Jérôme Fortier, with Luigi Santocanale

Cuts in circular proofs

Delft - February 17, 2014

Laboratoire
NFormatique
CAMPUS D'INFORMATIQUE FONDAMENTALE
de Mar'selle
campusfrance.org

Natural numbers

(Circular) Definition

A natural number is either 0 , or of the form $\operatorname{suc}(n)$ where n is a natural number.

Natural numbers

(Circular) Definition

A natural number is either 0 , or of the form $\operatorname{suc}(n)$ where n is a natural number.

Natural numbers

(Circular) Definition

A natural number is either 0 , or of the form $\operatorname{suc}(n)$ where n is a natural number. \mathbb{N} is the least fixpoint of this definition!

Initial algebra!

Natural numbers

(Circular) Definition

A natural number is either 0 , or of the form $\operatorname{suc}(n)$ where n is a natural number. \mathbb{N} is the least fixpoint of this definition!

Initial algebra!

Natural numbers

(Circular) Definition

A natural number is either 0 , or of the form $\operatorname{suc}(n)$ where n is a natural number. \mathbb{N} is the least fixpoint of this definition!

Initial algebra!

$$
\mathbb{N}=\mu X .(1+X)
$$

Other inductive types...

Other inductive types...

- $\mu X .(1+A \times X)=A^{*}=$ Finite words over A

$$
\begin{aligned}
* & \mapsto \varepsilon \\
\langle a, w\rangle & \mapsto a \cdot w
\end{aligned}
$$

Other inductive types...

- $\mu X .(1+A \times X)=A^{*}=$ Finite words over A

$$
\begin{array}{rlr}
* & \longmapsto \varepsilon \\
\langle a, w\rangle & \longmapsto a \cdot w
\end{array}
$$

- $\mu X .(1+A \times X \times X)=$ Finite binary labelled trees

Streams

(Circular) Definition

A stream over an alphabet A is made of a head $a \in A$, and another stream called the tail.

Streams

(Circular) Definition

A stream over an alphabet A is made of a head $a \in A$, and another stream called the tail.

$$
\begin{aligned}
& \|_{\langle\text {head, tail }\rangle}^{A^{\omega}} \\
& A \times A^{\omega}
\end{aligned}
$$

Streams

(Circular) Definition

A stream over an alphabet A is made of a head $a \in A$, and another stream called the tail. A^{ω} is the greatest fixpoint of this definition!

Final coalgebra!

$$
\begin{aligned}
& A \times X \underset{i d \times f}{\operatorname{id} \times A^{\omega}}
\end{aligned}
$$

Streams

(Circular) Definition

A stream over an alphabet A is made of a head $a \in A$, and another stream called the tail. A^{ω} is the greatest fixpoint of this definition!

Final coalgebra!

$$
\begin{aligned}
& A \times X \underset{\operatorname{id} \times f}{ } A \times A^{\omega}
\end{aligned}
$$

Streams

(Circular) Definition

A stream over an alphabet A is made of a head $a \in A$, and another stream called the tail. A^{ω} is the greatest fixpoint of this definition!

Final coalgebra!

$$
\begin{aligned}
& A \times X \underset{i d \times f}{ } A \times A^{\omega}
\end{aligned}
$$

$$
A^{\omega}=\nu X .(A \times X)
$$

Other coinductive types...

Other coinductive types...

- $\nu X .(A \times X \times X)=$ Infinite binary labelled trees

Lattice μ-calculus

Lattice μ-terms are generated by the following grammar:

$$
t:=X|1| t \times t|0| t+t|\mu X . t| \nu X . t
$$

Lattice μ-calculus

Lattice μ-terms are generated by the following grammar:

$$
t:=X|1| t \times t|0| t+t|\mu X . t| \nu X . t
$$

Example

$$
t=\nu X .(A \times \mu Y .(1+X \times Y))
$$

Lattice μ-calculus

Lattice μ-terms are generated by the following grammar:

$$
t:=X|1| t \times t|0| t+t|\mu X . t| \nu X . t
$$

Example

$$
t=\nu X .(A \times \mu Y .(1+X \times Y))
$$

Functorial interpretation

- $\times,+=$ Product / Coproduct;
- $0,1=$ Initial / Final object;
- $\mu X . F(X), \nu X . F(X)=$ Initial F-algebra / Final F-coalgebra.

Lattice μ-calculus

Lattice μ-terms are generated by the following grammar:

$$
t:=X|1| t \times t|0| t+t|\mu X . t| \nu X . t
$$

Example

$$
t=\nu X .(A \times \mu Y .(1+X \times Y))
$$

Functorial interpretation

- $\times,+=$ Product / Coproduct;
- $0,1=$ Initial $/$ Final object;
- $\mu X . F(X), \nu X . F(X)=$ Initial F-algebra / Final F-coalgebra.

Definition

A category \mathcal{C} is μ-bicomplete iff this interpretation makes sense in \mathcal{C}.

Game semantics (in Sets)

$$
t=\nu X .(A \times \mu Y .(1+X \times Y))
$$

Game semantics (in Sets)

$$
t=\nu X .(A \times \mu Y .(1+X \times Y))
$$

$\mathcal{S}(t):$

Game semantics (in Sets)

$$
\begin{gathered}
t=\nu X \cdot(A \times \mu Y \cdot(1+X \times Y)) \\
\mathcal{S}(t): \quad X={ }_{\nu} \quad A \times Y
\end{gathered}
$$

Game semantics (in Sets)

$$
t=\nu X .(A \times \mu Y .(1+X \times Y))
$$

$$
\begin{aligned}
\mathcal{S}(t): & X \\
& ={ }_{\nu} \quad A \times Y \\
& A=\sum_{a \in A} 1
\end{aligned}
$$

Game semantics (in Sets)

$$
t=\nu X .(A \times \mu Y .(1+X \times Y))
$$

$$
\begin{aligned}
& \mathcal{S}(t): \quad X \quad={ }_{\nu} \quad A \times Y \\
& A={ }_{\nu} \quad \sum_{a \in A} 1 \\
& Y={ }_{\mu} \quad 1+Z
\end{aligned}
$$

Game semantics (in Sets)

$$
t=\nu X .(A \times \mu Y .(1+X \times Y))
$$

$$
\begin{aligned}
& \mathcal{S}(t): \quad X \quad={ }_{\nu} \quad A \times Y \\
& A={ }_{\nu} \quad \sum_{a \in A} 1 \\
& Y={ }_{\mu} 1+Z \\
& Z={ }_{\mu} \quad X \times Y
\end{aligned}
$$

Game semantics (in Sets)

$$
\begin{align*}
& t=\nu X .(A \times \mu Y .(1+X \times Y)) \\
& \mathcal{S}(t): \quad X={ }_{\nu} \quad A \times Y \tag{2}\\
& A={ }_{\nu} \quad \sum_{a \in A} 1 \tag{2}\\
& Z={ }_{\mu} \quad X \times Y \text { (1) } \tag{1}
\end{align*}
$$

$\operatorname{Priority}(V)$ is $\begin{cases}\text { even } & \text {, if } V={ }_{\nu} \ldots \\ \text { odd } & , \text { if } V={ }_{\mu} \ldots\end{cases}$

Game semantics (in Sets)

$$
t=\nu X .(A \times \mu Y .(1+X \times Y))
$$

$\mathcal{S}(t): \quad X={ }_{\nu} \quad A \times Y$
$\begin{array}{lll}A & ={ }_{\nu} & \sum_{a \in A} 1 \\ Y & ={ }_{\mu} & 1+Z \\ Z & ={ }_{\mu} & X \times Y\end{array}$

Priority (V) is $\begin{cases}\text { even } & , \text { if } V={ }_{\nu} \ldots \\ \text { odd } & , \text { if } V={ }_{\mu} \ldots\end{cases}$

Game semantics (in Sets)

Parity games!

Game semantics (in Sets)

Parity games!

Game semantics (in Sets)

Parity games!

Player \oplus wins if:

- At some point, Player \otimes cannot play,

Game semantics (in Sets)

Parity games!

Player \oplus wins if:

- At some point, Player \otimes cannot play,
- Or the game is infinite, and the highest priority visited infinitely often is even.

Game semantics (in Sets)

Parity games!

2 Player \oplus wins if:

- At some point, Player \otimes cannot play,
- Or the game is infinite, and the highest priority visited infinitely often is even.
Player \otimes wins in the dual situation.

Game semantics (in Sets)

Parity games!

2 Player \oplus wins if:

- At some point, Player \otimes cannot play,
- Or the game is infinite, and the highest priority visited infinitely often is even.
Player \otimes wins in the dual situation.

Theorem (Santocanale, 2002)

Solutions for variable V in $\mathcal{S}(t) \simeq$
The set of deterministic winning strategies for \oplus from position V.

Therefore, we have a combinatorial (dynamic) characterization of the μ-defined objects.

Curry-Howard correspondence

Goal

Find a "good" (dynamic) syntax for expressing (and computing) functions (arrows) between objects of this kind.

Curry-Howard correspondence

Goal

Find a "good" (dynamic) syntax for expressing (and computing) functions (arrows) between objects of this kind.

Cartesian
Closed
Categories

Curry-Howard correspondence

Goal

Find a "good" (dynamic) syntax for expressing (and computing) functions (arrows) between objects of this kind.

Curry-Howard correspondence

Goal

Find a "good" (dynamic) syntax for expressing (and computing) functions (arrows) between objects of this kind.

Curry-Howard correspondence

Goal

Find a "good" (dynamic) syntax for expressing (and computing) functions (arrows) between objects of this kind.

μ-bicomplete
Categories

Inference rules (Gentzen style)

Axioms:

$$
\overline{0 \vdash t} \mathrm{LAx}
$$

$$
\overline{t \vdash 1} \mathrm{RAx}
$$

$$
\overline{t \vdash t} \mathrm{Id}
$$

$\begin{aligned} & \text { Product: } \\ & (\text { conjunction })\end{aligned} \frac{s_{i} \vdash t}{s_{0} \times s_{1} \vdash t} \mathrm{~L} \times{ }_{i} \quad \frac{s \vdash t_{0} \quad s \vdash t_{1}}{s \vdash t_{0} \times t_{1}} \mathrm{R} \times$
Coproduct: (disjunction)

$\frac{s \vdash t_{i}}{s \vdash t_{0}+t_{1}} \mathrm{R}+i$
Fixpoint: $\quad \frac{F(X) \vdash t}{X \vdash t} \operatorname{LFix} \quad \frac{s \vdash F(X)}{s \vdash X}$ RFix \quad if $X=F(X)$
Cut:

$$
\frac{r \vdash s \quad s \vdash t}{r \vdash t} \mathrm{Cut}
$$

Categorical interpretation

Axioms: $\overline{0 \xrightarrow{? ~} t} \mathrm{LAx} \quad \overline{t \xrightarrow{!_{t}} 1} \mathrm{RAx} \quad \overline{t \xrightarrow{\mathrm{id} t_{t}} t} \mathrm{Id}$
$\begin{aligned} & \text { Product: } \\ & \text { (conjunction) }\end{aligned} \underset{s_{0} \times s_{1} \xrightarrow{s_{i} \xrightarrow{p r} t \cdot f} t}{ } \mathrm{~L} \times \times_{i} \xrightarrow{s \xrightarrow{s} t_{0}} \stackrel{s \xrightarrow{g} t_{1}}{s f, g\rangle} t_{0} \times t_{1} \quad \mathrm{R} \times$
Coproduct:
(disjunction)

$$
\frac{s_{0} \xrightarrow{f} t \quad s_{1} \xrightarrow{g} t}{s_{0}+s_{1} \xrightarrow{\{f, g\}} t} \mathrm{~L}+\quad \frac{s \xrightarrow{f} t_{i}}{s \xrightarrow{f \cdot \mathrm{in}_{i}} t_{0}+t_{1}} \mathrm{R}+i
$$

Fixpoint:

$$
\begin{array}{lll}
\frac{F(X) \stackrel{f}{\rightarrow} t}{} \text { LFix } & \frac{s \xrightarrow{f} F(X)}{s \xrightarrow{\zeta_{X}^{-1} \cdot f} t} \text { R. } \zeta_{X} X & \text { if } X={ }_{\mu} F(X) \\
\frac{F(X) \xrightarrow{f} t}{X \xrightarrow{\xi_{X} \cdot f} t} \text { LFix } & \frac{s \xrightarrow{f} F(X)}{s \xrightarrow{f \cdot \xi_{X}^{-1}} X} \text { RFix } & \text { if } X={ }_{\nu} F(X) \\
\frac{r \xrightarrow{f} s s^{g} t}{r \xrightarrow{f \cdot g} t} \text { Cut } &
\end{array}
$$

Cut:

Primitive recursion

$$
N={ }_{\mu} 1+N
$$

Primitive recursion

$$
N={ }_{\mu} 1+N
$$

Solution:

$$
1+\mathbb{N} \xrightarrow{\{0, \text { suc }\}} \mathbb{N}
$$

Primitive recursion

$$
N={ }_{\mu} 1+N
$$

Solution:

$$
1+\mathbb{N} \xrightarrow{\{0, \text { suc }\}} \mathbb{N}
$$

Let

$$
\begin{aligned}
\operatorname{double}(0) & =0 \\
\operatorname{double}(\operatorname{suc}(n)) & =\operatorname{suc}(\operatorname{suc}(\operatorname{double}(n)))
\end{aligned}
$$

Primitive recursion

$$
N={ }_{\mu} 1+N
$$

Solution:

$$
1+\mathbb{N} \xrightarrow{\{0, \text { suc }\}} \mathbb{N}
$$

Let

$$
\begin{aligned}
\text { double }(0) & =0 \quad N \vdash N \\
\text { double }(\operatorname{suc}(n)) & =\operatorname{suc}(\operatorname{suc}(\operatorname{double}(n)))
\end{aligned}
$$

Primitive recursion

$$
N={ }_{\mu} 1+N
$$

Solution:

$$
1+\mathbb{N} \xrightarrow{\{0, \text { suc }\}} \mathbb{N}
$$

Let

$$
\text { double }(0)=0
$$

$$
\frac{1+N \vdash N}{N \vdash N}
$$

double($\operatorname{suc}(n))=\operatorname{suc}(\operatorname{suc}(\operatorname{double}(n)))$

Primitive recursion

$$
N={ }_{\mu} 1+N
$$

Solution:

$$
1+\mathbb{N} \xrightarrow{\{0, \text { suc }\}} \mathbb{N}
$$

Let

$$
\text { double }(0)=0
$$

double(suc $(n))=\operatorname{suc}(\operatorname{suc}(\operatorname{double}(n)))$

Primitive recursion

$$
N={ }_{\mu} 1+N
$$

Solution:

$$
\begin{aligned}
& 1+\mathbb{N} \xrightarrow{\{0, \text { suc }\}} \mathbb{N} \quad \frac{1 \vdash 1+N}{1 \vdash N} \text { RFix } \\
& N \vdash N \\
& \text { Let } \\
& 1+N \vdash N \\
& \text { double(0) }=0 \\
& N \vdash N \\
& \text { double(suc }(n))=\operatorname{suc}(\operatorname{suc}(\operatorname{double}(n)))
\end{aligned}
$$

Primitive recursion

$$
N={ }_{\mu} 1+N
$$

Solution:

$$
\begin{aligned}
& \qquad \begin{array}{l}
1+\mathbb{N} \xrightarrow{\{0, \text { suc }\}} \mathbb{N} \\
\text { Let } \begin{array}{l}
\frac{1 \vdash 1}{\frac{1 \vdash 1+N}{1 \vdash N} \mathrm{RFix}+0} \\
\\
\text { double}(0)=0
\end{array} \\
\text { double(suc }(n))=\operatorname{suc}(\operatorname{suc}(\operatorname{double}(n)))
\end{array}
\end{aligned}
$$

Let

Primitive recursion

$$
N={ }_{\mu} 1+N
$$

Solution:

Let

$$
1+\mathbb{N} \xrightarrow{\{0, \text { suc }\}} \mathbb{N}
$$

$$
\text { double(0) }=0
$$

$$
\operatorname{double}(\operatorname{suc}(n))=\operatorname{suc}(\operatorname{suc}(\operatorname{double}(n)))
$$

Primitive recursion

$$
N={ }_{\mu} 1+N
$$

$$
\begin{aligned}
& \text { Solution: } \\
& \qquad \begin{array}{l}
1+\mathbb{N} \xrightarrow{\{0, \text { suc }\}} \mathbb{N} \quad \frac{\frac{1}{1 \vdash 1} \mathrm{RAx}}{\frac{1 \vdash 1+N}{} \mathrm{R}+0} \frac{N \vdash 1+N}{\frac{1 \vdash N}{R F i x} \frac{N \vdash N}{N \vdash i x}} \mathrm{~L}+ \\
\text { Let } \\
\operatorname{double}(0)=0 \\
\operatorname{double}(\operatorname{suc}(n))=\operatorname{suc}(\operatorname{suc}(\operatorname{double}(n)))
\end{array}
\end{aligned}
$$

Primitive recursion

$$
N={ }_{\mu} 1+N
$$

$$
\begin{aligned}
& \text { Solution: } \\
& \qquad \begin{array}{l}
1+\mathbb{N} \xrightarrow{\{0, \text { suc }\}} \mathbb{N} \quad \frac{\frac{1}{1 \vdash 1} \mathrm{RAx}}{\frac{1 \vdash 1+N}{} \mathrm{R}+0} \frac{\frac{N \vdash N}{N \vdash 1+N} \mathrm{R}+1}{\frac{1 \vdash N}{R F i x}} \frac{1+N \vdash N}{N \vdash N} \mathrm{RFix} \\
\text { Let } \\
\operatorname{LFix} \\
\operatorname{double}(0)=0 \\
\operatorname{double}(\operatorname{suc}(n))=\operatorname{suc}(\operatorname{suc}(\operatorname{double}(n)))
\end{array}
\end{aligned}
$$

Primitive recursion

$$
N={ }_{\mu} 1+N
$$

Solution:		$\overline{1 \vdash 1}^{R A x}$		
		$\frac{N \vdash 1+N}{N \vdash N} \mathrm{RFix}$		
$1+\mathbb{N} \underline{\{0,}$	$\xrightarrow{\text { c }}$ N		$\frac{1 \vdash 1+N}{} \mathrm{R}+0$	${\underset{N \vdash 1+N}{R+1}}^{R+1}$
		$1 \vdash N$	$N \vdash N$	
Let		$1+N \vdash N$		
double(0)	$=$	$N \vdash$		
double(suc(n))	$=$	double(n)))		

Primitive recursion

$$
N={ }_{\mu} 1+N
$$

Primitive recursion

$$
N={ }_{\mu} 1+N
$$

Proofs \Rightarrow Systems of equations

Proofs \Rightarrow Systems of equations

Solution: $f_{0}=$ double

Stream differential equations

$$
\begin{array}{rl}
X & ={ }_{\nu} \\
2 & 2 \times X \times X \\
& ={ }_{\nu}
\end{array}
$$

Stream differential equations

$$
\begin{array}{rl}
X & ={ }_{\nu} \\
2 & 2 \times X \times X \\
& ={ }_{\nu}
\end{array}
$$

Solution (Kupke-Rutten, 2012)

$$
S \xrightarrow{\langle\text { head,even,odd }\rangle} 2 \times S \times S
$$

Stream differential equations

$$
X={ }_{\nu} \quad 2 \times X \times X
$$

$$
2={ }_{\nu} 1+1
$$

Solution (Kupke-Rutten, 2012)

$$
S \xrightarrow{\langle\text { head,even,odd }\rangle} 2 \times S \times S
$$

Thue-Morse stream

$$
\begin{aligned}
\sigma & =\langle 0, \sigma, \tau\rangle \\
\tau & =\langle 1, \tau, \sigma\rangle
\end{aligned}
$$

Stream differential equations

$$
\begin{array}{rr}
X={ }_{\nu} \quad 2 \times X \times X & \text { Thue-Morse stream } \\
2={ }_{\nu} 1+1 & \sigma=\langle 0, \sigma, \tau\rangle \\
\tau & =\langle 1, \tau, \sigma\rangle
\end{array}
$$

Non-valid circular proofs

Non-valid circular proofs

Non-valid circular proofs

Non-valid circular proofs

Non-valid circular proofs

Guard condition

Idea: Each turn in a cycle must either read a part of an inductive input or write a part of a coinductive output.

Guard condition

Idea: Each turn in a cycle must either read a part of an inductive input or write a part of a coinductive output.

Definition

A path in Π has a left μ-trace if it

- contains a left fixpoint rule, and the highest priority is odd;
- turns left at every cut.

Guard condition

Idea: Each turn in a cycle must either read a part of an inductive input or write a part of a coinductive output.

Definition

A path in Π has a left μ-trace if it

- contains a left fixpoint rule, and the highest priority is odd;
- turns left at every cut.

Definition

A path in Π has a right ν-trace if it

- contains a right fixpoint rule, and the highest priority is even;
- turns right at every cut.

Guard conditions

The following are equivalent.

Guard conditions

The following are equivalent.
(1) Every cycle in Π either has a left μ-trace or a right ν-trace.

Guard conditions

The following are equivalent.
(1) Every cycle in Π either has a left μ-trace or a right ν-trace.
(2) Every infinite path Γ in Π has a tail Γ^{\prime} that has either a left μ-trace or a right ν-trace and every fixpoint rule in Γ^{\prime} occurs infinitely often.

Guard conditions

The following are equivalent.
(1) Every cycle in Π either has a left μ-trace or a right ν-trace.
(2) Every infinite path Γ in Π has a tail Γ^{\prime} that has either a left μ-trace or a right ν-trace and every fixpoint rule in Γ^{\prime} occurs infinitely often.
(3) Every strongly connected component of Π either has a left μ-trace or a right ν-trace.

Guard conditions

The following are equivalent.
(1) Every cycle in Π either has a left μ-trace or a right ν-trace.
(2) Every infinite path Γ in Π has a tail Γ^{\prime} that has either a left μ-trace or a right ν-trace and every fixpoint rule in Γ^{\prime} occurs infinitely often.
(3) Every strongly connected component of Π either has a left μ-trace or a right ν-trace.

Definition

A circular proof is a finite pre-proof that satisfies the guard conditions.

Semantical results

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free μ-bicomplete category \mathcal{M}.

Semantical results

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free μ-bicomplete category \mathcal{M}.

Proof.
By induction on $\sharp(\Pi)=\left(\sharp_{L}(\Pi)+\sharp_{R}(\Pi), \operatorname{card}(\Pi)\right)$.

Semantical results

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free μ-bicomplete category \mathcal{M}.

Proof.
By induction on $\sharp(\Pi)=\left(\sharp_{L}(\Pi)+\sharp_{R}(\Pi), \operatorname{card}(\Pi)\right)$.

- If Π is not strongly connected: we can split Π in two parts Π_{1}, Π_{2} s.t. $\operatorname{card}\left(\Pi_{1}\right), \operatorname{card}\left(\Pi_{2}\right)<\operatorname{card}(\Pi)$.

Semantical results

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free μ-bicomplete category \mathcal{M}.

Proof.

By induction on $\sharp(\Pi)=\left(\sharp_{L}(\Pi)+\sharp_{R}(\Pi), \operatorname{card}(\Pi)\right)$.

- If Π is not strongly connected: we can split Π in two parts Π_{1}, Π_{2} s.t. $\operatorname{card}\left(\Pi_{1}\right), \operatorname{card}\left(\Pi_{2}\right)<\operatorname{card}(\Pi)$.We then glue the two solutions together using the Bekič Lemma.

Semantical results

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free μ-bicomplete category \mathcal{M}.

Proof.

By induction on $\sharp(\Pi)=\left(\sharp_{L}(\Pi)+\sharp_{R}(\Pi), \operatorname{card}(\Pi)\right)$.

- If Π is not strongly connected: we can split Π in two parts Π_{1}, Π_{2} s.t. $\operatorname{card}\left(\Pi_{1}\right), \operatorname{card}\left(\Pi_{2}\right)<\operatorname{card}(\Pi)$.We then glue the two solutions together using the Bekič Lemma.
- If Π is strongly connected: take a cycle Γ that covers Π.

Semantical results

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free μ-bicomplete category \mathcal{M}.

Proof.

By induction on $\sharp(\Pi)=\left(\sharp_{L}(\Pi)+\sharp_{R}(\Pi), \operatorname{card}(\Pi)\right)$.

- If Π is not strongly connected: we can split Π in two parts Π_{1}, Π_{2} s.t. $\operatorname{card}\left(\Pi_{1}\right), \operatorname{card}\left(\Pi_{2}\right)<\operatorname{card}(\Pi)$.We then glue the two solutions together using the Bekič Lemma.
- If Π is strongly connected: take a cycle Γ that covers Π. If Γ has a left μ-trace, split Π in parts Π_{i} s.t. $\forall i, \sharp_{\mathrm{L}}\left(\Pi_{i}\right)<\sharp(\Pi)$.

Semantical results

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free μ-bicomplete category \mathcal{M}.

Proof.

By induction on $\sharp(\Pi)=\left(\sharp_{L}(\Pi)+\sharp_{R}(\Pi), \operatorname{card}(\Pi)\right)$.

- If Π is not strongly connected: we can split Π in two parts Π_{1}, Π_{2} s.t. $\operatorname{card}\left(\Pi_{1}\right), \operatorname{card}\left(\Pi_{2}\right)<\operatorname{card}(\Pi)$.We then glue the two solutions together using the Bekič Lemma.
- If Π is strongly connected: take a cycle Γ that covers Π. If Γ has a left μ-trace, split Π in parts Π_{i} s.t. $\forall i, \sharp_{\mathrm{L}}\left(\Pi_{i}\right)<\sharp(\Pi)$. Then glue the parts together with the Yoneda Lemma.

Semantical results

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free μ-bicomplete category \mathcal{M}.

Proof.

By induction on $\sharp(\Pi)=\left(\sharp_{L}(\Pi)+\sharp_{R}(\Pi), \operatorname{card}(\Pi)\right)$.

- If Π is not strongly connected: we can split Π in two parts Π_{1}, Π_{2} s.t. $\operatorname{card}\left(\Pi_{1}\right), \operatorname{card}\left(\Pi_{2}\right)<\operatorname{card}(\Pi)$.We then glue the two solutions together using the Bekič Lemma.
- If Π is strongly connected: take a cycle Γ that covers Π. If Γ has a left μ-trace, split Π in parts Π_{i} s.t. $\forall i, \sharp_{\mathrm{L}}\left(\Pi_{i}\right)<\sharp(\Pi)$. Then glue the parts together with the Yoneda Lemma. If Γ as a right ν-trace, same reasoning.

Semantical results

Fullness Theorem (F.-S. 2013)

Every arrow $f: s \rightarrow t$ of \mathcal{M} is the solution of a circular proof.

Semantical results

Fullness Theorem (F.-S. 2013)

Every arrow $f: s \rightarrow t$ of \mathcal{M} is the solution of a circular proof.
Proof.
Obvious for most diagrams (by contruction of the rules).

Semantical results

Fullness Theorem (F.-S. 2013)

Every arrow $f: s \rightarrow t$ of \mathcal{M} is the solution of a circular proof.
Proof.
Obvious for most diagrams (by contruction of the rules).
Except for this one!

Semantical results

Fullness Theorem (F.-S. 2013)

Every arrow $f: s \rightarrow t$ of \mathcal{M} is the solution of a circular proof.
Proof.
Obvious for most diagrams (by contruction of the rules).
Except for this one!

Semantical results

Fullness Theorem (F.-S. 2013)

Every arrow $f: s \rightarrow t$ of \mathcal{M} is the solution of a circular proof.
Proof.
Obvious for most diagrams (by contruction of the rules).
Except for this one!

$$
\begin{aligned}
& F(x)-F(f)---F(a) \\
& \left.\xi_{x}\right|_{x-------} \prod_{a} \alpha=\llbracket \Pi \rrbracket \\
& f=\alpha \cdot F(f) \cdot \xi_{x}^{-1}
\end{aligned}
$$

Cut-elimination

Cut-elimination

Theorem (Santocanale, 2001)
There is no cut-free circular proof whose interpretation in Sets is the diagonal $\Delta: \mathbb{N} \rightarrow \mathbb{N}^{2}$.

Diagonal map (with cuts)

$$
\begin{array}{rll}
\Delta & : & \mathbb{N} \rightarrow \mathbb{N}^{2} \\
n & \mapsto & (n, n) \\
& \\
N & ={ }_{\mu} & 1+N \\
M & ={ }_{\mu} & N+M
\end{array}
$$

Cut-elimination

WHITHWUGOUSTIEB
 DITHITE PRODIS?

Cut-elimination

Tape automaton

Strategy: "Push" the cuts away from the root.

Tape automaton

Strategy: "Push" the cuts away from the root.
Main difficulties:

- We must use lazy evaluation (hence the output is infinite).

Tape automaton

Strategy: "Push" the cuts away from the root.
Main difficulties:

- We must use lazy evaluation (hence the output is infinite).
- Cut VS Cut

$$
\frac{t_{0} \vdash t_{1} \quad t_{1} \vdash t_{2}}{\frac{t_{0} \vdash t_{2}}{} \mathrm{Cut} \quad t_{2} \vdash t_{3}} t_{0} \vdash t_{3} \mathrm{Cut}
$$

Tape automaton

Strategy: "Push" the cuts away from the root.
Main difficulties:

- We must use lazy evaluation (hence the output is infinite).
- Cut VS Cut

$$
\begin{aligned}
\frac{t_{0} \vdash t_{1} \quad t_{1} \vdash t_{2}}{\frac{t_{0} \vdash t_{2}}{} \text { Cut }} \begin{array}{ll}
t_{2} \vdash t_{3} \\
t_{0} \vdash t_{3} & \text { Cut }
\end{array} & \Leftarrow \\
t_{0} \vdash t_{3} & \frac{t_{1} \vdash t_{2} \quad t_{2} \vdash t_{3}}{t_{1} \vdash t_{3}} \text { Cut }
\end{aligned}
$$

Tape automaton

Strategy: "Push" the cuts away from the root.
Main difficulties:

- We must use lazy evaluation (hence the output is infinite).
- Cut VS Cut

$$
\begin{aligned}
& \frac{t_{0} \vdash t_{1} \quad t_{1} \vdash t_{2}}{t_{0} \vdash t_{2}} \mathrm{Cut} \Rightarrow t_{2} \vdash t_{3} \\
& t_{0} \vdash t_{3} \\
& \mathrm{Cut} \Leftarrow \\
& t_{0} \vdash t_{1} \vdash t_{3} \frac{t_{1} \vdash t_{2} t_{2} \vdash t_{3}}{t_{1} \vdash t_{3}} \mathrm{Cut} \\
& \text { Cut }
\end{aligned}
$$

\Downarrow Merge

$$
\frac{t_{0} \vdash t_{1}}{} \begin{array}{lll}
t_{1} \vdash t_{2} & t_{2} \vdash t_{3} \\
t_{0} \vdash t_{3} & \mathrm{Cut}
\end{array}
$$

Tape automaton

Definition
 A tape is a finite list $M:=\left[u_{1}, \ldots, u_{n}\right]$ of composable vertices of Π.

Tape automaton

Definition

A tape is a finite list $M:=\left[u_{1}, \ldots, u_{n}\right]$ of composable vertices of Π.

Cut Man - A tape automaton

Tape automaton

Definition

A tape is a finite list $M:=\left[u_{1}, \ldots, u_{n}\right]$ of composable vertices of Π.

Cut Man - A tape automaton

- Finite state machine (over a circular proof Π).

Tape automaton

Definition

A tape is a finite list $M:=\left[u_{1}, \ldots, u_{n}\right]$ of composable vertices of Π.

Cut Man - A tape automaton

- Finite state machine (over a circular proof Π).
- Carries a tape (of states) in memory.

Tape automaton

Definition

A tape is a finite list $M:=\left[u_{1}, \ldots, u_{n}\right]$ of composable vertices of Π.

Cut Man - A tape automaton

- Finite state machine (over a circular proof Π).
- Carries a tape (of states) in memory.
- Outputs a branch (chosen nondeterministically) of the cut-free infinite proof tree.

Commutative reductions (left)

Commutative reductions (left)

Commutative reductions (left)

$$
\begin{aligned}
& \quad \frac{\overline{0 \vdash t}_{1}}{\mathrm{LAx}} t_{1} \vdash t_{2} \quad \cdots \\
& 0 \vdash t_{n} \\
& \frac{F(X) \vdash t_{1}}{X \vdash t_{1}} \mathrm{LFix} \\
& \frac{\text { LFlip }}{\rightleftharpoons} \frac{t_{1} \vdash t_{2}}{0 \vdash t_{n}} \mathrm{LAx} \\
& X \vdash t_{n} \\
& \text { Lut }
\end{aligned}
$$

Commutative reductions (left)

$$
\begin{aligned}
& \frac{\overline{0 \vdash}^{\frac{\text { t }}{1}} \quad \mathrm{LAx} t_{1} \vdash t_{2} \quad \cdots}{0 \vdash t_{n}} \text { Cut } \stackrel{\text { LFlip }}{\Longrightarrow} \frac{}{0 \vdash t_{n}} \mathrm{LAx} \\
& \frac{\frac{F(X) \vdash t_{1}}{X \vdash t_{1}} \text { LFix }_{t_{1} \vdash t_{2}}^{X \vdash t_{n}}}{\square} \stackrel{\text { LFlip }}{\Longrightarrow} \frac{F(X) \vdash t_{1} \quad t_{1} \vdash t_{2} \quad \cdots}{\frac{X \vdash t_{n}}{X \vdash t_{n}} \text { LFix }} \text { Cut }
\end{aligned}
$$

Commutative reductions (left)

$$
\begin{aligned}
& \frac{\overline{0 \vdash t}_{1} \mathrm{LAx} t_{1} \vdash t_{2} \quad \cdots}{0 \vdash t_{n}} \text { Cut } \stackrel{\text { LFlip }}{\Longrightarrow} \frac{}{0 \vdash t_{n}} \mathrm{LAx} \\
& \frac{F(X) \vdash t_{1}}{X \vdash t_{1}} \mathrm{LFix} t_{1} \vdash t_{2} \quad \cdots \cdot \text { Cut } \quad \underset{X \vdash t_{n}}{\Longrightarrow} \frac{\text { LFlip }}{\Longrightarrow} \frac{F(X) \vdash t_{1} \quad t_{1} \vdash t_{2} \quad \cdots}{X \vdash t_{n}} \text { LFix } \\
& \frac{\frac{s_{k} \vdash t_{1}}{s_{0} \times s_{1} \vdash t_{1}} \mathrm{~L} \times_{k} \quad t_{1} \vdash t_{2} \quad \cdots}{s_{0} \times s_{1} \vdash t_{n}} \text { Cut }
\end{aligned}
$$

Commutative reductions (left)

$$
\begin{aligned}
& \frac{\overline{0 \vdash t}_{1} \mathrm{LAx} t_{1} \vdash t_{2} \quad \cdots}{0 \vdash t_{n}} \text { Cut } \stackrel{\text { LFlip }}{\Longrightarrow} \frac{}{0 \vdash t_{n}} \mathrm{LAx} \\
& \frac{F(X) \vdash t_{1}}{X \vdash t_{1}} \mathrm{LFix} t_{1} \vdash t_{2} \quad \cdots \cdot \text { Cut } \quad \underset{X \vdash t_{n}}{\Longrightarrow} \frac{\text { LFlip }}{\Longrightarrow} \frac{F(X) \vdash t_{1} \quad t_{1} \vdash t_{2} \quad \cdots}{X \vdash t_{n}} \text { LFix } \\
& \frac{s_{k} \vdash t_{1}}{s_{0} \times s_{1} \vdash t_{1}} \mathrm{~L} \times_{k} t_{1} \vdash t_{2} \quad \cdots . \quad \mathrm{cut} \stackrel{\text { FFlip }}{\Longrightarrow} \stackrel{s_{k} \vdash t_{1} t_{1} \vdash t_{2} \quad \cdots}{\frac{s_{k} \vdash t_{n}}{s_{0} \times s_{1} \vdash t_{n}} \mathrm{~L} \times{ }_{k}} \mathrm{Cut}
\end{aligned}
$$

Commutative reductions (left)

$$
\begin{aligned}
& \frac{\overline{0 \vdash}_{1} \mathrm{LAx} t_{1} \vdash t_{2} \quad \cdots}{0 \vdash t_{n}} \text { Cut } \stackrel{\text { LFlip }}{\Longrightarrow} \frac{}{0 \vdash t_{n}} \mathrm{LAx}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{s_{k} \vdash t_{1}}{s_{0} \times s_{1} \vdash t_{1}} \mathrm{~L} \times_{k} t_{1} \vdash t_{2} \quad \cdots . \quad \text { Cut } \quad \stackrel{\text { LFlip }}{s_{0} \times s_{1} \vdash t_{n}} \xlongequal{\frac{s_{k} \vdash t_{1} \quad t_{1} \vdash t_{2} \quad \ldots}{s_{0} \times s_{1} \vdash t_{n}} \mathrm{~L} \times_{k}} \text { Cut } \\
& \frac{s_{0} \vdash t_{1} \quad s_{1} \vdash t_{1}}{s_{0}+s_{1} \vdash t_{1}} \mathrm{~L}+t_{1} \vdash t_{2} \quad \cdots \quad \text { Cut }
\end{aligned}
$$

Commutative reductions (left)

$$
\begin{aligned}
& \frac{\overline{0 \vdash t}_{1} \mathrm{LAx} t_{1} \vdash t_{2} \quad \cdots}{0 \vdash t_{n}} \text { Cut } \stackrel{\text { LFlip }}{\Longrightarrow} \frac{}{0 \vdash t_{n}} \text { LAx } \\
& \frac{F(X) \vdash t_{1}}{X \vdash t_{1}} \text { LFix } t_{1} \vdash t_{2} \quad \cdots \quad \text { Cut } \quad \underset{X \vdash t_{n}}{\Longrightarrow} \frac{\text { LFlip }}{\Longrightarrow} \frac{F(X) \vdash t_{1} \quad t_{1} \vdash t_{2} \quad \cdots}{X \vdash t_{n}} \text { LFix } \\
& \frac{s_{k} \vdash t_{1}}{s_{0} \times s_{1} \vdash t_{1}} \mathrm{~L} \times_{k} t_{1} \vdash t_{2} \quad \cdots . ~ C u t ~ \stackrel{\text { Flip }}{s_{0} \times s_{1} \vdash t_{n}} \stackrel{\frac{s_{k} \vdash t_{1} \quad t_{1} \vdash t_{2} \quad \cdots}{\frac{s_{k} \vdash t_{n}}{s_{0} \times s_{1} \vdash t_{n}}} \mathrm{~L} \times k}{\Longrightarrow} \text { Cut }
\end{aligned}
$$

Commutative reductions (right)

$\frac{\cdots \quad t_{n-2} \vdash t_{n-1}}{t_{0} \vdash 1} \overline{t_{n-1} \vdash 1} \mathrm{RAx} \mathrm{Cut} \stackrel{\text { RFlip }}{\Longrightarrow} \overline{t_{0} \vdash 1} \mathrm{RAx}$
$\frac{\cdots t_{n-2} \vdash t_{n-1} \frac{t_{n-1} \vdash F(X)}{t_{n-1} \vdash X} \text { RFix }}{t_{0} \vdash X} \stackrel{\text { RFlip }}{\Longrightarrow} \frac{\cdots t_{n-2} \vdash t_{n-1} \quad t_{n-1} \vdash F(X)}{t_{0} \vdash F(X)}$ tut $_{t_{0} \vdash X}$ RFix
$\frac{\cdots \quad t_{n-2} \vdash t_{n-1} \frac{t_{n-1} \vdash s_{k}}{t_{n-1} \vdash s_{0}+s_{1}} \mathrm{R}+k}{t_{0} \vdash s_{0}+s_{1}} \mathrm{Cut} \stackrel{\text { RFlip }}{\Longrightarrow} \frac{t_{n-2} \vdash t_{n-1} \quad \frac{t_{n-1} \vdash s_{k}}{t_{n-1} \vdash s_{k}}}{t_{0} \vdash s_{0}+s_{1}} \mathrm{R}+{ }_{k}$
$\xlongequal[t_{0} \vdash s_{0} \times s_{1}]{\cdots t_{n-2} \vdash t_{n-1} \frac{t_{n-1} \vdash s_{0} t_{n-1} \vdash s_{1}}{t_{n-1} \vdash s_{0} \times s_{1}} \mathrm{R} \times} \mathrm{Cut} \stackrel{\text { RFlip }}{\Longrightarrow} \frac{\cdots t_{n-2} \vdash t_{n-1} t_{n-1} \vdash s_{0}}{t_{0} \vdash s_{0}}$ Cut $\frac{t_{0} \vdash s_{0} \times s_{1}}{t_{0} \vdash s_{1}} \mathrm{R} \times$

Elimination of identities

$$
\frac{\cdots \quad t_{i-1} \vdash s \quad \overline{s \vdash s}^{\cdots} \mathrm{Id} \quad s \vdash t_{i+2} \quad \cdots}{t_{0} \vdash t_{n}}
$$

Elimination of identities

$$
\begin{gathered}
\frac{t_{i-1} \vdash s \quad \overline{s \vdash s} \quad s \vdash t_{i+2} \quad \cdots}{t_{0} \vdash t_{n}} \text { Cut } \\
\Downarrow_{\text {IdElim }} \\
\frac{t_{i-1} \vdash s \quad s \vdash t_{i+2} \quad \cdots}{t_{0} \vdash t_{n}} \text { Cut }
\end{gathered}
$$

$\operatorname{IdElim}(M, i)=$ Remove u_{i} from M.

Essential reductions

Otherwise, $M=[\mathrm{R} \ldots \mathrm{RL} \ldots \mathrm{L}]$.

Essential reductions

Otherwise, $M=[\mathrm{R} \ldots \mathrm{RL} \ldots \mathrm{L}]$.

$$
\frac{\ldots \frac{t_{i-1} \vdash s_{0} \quad t_{i-1} \vdash s_{1}}{t_{i-1} \vdash s_{0} \times s_{1}} \mathrm{R} \times \frac{s_{k} \vdash t_{i+1}}{s_{0} \times s_{1} \vdash t_{i+1}} \mathrm{~L} \times_{k} \ldots}{t_{0} \vdash t_{n}} \text { Cut }
$$

Essential reductions

Otherwise, $M=[\mathrm{R} \ldots \mathrm{RL} \ldots \mathrm{L}]$.

Essential reductions

Otherwise, $M=[\mathrm{R} \ldots \mathrm{RL} \ldots \mathrm{L}]$.

Essential reductions

Otherwise, $M=[\mathrm{R} \ldots \mathrm{RL} \ldots \mathrm{L}]$.
$\frac{\ldots \frac{t_{i-1} \vdash s_{0} \quad t_{i-1} \vdash s_{1}}{t_{i-1} \vdash s_{0} \times s_{1}} \mathrm{R} \times \frac{s_{k} \vdash t_{i+1}}{s_{0} \times s_{1} \vdash t_{i+1}} \mathrm{~L} \times{ }_{k} \ldots}{t_{0} \vdash t_{n}}$ Cut

$$
\stackrel{\text { Reduce }}{\Longrightarrow} \frac{\cdots}{} \quad t_{i-1} \vdash s_{k} \quad s_{k} \vdash t_{i+1} \quad \cdots \quad \text { Cut }
$$

$$
\frac{\cdots \frac{t_{i-1} \vdash s_{k}}{t_{i-1} \vdash s_{0}+s_{1}} \mathrm{R}+k \frac{s_{0} \vdash t_{i+1} \quad s_{1} \vdash t_{i+1}}{s_{0}+s_{1} \vdash t_{i+1}} \mathrm{~L}+\ldots}{t_{0} \vdash t_{n}} \text { Cut }
$$

$$
\stackrel{\text { Reduce }}{\Longrightarrow} \frac{\cdots \quad t_{i-1} \vdash s_{k} \quad s_{k} \vdash t_{i+1} \quad \cdots}{t_{0} \vdash t_{n}} \text { Cut }
$$

Essential reductions

Otherwise, $M=[\mathrm{R} \ldots \mathrm{RL} \ldots \mathrm{L}]$.

$$
t_{1} \vdash t_{n}
$$

$$
\begin{aligned}
& \frac{\cdots \frac{t_{i-1} \vdash s_{k}}{t_{i-1} \vdash s_{0}+s_{1}} \mathrm{R}+{ }_{k} \frac{s_{0} \vdash t_{i+1} \quad s_{1} \vdash t_{i+1}}{s_{0}+s_{1} \vdash t_{i+1}} \mathrm{~L}+\ldots}{t_{0} \vdash t_{n}} \text { Cut } \\
& \ldots \frac{t_{i-1} \vdash F(X)}{t_{i-1} \vdash X} \text { RFix } \frac{F(X) \vdash t_{i+1}}{X \vdash t_{i+1}} \text { LFix }
\end{aligned}
$$

Essential reductions

Otherwise, $M=[\mathrm{R} \ldots \mathrm{RL} \ldots \mathrm{L}]$.
$\frac{\ldots \frac{t_{i-1} \vdash s_{0} \quad t_{i-1} \vdash s_{1}}{t_{i-1} \vdash s_{0} \times s_{1}} \mathrm{R} \times \frac{s_{k} \vdash t_{i+1}}{s_{0} \times s_{1} \vdash t_{i+1}} \mathrm{~L} \times{ }_{k} \ldots}{t_{0} \vdash t_{n}}$ Cut

$$
\stackrel{\text { Reduce }}{\Longrightarrow} \frac{\cdots \quad t_{i-1} \vdash s_{k} \quad s_{k} \vdash t_{i+1} \quad \cdots}{t_{0} \vdash t_{n}} \text { Cut }
$$

$$
\frac{\cdots \frac{t_{i-1} \vdash s_{k}}{t_{i-1} \vdash s_{0}+s_{1}} \mathrm{R}+k \frac{s_{0} \vdash t_{i+1} \quad s_{1} \vdash t_{i+1}}{s_{0}+s_{1} \vdash t_{i+1}} \mathrm{~L}+}{t_{0} \vdash t_{n}} \text { Cut }
$$

$$
\stackrel{\text { Reduce }}{\Longrightarrow} \frac{\cdots}{} t_{i-1} \vdash s_{k} \quad s_{k} \vdash t_{i+1} \quad \cdots \quad \text { Cut }
$$

$$
\frac{\ldots \frac{t_{i-1} \vdash F(X)}{t_{i-1} \vdash X} \mathrm{RFix} \frac{F(X) \vdash t_{i+1}}{X \vdash t_{i+1}} \text { LFix } \ldots}{t_{1} \vdash t_{n}} \text { Cut }
$$

$$
\stackrel{\text { Reduce }}{\Longrightarrow} \frac{\cdots}{} t_{i-1} \vdash F(X) \quad F(X) \vdash t_{i+1} \quad \cdots \quad \text { Cut }
$$

Cut-elimination algorithm

Cut-elimination algorithm

- Internal phase: Perform internal transformations (Merge, IdElim, Reduce) while you can't do anything else.

Cut-elimination algorithm

- Internal phase: Perform internal transformations (Merge, IdElim, Reduce) while you can't do anything else.
- Production phase: Build a part of the output tree (LFlip, RFlip, IdOut) whenever you can!

Cut-elimination algorithm

- Internal phase: Perform internal transformations (Merge, IdElim, Reduce) while you can't do anything else.
- Production phase: Build a part of the output tree (LFlip, RFlip, IdOut) whenever you can!
- Repeat forever...

Cut-elimination algorithm

- Internal phase: Perform internal transformations (Merge, IdElim, Reduce) while you can't do anything else.
- Production phase: Build a part of the output tree (LFlip, RFlip, IdOut) whenever you can!
- Repeat forever...

Theorem (F.-S., 2013)

For every input tape M, the internal phase halts!

$$
M_{1}=\left[\begin{array}{lll}
u_{11} & u_{12} & u_{13}
\end{array}\right]
$$

Merge \Downarrow

$$
M_{2}=\left[\begin{array}{llll}
u_{21} & u_{22} & u_{23} & u_{24}
\end{array}\right]
$$

Merge \Downarrow

$$
M_{3}=\left[\begin{array}{lllll}
u_{31} & u_{32} & u_{33} & u_{34} & u_{35}
\end{array}\right]
$$

Reduce \Downarrow

$$
M_{4}=\left[\begin{array}{lllll}
u_{41} & u_{42} & u_{43} & u_{44} & u_{45}
\end{array}\right]
$$

IdElim \Downarrow

$$
M_{5}=\left[\begin{array}{llll}
u_{51} & u_{52} & u_{53} & u_{54}
\end{array}\right]
$$

Reduce \Downarrow

$$
M_{6}=\left[\begin{array}{llll}
u_{61} & u_{62} & u_{63} & u_{64}
\end{array}\right]
$$

Proof. Suppose it does not halt...

Proof. Suppose it does not halt...
$\psi \quad:=$

- Ψ is an infinite finitely branching tree.
- Ψ is an infinite finitely branching tree.
- The set $\mathcal{B}_{\infty}(\Psi)$ of its infinite branches is non-empty. (Kőnig)
- Ψ is an infinite finitely branching tree.
- The set $\mathcal{B}_{\infty}(\Psi)$ of its infinite branches is non-empty. (Kőnig)
- $\mathcal{B}_{\infty}(\Psi)$ is lexicographically ordered, it is a complete lattice.
- Ψ is an infinite finitely branching tree.
- The set $\mathcal{B}_{\infty}(\Psi)$ of its infinite branches is non-empty. (Kőnig)
- $\mathcal{B}_{\infty}(\Psi)$ is lexicographically ordered, it is a complete lattice.
- Infinite branches of Ψ, correspond to infinite paths in Π. Therefore, they satisfiy the guard condition!

$$
\mathcal{B}_{\infty}(\Psi)=\mu \text {-branches } \cup \nu \text {-branches }
$$

- Ψ is an infinite finitely branching tree.
- The set $\mathcal{B}_{\infty}(\Psi)$ of its infinite branches is non-empty. (Kőnig)
- $\mathcal{B}_{\infty}(\Psi)$ is lexicographically ordered, it is a complete lattice.
- Infinite branches of Ψ, correspond to infinite paths in Π. Therefore, they satisfiy the guard condition!

$$
\mathcal{B}_{\infty}(\Psi)=\mu \text {-branches } \cup \nu \text {-branches }
$$

Lemma (F.-S., 2013)

(1) The least infinite branch of Ψ is a ν-branch.
(2) Let E be a nonempty collection of ν-branches and let $\gamma=\bigvee E$. Then γ is a ν-branch.
(3) If β is a ν-branch, then there exists another ν-branch $\beta^{\prime} \succ \beta$.

So what?

Let

$$
E=\text { All the } \nu \text {-branches }
$$

So what?

Let

$$
E=\text { All the } \nu \text {-branches }
$$

By $1 E \neq \varnothing$.

So what?

Let

$$
E=\text { All the } \nu \text {-branches }
$$

By $1 E \neq \varnothing$. Let $\gamma=\bigvee E$. By $2, \gamma$ is a ν-branch.

So what?

Let

$$
E=\text { All the } \nu \text {-branches }
$$

By $1 E \neq \varnothing$. Let $\gamma=\bigvee E$. By 2, γ is a ν-branch. Hence by 3, there is another ν-branch $\gamma^{\prime} \succ \gamma$.

So what?

Let

$$
E=\text { All the } \nu \text {-branches }
$$

By $1 E \neq \varnothing$. Let $\gamma=\bigvee E$. By $2, \gamma$ is a ν-branch. Hence by 3 , there is another ν-branch $\gamma^{\prime} \succ \gamma$. But then, $\gamma^{\prime} \in E$ and therefore $\gamma^{\prime} \preceq \bigvee E=\gamma$.

Cut-eliminating infinite proof-trees

- We can cut eliminate a cut-free infinite proof against a fixed circular proof Π.
- We obtain a cut-free infinite proof.

Cut-eliminating infinite proof-trees

- We can cut eliminate a cut-free infinite proof against a fixed circular proof Π.
- We obtain a cut-free infinite proof.

Considering that for any μ-definable set X,
$X \simeq$ Winning strategies for \oplus in some game

Cut-eliminating infinite proof-trees

- We can cut eliminate a cut-free infinite proof against a fixed circular proof Π.
- We obtain a cut-free infinite proof.

Considering that for any μ-definable set X,
$X \simeq$ Winning strategies for \oplus in some game
\simeq Cut-free infinite valid proofs of $1 \vdash X$,

Cut-eliminating infinite proof-trees

- We can cut eliminate a cut-free infinite proof against a fixed circular proof Π.
- We obtain a cut-free infinite proof.

Considering that for any μ-definable set X,

$$
\begin{aligned}
X & \simeq \text { Winning strategies for } \oplus \text { in some game } \\
& \simeq \text { Cut-free infinite valid proofs of } 1 \vdash X
\end{aligned}
$$

Cut-elimination is a generic algorithm for computing all the μ-definable functions.

Computability problems

- What are the set-theoretic functions that one can denote with circular proofs and computed with cut-elimination?

Computability problems

- What are the set-theoretic functions that one can denote with circular proofs and computed with cut-elimination?

$$
\text { Primitive recursive } \leq \mu \text {-definable } \leq \text { Recursive }
$$

Computability problems

- What are the set-theoretic functions that one can denote with circular proofs and computed with cut-elimination?

$$
\text { Primitive recursive } \leq \mu \text {-definable } \leq \text { Recursive }
$$

- Which of those bounds are strict?

Computability problems

- What are the set-theoretic functions that one can denote with circular proofs and computed with cut-elimination?

$$
\text { Primitive recursive } \leq \mu \text {-definable } \leq \text { Recursive }
$$

- Which of those bounds are strict?
- Is the Ackermann function definable?

Computability problems

- What are the set-theoretic functions that one can denote with circular proofs and computed with cut-elimination?

$$
\text { Primitive recursive } \leq \mu \text {-definable } \leq \text { Recursive }
$$

- Which of those bounds are strict?
- Is the Ackermann function definable?
- What about streams?

Computability problems

- What are the set-theoretic functions that one can denote with circular proofs and computed with cut-elimination?

$$
\text { Primitive recursive } \leq \mu \text {-definable } \leq \text { Recursive }
$$

- Which of those bounds are strict?
- Is the Ackermann function definable?
- What about streams?
- And trees?

Computability problems

- What are the set-theoretic functions that one can denote with circular proofs and computed with cut-elimination?

$$
\text { Primitive recursive } \leq \mu \text {-definable } \leq \text { Recursive }
$$

- Which of those bounds are strict?
- Is the Ackermann function definable?
- What about streams?
- And trees?

$$
\text { Regular tree }<\mu \text {-definable }
$$

Computability problems

- What are the set-theoretic functions that one can denote with circular proofs and computed with cut-elimination?

$$
\text { Primitive recursive } \leq \mu \text {-definable } \leq \text { Recursive }
$$

- Which of those bounds are strict?
- Is the Ackermann function definable?
- What about streams?
- And trees?

$$
\text { Regular tree }<\mu \text {-definable }
$$

- What about higher order pushdown trees?

Proof-theoretic problems

Proof-theoretic problems

- How can we enrich the proof system (and corresponding model) while keeping a productive cut-elimination procedure?

Proof-theoretic problems

- How can we enrich the proof system (and corresponding model) while keeping a productive cut-elimination procedure?
- Find links with existing circularities (get a categorical perspective)

Proof-theoretic problems

- How can we enrich the proof system (and corresponding model) while keeping a productive cut-elimination procedure?
- Find links with existing circularities (get a categorical perspective)
- Add contexts, linear logic $s_{1} \ldots s_{m} \vdash t_{1} \ldots t_{n}$ (Baelde)

Proof-theoretic problems

- How can we enrich the proof system (and corresponding model) while keeping a productive cut-elimination procedure?
- Find links with existing circularities (get a categorical perspective)
- Add contexts, linear logic $s_{1} \ldots s_{m} \vdash t_{1} \ldots t_{n}$ (Baelde)
- Add modalties $\square t, \diamond t, \ldots$ (Walukiewicz)

Proof-theoretic problems

- How can we enrich the proof system (and corresponding model) while keeping a productive cut-elimination procedure?
- Find links with existing circularities (get a categorical perspective)
- Add contexts, linear logic $s_{1} \ldots s_{m} \vdash t_{1} \ldots t_{n}$ (Baelde)
- Add modalties $\square t, \diamond t, \ldots$ (Walukiewicz)
- Add first order. (Brotherston-Simpson, Roșu, Lismont)

Proof-theoretic problems

- How can we enrich the proof system (and corresponding model) while keeping a productive cut-elimination procedure?
- Find links with existing circularities (get a categorical perspective)
- Add contexts, linear logic $s_{1} \ldots s_{m} \vdash t_{1} \ldots t_{n}$ (Baelde)
- Add modalties $\square t, \diamond t, \ldots$ (Walukiewicz)
- Add first order. (Brotherston-Simpson, Roșu, Lismont)
- Philosophical question: What is the meaning of circularity in mathematical reasoning?

[^0]Cuts in circular proofs
Delft, February 2014
$36 / 36$

[^0]: Jérôme Fortier (UQAM / AMU)

