add first order. (Brotherston–Simpson, Roşu, Lismont)

Philosophical question: What is the meaning of circularity in
mathematical reasoning?

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 35 / 36



Proof-theoretic problems

How can we enrich the proof system (and corresponding model) while
keeping a productive cut-elimination procedure?
Find links with existing circularities (get a categorical perspective)

Add contexts, linear logic s1 . . . sm ` t1 . . . tn (Baelde)
Add modalties �t,♦t, . . . (Walukiewicz)
Add first order. (Brotherston–Simpson, Roşu, Lismont)

Philosophical question: What is the meaning of circularity in
mathematical reasoning?

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 35 / 36



Proof-theoretic problems

How can we enrich the proof system (and corresponding model) while
keeping a productive cut-elimination procedure?
Find links with existing circularities (get a categorical perspective)

Add contexts, linear logic s1 . . . sm ` t1 . . . tn (Baelde)
Add modalties �t,♦t, . . . (Walukiewicz)
Add first order. (Brotherston–Simpson, Roşu, Lismont)

Philosophical question: What is the meaning of circularity in
mathematical reasoning?

Jérôme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 35 / 36



Merci!
Thank you!

Dank u!
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