Jérdme Fortier, with Luigi Santocanale

Cuts in circular proofs

Delft — February 17, 2014

A C
L I
O CRSNG
M | LABORATOIRE CAM P ‘ ’
//\ e FRANCE 1096208 NSERC
U A de Marseille Sampusfrance:or Institut des sciences mathématiques
Q

Jérdme Fortier (UQAM / AMU) ts in circular proofs Delft, February 2014 1/36



Natural numbers

(Circular) Definition

A natural number is either 0, or of the form suc(n) where n is a natural
number.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 2/ 36



Natural numbers

(Circular) Definition

A natural number is either 0, or of the form suc(n) where n is a natural
number.

1+N

{0, suc}

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 2 /36



Natural numbers

(Circular) Definition

A natural number is either 0, or of the form suc(n) where n is a natural
number. N is the least fixpoint of this definition!

Initial algebral

1ent T g x
fO) = a

{0, suc} {a, g} f(suc(x)) = g(f(x))

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014



Natural numbers

(Circular) Definition

A natural number is either 0, or of the form suc(n) where n is a natural
number. N is the least fixpoint of this definition!

Initial algebral
1+f
1+N SR 1+ X

(O.suct| lpre  |{agr flsuck) = &(f(x)

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014



Natural numbers

(Circular) Definition

A natural number is either 0, or of the form suc(n) where n is a natural
number. N is the least fixpoint of this definition!

Initial algebral
1+f
1+N SR 1+ X

(O.suct| lpre  |{agr flsuck) = &(f(x)

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014



Other inductive types...

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 3 /36



Other inductive types...

o uX.(1+ Ax X)= A* = Finite words over A

=o€
(a,w) — a-w

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 3 /36



Other inductive types...

o uX.(1+ Ax X)= A* = Finite words over A
= €
(a,w) — a-w

o uX.(1+ Ax X x X) = Finite binary labelled trees

* +— Empty tree

T1 T>

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014



(Circular) Definition

A stream over an alphabet A is made of a head a € A, and another stream
called the tail.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 4 /36



(Circular) Definition

A stream over an alphabet A is made of a head a € A, and another stream
called the tail.

)

Ax A¥

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 4 /36



(Circular) Definition

A stream over an alphabet A is made of a head a € A, and another stream
called the tail. A“ is the greatest fixpoint of this definition!

Final coalgebral

Jif
x / head(f(x)) = a(x)
(a,8) (head, tail) tail(f(x)) = f(g(x))
AxX----- A x AY
id x

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 4 /36



(Circular) Definition

A stream over an alphabet A is made of a head a € A, and another stream
called the tail. A“ is the greatest fixpoint of this definition!

Final coalgebral

=LA
head(f(x)) = a(x)
(a,g) cons (head, tail) tail(f(x)) = f(g(x))
Ax X ----- P Ax AY
id X

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 4 /36



(Circular) Definition

A stream over an alphabet A is made of a head a € A, and another stream
called the tail. A“ is the greatest fixpoint of this definition!

Final coalgebral

=LA
head(f(x)) = a(x)
(a,g) cons (head, tail) tail(f(x)) = f(g(x))
Ax X ----- P Ax AY
id X

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 4 /36



Other coinductive types...

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 5/ 36



Other coinductive types...

o vX.(A x X x X) = Infinite binary labelled trees

—> <a, Tl, T2>

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 5/ 36



Lattice p-calculus

Lattice p-terms are generated by the following grammar:

t=X|1|txt|O|t4+t|puXt|vXt

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 6/ 36



Lattice p-calculus

Lattice p-terms are generated by the following grammar:

t=X|1|txt|O|t4+t|puXt|vXt

t=vX.(AxpuY.(1+X xY))

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 6 / 36



Lattice p-calculus

Lattice p-terms are generated by the following grammar:

t=X|1|txt|O|t4+t|puXt|vXt

t=vX.(AxpuY.(1+X xY))

Functorial interpretation
e x,+ = Product / Coproduct;
e 0,1 = Initial / Final object;
o uX.F(X),vX.F(X) = Initial F-algebra / Final F-coalgebra.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014



Lattice p-calculus

Lattice p-terms are generated by the following grammar:

t=X|1|txt|O|t4+t|puXt|vXt

t=vX.(AxpuY.(1+X xY))

Functorial interpretation
e x,+ = Product / Coproduct;
e 0,1 = Initial / Final object;
o uX.F(X),vX.F(X) = Initial F-algebra / Final F-coalgebra.

Definition
A category C is ji-bicomplete iff this interpretation makes sense in C.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014



Game semantics (in Sets)

t=vX.(AxpY.(1+ X xY))

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 7/ 36



Game semantics (in Sets)

t=vX.(AxpY.(1+ X xY))

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 7/ 36



Game semantics (in Sets)

t=vX.(AxpY.(1+ X xY))

S(t): X =, AxY

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 7/ 36



Game semantics (in Sets)

t=vX.(AxpY.(1+ X xY))

S(t): X =, AxY
A v ZaeAl

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 7/ 36



Game semantics (in Sets)

t=vX.(AxpY.(1+ X xY))

S(t): X =, AxY

A v ZaeAl
Y =, 1+Z

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014



Game semantics (in Sets)

t =

S(t) X =,
A =
Y =,
zZ =,

Jérdme Fortier (UQAM / AMU)

vX (Ax pY. (14X xY))

AxY

ZaeAl
1+Z7

XxY

Cuts in circular proofs

Delft, February 2014



Game semantics (in Sets)

t=vX.(AxpY.(1+ X xY))

S(t): X =, AxY (2
A = Tl (2)
Y =, 1+2Z2 (1)
Z =, XxY (1)

even ,ifV=,...

Priority(V) i
riority(V) is {odd V=,

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 7/ 36



Game semantics (in Sets)

t=vX.(AxpY.(1+ X xY))

S(t): X =, AxY (2
A =0 Daeal (2
Y =, 1+Z2 (1)
Z =, XxY (1)

odd ,ifV=,...

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 7/ 36



Game semantics (in Sets)

Parity games!

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 8/ 36



Game semantics (in Sets)

Parity games!

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 8/ 36



Game semantics (in Sets)

Parity games!

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 8/ 36



Game semantics (in Sets)

Parity games!

o At some point, Player ® cannot play,

1 e Or the game is infinite, and the highest
priority visited infinitely often is even.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014



Game semantics (in Sets)

Parity games!

o At some point, Player ® cannot play,

1 e Or the game is infinite, and the highest
priority visited infinitely often is even.

Player ® wins in the dual situation.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014



Game semantics (in Sets)

Parity games!

o At some point, Player ® cannot play,

1 e Or the game is infinite, and the highest
priority visited infinitely often is even.

Player ® wins in the dual situation.

Theorem (Santocanale, 2002)

The set of deterministic winning
strategies for @ from position V.

Solutions for variable V' in S(t) ~

Therefore, we have a combinatorial (dynamic) characterization of the
u-defined objects.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 8/ 36



Curry—Howard correspondence

Find a "good" (dynamic) syntax for expressing (and computing) functions
(arrows) between objects of this kind.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 9/ 36



Curry—Howard correspondence

Find a "good" (dynamic) syntax for expressing (and computing) functions
(arrows) between objects of this kind.

Intuitionistic
Logic

N/

Cartesian
Closed
Categories

M-calculus —

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014



Curry—Howard correspondence

Find a "good" (dynamic) syntax for expressing (and computing) functions
(arrows) between objects of this kind.

Intuitionistic
p-calculus .
Logic
Cartesian
Closed
Categories

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014



Curry—Howard correspondence

Find a "good" (dynamic) syntax for expressing (and computing) functions
(arrows) between objects of this kind.

Intuitionistic

p-calculus Logic

p-bicomplete
Categories

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014



Curry—Howard correspondence

Find a "good" (dynamic) syntax for expressing (and computing) functions
(arrows) between objects of this kind.

p-calculus ¢— Circular
Proofs
p-bicomplete
Categories

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014



Inference rules (Gentzen style)

i . — LAx — RAx —1d
Axioms: 0kt tH1 tht
Product: skt skty skt

. . Lx; RX
(conjunction) s xstkt sktox t
Coproduct:  srt skt skt

L R+

o +
(disjunction)  s+s k¢ skto+h

F(X)Ft sk F(X)

Fixpoint: 0 TR ——Zerix if X = F(X)
XkEt sk X
= =
Cut: AL
ret

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 10 / 36



Categorical interpretation

Axioms: S Lax —— RAx S
0%t 51 £
PrOdUCtZ S;i>t Si)to Sitl
. ti ; Lx; ; Rx
(conjunction) _ mmf,, TN
Coproduct:  s5H¢t 55+t sty
(disjunction) va T i ha
) so+ s 2t sty + 1
f f
. . F(X) =t s — F(X .
Fixpoint: ~_—LFix - ( )RFiX if X =, F(X)
X Cx " s & X
f f
F(X)L ¢ s— F(X .
( )f LFix 71( )RFix I'F X =y F(X)
X Ex- t f&x %
f
r—s s—t
Cut: cut
fg
r—t

Jérdme Fortier (UQAM / AMU)

Cuts in circular proofs

Delft, February 2014 11 / 36



Primitive recursion

N=,1+N

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Primitive recursion

N=,1+N
Solution:
14N 222

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Primitive recursion

N=,1+N

Solution:

14N {0,suc}

Let

double(0) = 0
double(suc(n)) = suc(suc(double(n)))

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Primitive recursion

N=,1+N
Solution:
14N 222
Let
double(0) = 0 N+ N
double(suc(n)) = suc(suc(double(n)))

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Primitive recursion

N=,1+N
Solution:
14N 222
Let 1+NEN
—— LFix
double(0) = 0 N+ N
double(suc(n)) = suc(suc(double(n)))

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Primitive recursion

N=,1+N
Solution:
14N 222
1-N NE+N
L+
Let 1+NEN
— LFix
double(0) = 0 N+ N
double(suc(n)) = suc(suc(double(n)))

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Primitive recursion

N=,1+N
Solution:
{0,suc}
1+N— N 1F1+N
— RFix
1-N NE+N
L+
Let 1+NEN
— LFix
double(0) = 0 N+ N
double(suc(n)) = suc(suc(double(n)))

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Primitive recursion

N=,1+N
Solution: 1e1

{0,suc} ——R+o

1+N— N 1F1+N
— RFix
1-N NE+N
L+
Let 1+NEN
— LFix
double(0) = 0 N+ N

double(suc(n)) = suc(suc(double(n)))

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Primitive recursion

N=,1+N
ion: —— RAx
Solution: 11
{0,suc} ——R+o
1+N— N 1F1+N
— RFix
1-N NE+N
L+
Let 1+NEN
— LFix
double(0) = 0 N+ N
double(suc(n)) = suc(suc(double(n)))

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Primitive recursion

N=,1+N

ion: —— RAx
Solution: 11

{0,suc} ——R+o
1+N— N 1F1+N NE1+N
— RFix ——  RFix
1-N NE+N
L+
Let 1+NEN
— LFix

double(0) = 0 N+ N

double(suc(n)) = suc(suc(double(n)))

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Primitive recursion

N=,1+N
ion: —— RAx
Solution: 11 NN
{0,5uc} ——R+0 ————R+1
1+N— N 1F1+N NE1+N
— RFix ——  RFix
1-N NE+N
L+
Let 1+NEN
— LFix
double(0) = 0 N+ N
double(suc(n)) = suc(suc(double(n)))

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Primitive recursion

N=,1+N

Solution:

1+N

Let

double(0)
double(suc(n))

Jérdme Fortier (UQAM / AMU)

{0,suc}
-

NEF14+N
—— RAx RFix
1F1 NEN
——R+o 1
N 1F1+N NE1+N
——  RFix RFix
1-N NE+N
L+
1+NEN
LFix
0 NEN
suc(suc(double(n)))

Cuts in circular proofs Delft, February 2014 12 / 36



Primitive recursion

N=,1+N NF N
NE1+N
ion: —— RAx —— RFix
Solution: 11 NN
{0,suc} ——R+to ——R+
1+N— N 1F1+N NE1+N
— RFix —— RFix
1-N NE+N
L+
Let 1+NEN
— LFix
double(0) = 0 N+ N
double(suc(n)) = suc(suc(double(n)))

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Primitive recursion

N=,1+N
ion: —— RAx
Solution: 11
{0,suc} ————R+o — R+
1+N—N 1F1+N N-E1+N
— RFix ——  RFix
1N NEN
L+
Let 1+NEN
——  LFix
double(0) = 0 NN
double(suc(n)) = suc(suc(double(n)))

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 12 / 36



Proofs = Systems of equations

(fs = fo-ing
fr = fo-Cn
fo = f7-ing

o RAx fs = fo-(n
1 =1
R+o |
15 14N fi = h
RFix f = fa-ing
12N fh = f-(n
1+N 5N h {f,f}
; fo TR
N> N

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 13 / 36



Proofs = Systems of equations

(g = fo-ing
fr = fg-Cn
fo = fr-im
fs = fo-Cn
fa = N4
i = f4-ing
h = K-(n
fl {67%}
fo TR

Solution: fy = double

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 13 / 36



Stream differential equations

X =, 2xXxX
2 =, 141

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 14 / 36



Stream differential equations

X =, 2xXxX
2 =, 141

Solution (Kupke—Rutten, 2012)

(head,even,odd)
e

S 2xSxS

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 14 / 36



Stream differential equations

X =, 2xXxX Thue-Morse stream
? :V ! - ! o = <O’ g, T
= (l,7,0)

Solution (Kupke—Rutten, 2012)

(head,even,odd)
e

S 2xSxS

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 14 / 36



Stream differential equations

X =, 2xXxX Thue-Morse stream
2 :V 1 + 1 o — <0’ 0_77_
- <17 )

Solution (Kupke—Rutten, 2012)

(head,even,odd)
e

S 2xSxS

R+1

1-1+1
—  RFix

12 [1FX| [1FX
I1F2x X x X
1 X

RFix
RXx

1F2x X x X
1 X

RFix

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 14 / 36



Non-valid circular proofs

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 15 / 36



Non-valid circular proofs
‘

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 15 / 36



Non-valid circular proofs

‘

CA oy
N
.&0 O
§) wn
Q\)"’) ‘rog

Delft, February 2014 15 / 36

Cuts in circular proofs

Jérdme Fortier (UQAM / AMU)



Non-valid circular proofs

(head,tail)
—_—

2x S

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 15 / 36



Non-valid circular proofs
——1d
SES
——Lx;
2xSES
— IFix

‘

Sk
&\3( Pr, Cut
A O 1FS
@) wn RXx

Q\)I‘O ‘ros
(head,tail)
S§——52xS§

Fact
Bible says it is the word of God ‘What Bible says is true
Cut

God exists Bible is the word of God

Cut ———————————Fact

What Bible says is true Bible says that God exists

Cut

God exists
Cuts in circular proofs Delft, February 2014 15 / 36

Jérdme Fortier (UQAM / AMU)



Guard condition

Idea: Each turn in a cycle must either read a part of an inductive input or
write a part of a coinductive output.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 16 / 36



Guard condition

Idea: Each turn in a cycle must either read a part of an inductive input or
write a part of a coinductive output.

Definition
A path in I has a left p-trace if it
@ contains a left fixpoint rule, and the highest priority is odd;

@ turns left at every cut.

16 / 36

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014



Guard condition

Idea: Each turn in a cycle must either read a part of an inductive input or
write a part of a coinductive output.

Definition
A path in I has a left p-trace if it
@ contains a left fixpoint rule, and the highest priority is odd;

@ turns left at every cut.

| N\

Definition
A path in I has a right v-trace if it
@ contains a right fixpoint rule, and the highest priority is even;

@ turns right at every cut.

16 / 36

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014



Guard conditions

The following are equivalent.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 17 / 36



Guard conditions

The following are equivalent.

@ Every cycle in N either has a left u-trace or a right v-trace.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 17 / 36



Guard conditions

The following are equivalent.

@ Every cycle in N either has a left u-trace or a right v-trace.

@ Every infinite path I in I has a tail [’ that has either a left u-trace or
a right v-trace and every fixpoint rule in [ occurs infinitely often.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 17 / 36



Guard conditions

The following are equivalent.
@ Every cycle in N either has a left u-trace or a right v-trace.

@ Every infinite path I in I has a tail [’ that has either a left u-trace or
a right v-trace and every fixpoint rule in [ occurs infinitely often.

© Every strongly connected component of 1 either has a left u-trace or
a right v-trace.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 17 / 36



Guard conditions

The following are equivalent.
@ Every cycle in N either has a left u-trace or a right v-trace.

@ Every infinite path I in I has a tail [’ that has either a left u-trace or
a right v-trace and every fixpoint rule in [ occurs infinitely often.

© Every strongly connected component of 1 either has a left u-trace or
a right v-trace.

Definition

A circular proof is a finite pre-proof that satisfies the guard conditions.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 17 / 36



Semantical results

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free pu-bicomplete
category M.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 18 / 36



Semantical results

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free pu-bicomplete
category M.

Proof.
By induction on #(I) = (#.(M) + & (M), card(M)).

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 18 / 36



Semantical results

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free pu-bicomplete
category M.

Proof.
By induction on #(I) = (#.(M) + & (M), card(M)).

@ If T is not strongly connected: we can split 1 in two parts My, M5 s.t.
card(IMy), card(My) < card([M).

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 18 / 36



Semantical results

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free pu-bicomplete
category M.

Proof.
By induction on #(I) = (#.(M) + & (M), card(M)).
@ If T is not strongly connected: we can split 1 in two parts My, M5 s.t.

card(lMy), card(MMy) < card(I1).We then glue the two solutions together
using the Beki¢ Lemma.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 18 / 36



Semantical results

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free pu-bicomplete
category M.

Proof.
By induction on #(I) = (#.(M) + & (M), card(M)).
@ If T is not strongly connected: we can split 1 in two parts My, M5 s.t.

card(lMy), card(MMy) < card(I1).We then glue the two solutions together
using the Beki¢ Lemma.

@ If I is strongly connected: take a cycle I that covers 1.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 18 / 36



Semantical results

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free pu-bicomplete
category M.

Proof.
By induction on #(I) = (#.(M) + & (M), card(M)).

@ If T is not strongly connected: we can split 1 in two parts My, M5 s.t.
card(lMy), card(MMy) < card(I1).We then glue the two solutions together
using the Beki¢ Lemma.

@ If I is strongly connected: take a cycle I that covers 1. If T has a left
p-trace, split I in parts M; s.t. Vi, £0(M1;) < #(17).

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 18 / 36



Semantical results

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free pu-bicomplete
category M.

Proof.
By induction on #(I) = (#.(M) + & (M), card(M)).

@ If T is not strongly connected: we can split 1 in two parts My, M5 s.t.
card(lMy), card(MMy) < card(I1).We then glue the two solutions together
using the Beki¢ Lemma.

@ If I is strongly connected: take a cycle I that covers 1. If T has a left
p-trace, split M in parts M; s.t. Vi, 4.(M;) < 4(M). Then glue the parts
together with the Yoneda Lemma.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 18 / 36



Semantical results

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free pu-bicomplete
category M.

Proof.
By induction on #(I) = (#.(M) + & (M), card(M)).

@ If T is not strongly connected: we can split 1 in two parts My, M5 s.t.
card(lMy), card(MMy) < card(I1).We then glue the two solutions together
using the Beki¢ Lemma.

@ If I is strongly connected: take a cycle I that covers 1. If T has a left
p-trace, split M in parts M; s.t. Vi, 4.(M;) < 4(M). Then glue the parts
together with the Yoneda Lemma. If T as a right v-trace, same
reasoning.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 18 / 36



Semantical results

Fullness Theorem (F.-S. 2013)

Every arrow f : s — t of M is the solution of a circular proof.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 19 / 36



Semantical results

Fullness Theorem (F.-S. 2013)

Every arrow f : s — t of M is the solution of a circular proof.

Proof.
Obvious for most diagrams (by contruction of the rules).

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 19 / 36



Semantical results

Fullness Theorem (F.-S. 2013)

Every arrow f : s — t of M is the solution of a circular proof.

Proof.
Obvious for most diagrams (by contruction of the rules).
Except for this onel!

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014



Semantical results

Fullness Theorem (F.-S. 2013)

Every arrow f : s — t of M is the solution of a circular proof.

Proof.
Obvious for most diagrams (by contruction of the rules).
Except for this onel!

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 19 / 36



Semantical results

Fullness Theorem (F.-S. 2013)

Every arrow f : s — t of M is the solution of a circular proof.

Proof.
Obvious for most diagrams (by contruction of the rules).
Except for this onel!

f'
F(X) e,,{:,(,),,,, F a)
EI_I EcOpycat
£y a = [M] ak F(a) F(a)t F(x)
ut
X (.---.f ----- a LF(X)RFiX
ak x

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 19 / 36



Cut-elimination

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 20 / 36



Cut-elimination

Theorem (Santocanale, 2001)

There is no cut-free circular proof whose interpretation in Sets is the
diagonal A : N — N2

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 20 / 36



Diagonal map (with

N — N?

—— RAx
1-1 N-M

R+o R+
1-14+M NE1+M

L+

1+NFE1+M

Jérdme Fortier (UQAM / AMU) ts in circular proofs Delft, February 2014 21 /36




Cut-elimination

WHAT|IF WE CONSIDER

.
Fs- *n
o1 fEcom

mﬂﬁ%ﬂ PROO

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 22 /36



Cut-elimination

WHAT|IF WE CONSIDER

.
Fs- *n
o1 fEcom

mﬂﬁ%ﬂ PROO

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 22 /36



Tape automaton

Strategy: “Push” the cuts away from the root.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 23 /36



Tape automaton

Strategy: “Push” the cuts away from the root.

Main difficulties:

@ We must use lazy evaluation (hence the output is infinite).

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 23 /36



Tape automaton

Strategy: “Push” the cuts away from the root.

Main difficulties:
@ We must use lazy evaluation (hence the output is infinite).
e Cut VS Cut
tobti Bkt
———Cut

ot t2Ft3c
ut

toF t3

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 23 /36



Tape automaton

Strategy: “Push” the cuts away from the root.

Main difficulties:
@ We must use lazy evaluation (hence the output is infinite).
e Cut VS Cut

toFtt tEt kbt tEts
——F  Cut = —— Cut
ot btz toFt1 ti1-t3
Cut <~ Cut
toF t3 to - t3

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 23 /36



Tape automaton

Strategy: “Push” the cuts away from the root.

Main difficulties:
@ We must use lazy evaluation (hence the output is infinite).
e Cut VS Cut

tobti Bkt tiEt bt
——F  Cut = —— Cut
ot btz toFt1 ti1-t3
Cut <~ Cut
toF t3 to t3
U Merge

tobtn Bkt bt
Cut

to - t3

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014



Tape automaton

Definition

A tape is a finite list M := [u1, . .., u,] of composable vertices of I.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 24 / 36



Tape automaton

Definition

A tape is a finite list M := [u1, . .., u,] of composable vertices of I.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 24 / 36



Tape automaton

Definition

A tape is a finite list M := [u1, . .., u,] of composable vertices of I.

e Finite state machine (over a circular
proof ).

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 24 / 36



Tape automaton

Definition

A tape is a finite list M := [u1, . .., u,] of composable vertices of I.

e Finite state machine (over a circular
proof ).

o Carries a tape (of states) in memory.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 24 / 36



Tape automaton

Definition

A tape is a finite list M := [u1, . .., u,] of composable vertices of I.

e Finite state machine (over a circular
proof ).
o Carries a tape (of states) in memory.

@ Outputs a branch (chosen
nondeterministically) of the cut-free
infinite proof tree.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 24 / 36



Commutative reductions (left)

LAx
Okt bkt -

Ok t,

Cut

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 25 / 36



Commutative reductions (left)

Y L:>F“p
1 1 2
—Cut 0k t,

Ok t,

LAx

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 25 / 36



Commutative reductions (left)

T LFlip LA
1 T SR x
—Cut 0k t,
Okt
F(X)Ft1
—— LFix
X+t ikt
Cut
XFt,

Jérdme Fortier (UQAM / AMU) ts in circular proofs Delft, February 2014 25 / 36




Commutative reductions (left)

LAx

Okt bty -

Ok t,

F(X)Ft1
——— LFix
Xkt k-t

XFt,

Jérdme Fortier (UQAM / AMU)

LFlip
Cut
LFlip
f—
Cut

LAx

Ok t,

FX)Ft ikt -

ts in circular proofs

Delft, February 2014

25 / 36



Commutative reductions (left)

LAx

Okt bty -

Ok t,

F(X)Ft1
——— LFix
Xkt k-t

X+t
sty

—— Ly
So X 51ty ikt

So X 51ty

Jérdme Fortier (UQAM / AMU)

LFlip
Cut
LFlip
f—
Cut

Cut

LAx

Ok t,

FX)Ft ikt -

ts in circular proofs

Delft, February 2014

25 / 36



Commutative reductions (left)

orn ke LFlip LA
) Tkt e %
—Cut 0k t,
0k t,
F(X) -t R FH b e
Forn LFlip FXFm are -
Xkt ikt - — Xkt
Cut LFix
Xt t, Xty
-t . =t t1 -t
Sk 1 Lxy LF||p Sk 1 0 2 Cut
So X s b t1 kbt - - Sk b= tn
Cut ——F— Lxy
so X sty S0 X 51ty

Jérdme Fortier (UQAM / AMU) ts in circular proofs Delft, February 2014 25 / 36




Commutative reductions (left)

LAx

Okt bty -

Ok t,

F(X)Ft1
——— LFix
Xkt k-t

X+t
sty

—— Ly
So X 51ty ikt

So X 51ty
soFti sikt
_ L

+
so+s -ty t1-t

sp+ sty

Jérdme Fortier (UQAM / AMU

Cut

Cut

Cut

LFlip =
— X
0k t,

. F(X)F t F
LFlip fXFn are - o
— XEt,

LFix
Xty

. Ft it
LFlip S Tho bR Cut
— skt ty

Lxy
So X s1 bty

Cuts in circular proofs

Delft, February 2014

25 / 36



Commutative reductions (left)

LAx
0kt bt -
Ok t,
F(X)Ft1
Xttt bkt
XFty
sty
—  Lxy
So X 51ty ikt
So X 51ty
sobt sikEt
so+ sty t -t
sp+ sty

Jérdme Fortier (UQAM / AMU

Cut

Cut

Cut

LFlip
—

Cuts in circular proofs

LAx

Ok t,

FX)Fti ikt

soFt tbt ssEFth bttt

so b tn sikty
L+

so+ sty

Delft, February 2014

25 / 36



Commutative reductions (righ

ok tos mariox RElp RA
—2Fth1 -1 — x
" " " Cut toF1
toh 1
th-1 = F(X) AFi RFlip ~ thabth1 tha b F(X) ut
—_— 1X 1'%
tho b tao1 t,,,wXCt — tokF(X)RF_
108 _— 1X
to = X to - X
th-1 b s . th-1 b s
1% gy, RFlip ok o
tho b th1 tn71"so+51c . 7 tpoF it tha b s -
u K
tobso+s1 tobFso+s1
th-1F 50 tn—1|_51R RFlip . th—2 - tpo1 tn—l}_SOCt BRI 7 Yl A tnfl}_slci:
— X RX u 0
tho b th_1 th-1 F So X s1 cut — to - so to b s1
1'%
to - s0 % 51 to - S0 X 51

Jérdme Fortier (UQAM / AMU Cuts in circular proofs Delft, February 2014 26 / 36



Elimination of identities

Id
ti_1 ks sks S"t,‘+2

Cut
to F t,

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 27 / 36



Elimination of identities

Id
ti_1 ks sks S"t,‘+2

Cut

to F t,

{1dElim

t_1bFs sk tito
Cut

to - tp

IdElim(M, i) = Remove u; from M.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 27 / 36



Essential reductions

Otherwise, M = [R...RL...L].

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 28 / 36



Essential reductions

Otherwise, M = [R...RL...L].

tiiibso tiibs Sk b tiv1
RX Xk
tii1 b spx sy So X 811 tiy1 .
Cut

to -ty

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 28 / 36



Essential reductions

Otherwise, M = [R...RL...L].

tiibso tioib s Sk b tiv1

Rx Lx Reduce ... . 1Fs skt
ti_1Fsp X st Sp X 51 tiv1 — ! ! Cut
Cut to bty
to bty
Jérdme Fortier (UQAM / AMU) ts in circular proofs Delft, February 2014 28 / 36




Essential reductions

Otherwise, M = [R...RL...L].

tiiibso tiibs Sk b tiv1
Rx Lxk Reduce ... ti_1bse skt
ti_1Fsp X st Sp X 51 tiv1 — Cut
Cut to bty
to bty
i1t sk So - tiy1 sib ot
Rtk
Cticibspts So+ st tipa
Cut
to b tn
Jérdme Fortier (UQAM / AMU Cuts in circular proofs Delft, February 2014 28 / 36



Essential reductions

Otherwise, M = [R...RL...L].

tiiibso tiibs Sk b tiv1
Rx Lxk Reduce ... ti_1bse skt
ti_1Fsp X st Sp X 51 tiv1 — Cut
Cut to bty
to bty
i1t sk So - tiy1 sib ot
Rtk L+ Reduce ... . bs skt -
tiii b so+ st so+s1 b tiva — Cut
Cut to bty
to b tn
Jérdme Fortier (UQAM / AM ts in circular proofs Delft, February 2014 28 / 36




Essential reductions

Otherwise, M = [R...RL...L].

tiiibso tiibs Sk b tiv1
Rx Lxk Reduce ... ti_1bse skt
ti_1Fsp X st Sp X 51 tiv1 — Cut
Cut to bty
to bty
i1t sk So - tiy1 sib ot
Rtk L+ Reduce ... . bs skt -
< ti1bsg+ s so+s1 b tiva — Cut
Cut to bty
to b tn
tiq F F(X) F(X) F ti
RFix LFix
tii kX X F ti .
Cut
ik ty
Jérdme Fortier (UQAM / AMU Cuts in circular proofs Delft, February 2014 28 / 36



Essential reductions

Otherwise, M = [R...RL...L].

tiiibso tiibs Sk b tiv1
RX Xk
ti_1Fsp X st Sp X 51 tiv1 .
Cut
to bty
i1t sk So - tiy1 sib ot
Rtk
Cticibspts So 451k tiga
Cut
to bty
ti1 - F(X) FX)F tis
RFix LFix
ti1k X XF ti .
Cut
t bty

Jérdme Fortier (UQAM / AMU

Cuts in circular proofs

ti1 sk skt
Cut
to bty
tici b sk sk h tiga
Cut
to bty
tioi b F(X) F(X)F tis1
Cut
to bty
Delft, February 2014

28 / 36



Cut-elimination algorithm

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 29 / 36



Cut-elimination algorithm

@ Internal phase: Perform internal transformations (Merge, [dElim,
Reduce) while you can't do anything else.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 29 / 36



Cut-elimination algorithm

@ Internal phase: Perform internal transformations (Merge, IdElim,
Reduce) while you can't do anything else.

@ Production phase: Build a part of the output tree (LFlip, RFlip,
|dOut) whenever you can!

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 29 / 36



Cut-elimination algorithm

@ Internal phase: Perform internal transformations (Merge, IdElim,
Reduce) while you can't do anything else.

@ Production phase: Build a part of the output tree (LFlip, RFlip,
|dOut) whenever you can!

@ Repeat forever...

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 29 / 36



Cut-elimination algorithm

@ Internal phase: Perform internal transformations (Merge, IdElim,
Reduce) while you can't do anything else.

@ Production phase: Build a part of the output tree (LFlip, RFlip,
|dOut) whenever you can!

@ Repeat forever...

Theorem (F.=S., 2013)

For every input tape M, the internal phase halts!

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 29 / 36



Proof. Suppose it does not halt...

My = [un v w3]

My = [w1 wx w3 ]

M; = [us up  usz s uss |
My = [us usx  usz  Usa Ugs |
Ms = [us1 us2 us3  usg ]

Ms = [usr us2 Us3s  Usa ]

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014



Proof. Suppose it does not halt...

M
Merge {
M,
Merge \,L
Ms
Reduce L
My
IdElim |}
Ms
Reduce {|

Me

Jérdme Fortier (UQAM / AMU)

[un w2
I
[w1 w2
I

[us1 w3

lo
[usn  us
[us1  us2
[ U1 Ue2

3 ]

us3

us3

us3

Ug3

Cuts in circular proofs

u24 |
uzs  Uss |
Ugs  Ugs |
Usq ]

o

Up4 ]

Delft, February 2014

30 / 36



Proof. Suppose it does not halt...

Mi = [u  uvi2 i3]
Merge { 1 1J \i L
My = [un U U HU24_ ]
Merge \,L 1 & ol ol K L
My = [usi sy sz uza s ]
Reduce |} 1 0 lO €L L
My = [us usx  uss _U:m _U;5 ]
IdElim {} 1 1L 1 i
Ms = [usi usp usy  usa ]
Reduce \ 1 1 J 0 l 0
Ms = [usr U2 Uz  Upa |

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 30/ 36



Proof. Suppose it does not halt...

N

1

My = [un ui2 u13 |
Merge { iR 1J \i " L

My = [un up w3z U]
Merge L 1 & w L L - L

My = [us1 wx U3 u3g  uss )
Reduce L 1 0 lO 1 1

My = [us usx sz U Ugs |
IdElim {} 1 1 ) 1 J_

Ms = [usy us2  us3  uss |
Reduce \ 1 1 J 0 l 0

Ms = [usr U2 Uss  Uss ]

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 30/ 36



Proof. Suppose it does not halt...

N

1

My = [un ui2 u13 |
Merge { iR 1J \i " L

My = [un up w3z U]
Merge {} 1 & w L L R L

My = [us1 (U2 u33) w3 uss |
Reduce |} 1 0 0 L L

My = [us usx sz U Ugs |
IdElim {} 1 1 1 1

Ms = [usy us2 (us3  usg)]
Reduce \ 1 1 0 0

Ms = [usr U2 Uss  Uss ]

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 30/ 36



Proof. Suppose it does not halt...

My =
Merge {
My =

Merge L

M =
Reduce L

My =
IdElim |}

Ms =
Reduce \J,

Mg =

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 30/ 36



Proof. Suppose it does not halt...
\U = k

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 30/ 36



@ VW is an infinite finitely branching tree.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 31/ 36



@ VW is an infinite finitely branching tree.

@ The set Bo(W) of its infinite branches is non-empty. (Kénig)

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 31/ 36



@ VW is an infinite finitely branching tree.
@ The set Bo(W) of its infinite branches is non-empty. (Kénig)

@ B (W) is lexicographically ordered, it is a complete lattice.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 31/ 36



WV is an infinite finitely branching tree.

°
@ The set Bo(W) of its infinite branches is non-empty. (Kénig)
@ B (W) is lexicographically ordered, it is a complete lattice.

°

Infinite branches of W, correspond to infinite paths in 1.
Therefore, they satisfiy the guard condition!

Boo(W) = u-branches U v-branches

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 31/ 36



WV is an infinite finitely branching tree.

°
@ The set Bo(W) of its infinite branches is non-empty. (Kénig)
@ B (W) is lexicographically ordered, it is a complete lattice.

°

Infinite branches of W, correspond to infinite paths in 1.
Therefore, they satisfiy the guard condition!

Boo(W) = u-branches U v-branches

Lemma (F.-S., 2013)

© The least infinite branch of V is a v-branch.

@ Let E be a nonempty collection of v-branches and let v =\/ E. Then ~y is a
v-branch.

© If 8 is a v-branch, then there exists another v-branch 3’ = 3.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 31/ 36



So what?

Let
E = All the v-branches

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 32/ 36



Let
E = All the v-branches

Byl E+#wo.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 32/ 36



Let
E = All the v-branches

Byl E#o. Let v =\/E. By 2, vis a v-branch.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 32/ 36



Let
E = All the v-branches

By 1l E# 2. Let v =\/E. By 2, v is a v-branch. Hence by 3, there is
another v-branch + = .

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 32/ 36



Let
E = All the v-branches

By 1l E# 2. Let v =\/E. By 2, v is a v-branch. Hence by 3, there is
another v-branch 4/ = ~. But then, 7/ € E and therefore v/ < \/ E = ~.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 32/ 36



Cut-eliminating infinite proof-trees

@ We can cut eliminate a cut-free infinite proof against a fixed circular
proof I1.

@ We obtain a cut-free infinite proof.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 33 /36



Cut-eliminating infinite proof-trees

@ We can cut eliminate a cut-free infinite proof against a fixed circular
proof I1.

@ We obtain a cut-free infinite proof.

Considering that for any p-definable set X,

X =~ Winning strategies for & in some game

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 33 /36



Cut-eliminating infinite proof-trees

@ We can cut eliminate a cut-free infinite proof against a fixed circular
proof I1.

@ We obtain a cut-free infinite proof.

Considering that for any p-definable set X,

X =~ Winning strategies for & in some game
Cut-free infinite valid proofs of 1 F X,

1

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 33 /36



Cut-eliminating infinite proof-trees

@ We can cut eliminate a cut-free infinite proof against a fixed circular
proof I1.

@ We obtain a cut-free infinite proof.

Considering that for any p-definable set X,

X =~ Winning strategies for & in some game
Cut-free infinite valid proofs of 1 F X,

1

Cut-elimination is a generic algorithm for computing all the p-definable
functions.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 33 /36



Computability problems

@ What are the set-theoretic functions that one can denote with circular
proofs and computed with cut-elimination?

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 34 / 36



Computability problems

@ What are the set-theoretic functions that one can denote with circular
proofs and computed with cut-elimination?

Primitive recursive < p-definable < Recursive

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 34 / 36



Computability problems

@ What are the set-theoretic functions that one can denote with circular
proofs and computed with cut-elimination?

Primitive recursive < p-definable < Recursive

@ Which of those bounds are strict?

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 34 / 36



Computability problems

@ What are the set-theoretic functions that one can denote with circular
proofs and computed with cut-elimination?

Primitive recursive < p-definable < Recursive

@ Which of those bounds are strict?

o Is the Ackermann function definable?

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 34 / 36



Computability problems

@ What are the set-theoretic functions that one can denote with circular
proofs and computed with cut-elimination?

Primitive recursive < p-definable < Recursive

@ Which of those bounds are strict?
o Is the Ackermann function definable?
o What about streams?

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 34 / 36



Computability problems

@ What are the set-theoretic functions that one can denote with circular
proofs and computed with cut-elimination?

Primitive recursive < p-definable < Recursive

@ Which of those bounds are strict?

@ Is the Ackermann function definable?
@ What about streams?

@ And trees?

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 34 / 36



Computability problems

@ What are the set-theoretic functions that one can denote with circular
proofs and computed with cut-elimination?

Primitive recursive < p-definable < Recursive

@ Which of those bounds are strict?
o Is the Ackermann function definable?
o What about streams?

@ And trees?
Regular tree < pu-definable

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 34 / 36



Computability problems

@ What are the set-theoretic functions that one can denote with circular
proofs and computed with cut-elimination?

Primitive recursive < p-definable < Recursive

@ Which of those bounds are strict?
o Is the Ackermann function definable?
o What about streams?

@ And trees?
Regular tree < pu-definable

@ What about higher order pushdown trees?

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 34 / 36



Proof-theoretic problems

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 35/ 36



Proof-theoretic problems

@ How can we enrich the proof system (and corresponding model) while
keeping a productive cut-elimination procedure?

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 35/ 36



Proof-theoretic problems

@ How can we enrich the proof system (and corresponding model) while
keeping a productive cut-elimination procedure?
e Find links with existing circularities (get a categorical perspective)

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 35/ 36



Proof-theoretic problems

@ How can we enrich the proof system (and corresponding model) while
keeping a productive cut-elimination procedure?
e Find links with existing circularities (get a categorical perspective)
o Add contexts, linear logic s ...s, F t1...t, (Baelde)

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 35/ 36



Proof-theoretic problems

@ How can we enrich the proof system (and corresponding model) while
keeping a productive cut-elimination procedure?
e Find links with existing circularities (get a categorical perspective)

o Add contexts, linear logic s ...s, F t1...t, (Baelde)
o Add modalties Ot, {t, ... (Walukiewicz)

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 35/ 36



Proof-theoretic problems

@ How can we enrich the proof system (and corresponding model) while
keeping a productive cut-elimination procedure?
e Find links with existing circularities (get a categorical perspective)

o Add contexts, linear logic s ...s, F t1...t, (Baelde)
o Add modalties Ot, {t, ... (Walukiewicz)
o Add first order. (Brotherston—Simpson, Rosu, Lismont)

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 35/ 36



Proof-theoretic problems

@ How can we enrich the proof system (and corresponding model) while
keeping a productive cut-elimination procedure?
e Find links with existing circularities (get a categorical perspective)

o Add contexts, linear logic s ...s, F t1...t, (Baelde)
o Add modalties Ot, {t, ... (Walukiewicz)
o Add first order. (Brotherston—Simpson, Rosu, Lismont)

@ Philosophical question: What is the meaning of circularity in
mathematical reasoning?

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 35/ 36



? J s e D /L
Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 36 / 36




	Introduction
	Algebras et coalgebras
	Lattice -calculus

	Results
	Circular proofs
	Cut-elimination

	Future work
	Computability
	Logic


