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Natural numbers

(Circular) Definition

A natural number is either 0, or of the form suc(n) where n is a natural
number.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 2/ 36



Natural numbers

(Circular) Definition

A natural number is either 0, or of the form suc(n) where n is a natural
number.

1+N
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Natural numbers

(Circular) Definition

A natural number is either 0, or of the form suc(n) where n is a natural
number. N is the least fixpoint of this definition!

Initial algebral

1ent T g x
fO) = a

{0, suc} {a, g} f(suc(x)) = g(f(x))
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Other inductive types...
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Other inductive types...

o uX.(1+ Ax X)= A* = Finite words over A

=o€
(a,w) — a-w
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Other inductive types...

o uX.(1+ Ax X)= A* = Finite words over A
= €
(a,w) — a-w

o uX.(1+ Ax X x X) = Finite binary labelled trees

* +— Empty tree

T1 T>
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(Circular) Definition

A stream over an alphabet A is made of a head a € A, and another stream
called the tail.
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A stream over an alphabet A is made of a head a € A, and another stream
called the tail.
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(Circular) Definition

A stream over an alphabet A is made of a head a € A, and another stream
called the tail. A“ is the greatest fixpoint of this definition!

Final coalgebral

Jif
x / head(f(x)) = a(x)
(a,8) (head, tail) tail(f(x)) = f(g(x))
AxX----- A x AY
id x
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Other coinductive types...
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Other coinductive types...

o vX.(A x X x X) = Infinite binary labelled trees

—> <a, Tl, T2>
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Lattice p-calculus

Lattice p-terms are generated by the following grammar:

t=X|1|txt|O|t4+t|puXt|vXt
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Lattice p-calculus

Lattice p-terms are generated by the following grammar:

t=X|1|txt|O|t4+t|puXt|vXt

t=vX.(AxpuY.(1+X xY))

Functorial interpretation
e x,+ = Product / Coproduct;
e 0,1 = Initial / Final object;
o uX.F(X),vX.F(X) = Initial F-algebra / Final F-coalgebra.
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Lattice p-calculus

Lattice p-terms are generated by the following grammar:

t=X|1|txt|O|t4+t|puXt|vXt

t=vX.(AxpuY.(1+X xY))

Functorial interpretation
e x,+ = Product / Coproduct;
e 0,1 = Initial / Final object;
o uX.F(X),vX.F(X) = Initial F-algebra / Final F-coalgebra.

Definition
A category C is ji-bicomplete iff this interpretation makes sense in C.
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Game semantics (in Sets)

t=vX.(AxpY.(1+ X xY))
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Game semantics (in Sets)

t=vX.(AxpY.(1+ X xY))

S(t): X =, AxY

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 7/ 36



Game semantics (in Sets)

t=vX.(AxpY.(1+ X xY))

S(t): X =, AxY
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Game semantics (in Sets)

t=vX.(AxpY.(1+ X xY))

S(t): X =, AxY

A v ZaeAl
Y =, 1+Z
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Game semantics (in Sets)

t =

S(t) X =,
A =
Y =,
zZ =,

Jérdme Fortier (UQAM / AMU)

vX (Ax pY. (14X xY))

AxY

ZaeAl
1+Z7

XxY
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Game semantics (in Sets)

t=vX.(AxpY.(1+ X xY))

S(t): X =, AxY (2
A = Tl (2)
Y =, 1+2Z2 (1)
Z =, XxY (1)

even ,ifV=,...

Priority(V) i
riority(V) is {odd V=,

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 7/ 36



Game semantics (in Sets)

t=vX.(AxpY.(1+ X xY))

S(t): X =, AxY (2
A =0 Daeal (2
Y =, 1+Z2 (1)
Z =, XxY (1)

odd ,ifV=,...

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 7/ 36



Game semantics (in Sets)

Parity games!
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Game semantics (in Sets)

Parity games!

o At some point, Player ® cannot play,

1 e Or the game is infinite, and the highest
priority visited infinitely often is even.
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Game semantics (in Sets)

Parity games!

o At some point, Player ® cannot play,

1 e Or the game is infinite, and the highest
priority visited infinitely often is even.

Player ® wins in the dual situation.

Theorem (Santocanale, 2002)

The set of deterministic winning
strategies for @ from position V.

Solutions for variable V' in S(t) ~

Therefore, we have a combinatorial (dynamic) characterization of the
u-defined objects.
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Curry—Howard correspondence

Find a "good" (dynamic) syntax for expressing (and computing) functions
(arrows) between objects of this kind.
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Curry—Howard correspondence

Find a "good" (dynamic) syntax for expressing (and computing) functions
(arrows) between objects of this kind.

Intuitionistic
Logic

N/

Cartesian
Closed
Categories

M-calculus —
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Curry—Howard correspondence

Find a "good" (dynamic) syntax for expressing (and computing) functions
(arrows) between objects of this kind.

Intuitionistic
p-calculus .
Logic
Cartesian
Closed
Categories
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Curry—Howard correspondence

Find a "good" (dynamic) syntax for expressing (and computing) functions
(arrows) between objects of this kind.

Intuitionistic

p-calculus Logic

p-bicomplete
Categories
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Curry—Howard correspondence

Find a "good" (dynamic) syntax for expressing (and computing) functions
(arrows) between objects of this kind.

p-calculus ¢— Circular
Proofs
p-bicomplete
Categories
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Inference rules (Gentzen style)

i . — LAx — RAx —1d
Axioms: 0kt tH1 tht
Product: skt skty skt

. . Lx; RX
(conjunction) s xstkt sktox t
Coproduct:  srt skt skt

L R+

o +
(disjunction)  s+s k¢ skto+h

F(X)Ft sk F(X)

Fixpoint: 0 TR ——Zerix if X = F(X)
XkEt sk X
= =
Cut: AL
ret
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Categorical interpretation

Axioms: S Lax —— RAx S
0%t 51 £
PrOdUCtZ S;i>t Si)to Sitl
. ti ; Lx; ; Rx
(conjunction) _ mmf,, TN
Coproduct:  s5H¢t 55+t sty
(disjunction) va T i ha
) so+ s 2t sty + 1
f f
. . F(X) =t s — F(X .
Fixpoint: ~_—LFix - ( )RFiX if X =, F(X)
X Cx " s & X
f f
F(X)L ¢ s— F(X .
( )f LFix 71( )RFix I'F X =y F(X)
X Ex- t f&x %
f
r—s s—t
Cut: cut
fg
r—t
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Primitive recursion

N=,1+N
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Primitive recursion

N=,1+N
Solution:
14N 222
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Primitive recursion

N=,1+N

Solution:

14N {0,suc}

Let

double(0) = 0
double(suc(n)) = suc(suc(double(n)))
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Primitive recursion

N=,1+N
Solution:
14N 222
1-N NE+N
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Primitive recursion

N=,1+N
Solution:
{0,suc}
1+N— N 1F1+N
— RFix
1-N NE+N
L+
Let 1+NEN
— LFix
double(0) = 0 N+ N
double(suc(n)) = suc(suc(double(n)))
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Primitive recursion

N=,1+N
Solution: 1e1

{0,suc} ——R+o

1+N— N 1F1+N
— RFix
1-N NE+N
L+
Let 1+NEN
— LFix
double(0) = 0 N+ N

double(suc(n)) = suc(suc(double(n)))
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Primitive recursion
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Solution: 11

{0,suc} ——R+o
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Primitive recursion

N=,1+N
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Solution: 11 NN
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Primitive recursion

N=,1+N

Solution:

1+N

Let

double(0)
double(suc(n))

Jérdme Fortier (UQAM / AMU)

{0,suc}
-

NEF14+N
—— RAx RFix
1F1 NEN
——R+o 1
N 1F1+N NE1+N
——  RFix RFix
1-N NE+N
L+
1+NEN
LFix
0 NEN
suc(suc(double(n)))
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Primitive recursion
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Primitive recursion

N=,1+N
ion: —— RAx
Solution: 11
{0,suc} ————R+o — R+
1+N—N 1F1+N N-E1+N
— RFix ——  RFix
1N NEN
L+
Let 1+NEN
——  LFix
double(0) = 0 NN
double(suc(n)) = suc(suc(double(n)))
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Proofs = Systems of equations

(fs = fo-ing
fr = fo-Cn
fo = f7-ing

o RAx fs = fo-(n
1 =1
R+o |
15 14N fi = h
RFix f = fa-ing
12N fh = f-(n
1+N 5N h {f,f}
; fo TR
N> N
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Proofs = Systems of equations

(g = fo-ing
fr = fg-Cn
fo = fr-im
fs = fo-Cn
fa = N4
i = f4-ing
h = K-(n
fl {67%}
fo TR

Solution: fy = double
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Stream differential equations

X =, 2xXxX
2 =, 141
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Stream differential equations

X =, 2xXxX
2 =, 141

Solution (Kupke—Rutten, 2012)

(head,even,odd)
e

S 2xSxS
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Stream differential equations

X =, 2xXxX Thue-Morse stream
? :V ! - ! o = <O’ g, T
= (l,7,0)

Solution (Kupke—Rutten, 2012)

(head,even,odd)
e

S 2xSxS
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Stream differential equations

X =, 2xXxX Thue-Morse stream
2 :V 1 + 1 o — <0’ 0_77_
- <17 )

Solution (Kupke—Rutten, 2012)

(head,even,odd)
e

S 2xSxS

R+1

1-1+1
—  RFix

12 [1FX| [1FX
I1F2x X x X
1 X

RFix
RXx

1F2x X x X
1 X

RFix
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Non-valid circular proofs
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Non-valid circular proofs

‘

CA oy
N
.&0 O
§) wn
Q\)"’) ‘rog
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Non-valid circular proofs

(head,tail)
—_—

2x S
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Non-valid circular proofs
——1d
SES
——Lx;
2xSES
— IFix

‘

Sk
&\3( Pr, Cut
A O 1FS
@) wn RXx

Q\)I‘O ‘ros
(head,tail)
S§——52xS§

Fact
Bible says it is the word of God ‘What Bible says is true
Cut

God exists Bible is the word of God

Cut ———————————Fact

What Bible says is true Bible says that God exists

Cut

God exists
Cuts in circular proofs Delft, February 2014 15 / 36
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Guard condition

Idea: Each turn in a cycle must either read a part of an inductive input or
write a part of a coinductive output.
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Guard condition

Idea: Each turn in a cycle must either read a part of an inductive input or
write a part of a coinductive output.

Definition
A path in I has a left p-trace if it
@ contains a left fixpoint rule, and the highest priority is odd;

@ turns left at every cut.

16 / 36
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Guard condition

Idea: Each turn in a cycle must either read a part of an inductive input or
write a part of a coinductive output.

Definition
A path in I has a left p-trace if it
@ contains a left fixpoint rule, and the highest priority is odd;

@ turns left at every cut.

| N\

Definition
A path in I has a right v-trace if it
@ contains a right fixpoint rule, and the highest priority is even;

@ turns right at every cut.

16 / 36
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Guard conditions

The following are equivalent.
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Guard conditions

The following are equivalent.

@ Every cycle in N either has a left u-trace or a right v-trace.

@ Every infinite path I in I has a tail [’ that has either a left u-trace or
a right v-trace and every fixpoint rule in [ occurs infinitely often.
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Guard conditions

The following are equivalent.
@ Every cycle in N either has a left u-trace or a right v-trace.

@ Every infinite path I in I has a tail [’ that has either a left u-trace or
a right v-trace and every fixpoint rule in [ occurs infinitely often.

© Every strongly connected component of 1 either has a left u-trace or
a right v-trace.
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Guard conditions

The following are equivalent.
@ Every cycle in N either has a left u-trace or a right v-trace.

@ Every infinite path I in I has a tail [’ that has either a left u-trace or
a right v-trace and every fixpoint rule in [ occurs infinitely often.

© Every strongly connected component of 1 either has a left u-trace or
a right v-trace.

Definition

A circular proof is a finite pre-proof that satisfies the guard conditions.
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Semantical results

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free pu-bicomplete
category M.
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Semantical results

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free pu-bicomplete
category M.

Proof.
By induction on #(I) = (#.(M) + & (M), card(M)).
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Semantical results

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free pu-bicomplete
category M.

Proof.
By induction on #(I) = (#.(M) + & (M), card(M)).

@ If T is not strongly connected: we can split 1 in two parts My, M5 s.t.
card(IMy), card(My) < card([M).
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Semantical results

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free pu-bicomplete
category M.

Proof.
By induction on #(I) = (#.(M) + & (M), card(M)).
@ If T is not strongly connected: we can split 1 in two parts My, M5 s.t.

card(lMy), card(MMy) < card(I1).We then glue the two solutions together
using the Beki¢ Lemma.
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@ If T is not strongly connected: we can split 1 in two parts My, M5 s.t.

card(lMy), card(MMy) < card(I1).We then glue the two solutions together
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@ If I is strongly connected: take a cycle I that covers 1.
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Semantical results

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free pu-bicomplete
category M.

Proof.
By induction on #(I) = (#.(M) + & (M), card(M)).

@ If T is not strongly connected: we can split 1 in two parts My, M5 s.t.
card(lMy), card(MMy) < card(I1).We then glue the two solutions together
using the Beki¢ Lemma.

@ If I is strongly connected: take a cycle I that covers 1. If T has a left
p-trace, split I in parts M; s.t. Vi, £0(M1;) < #(17).
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Semantical results

Soundness Theorem (F.-S. 2013)

Every circular proof denotes a unique arrow of the free pu-bicomplete
category M.

Proof.
By induction on #(I) = (#.(M) + & (M), card(M)).

@ If T is not strongly connected: we can split 1 in two parts My, M5 s.t.
card(lMy), card(MMy) < card(I1).We then glue the two solutions together
using the Beki¢ Lemma.

@ If I is strongly connected: take a cycle I that covers 1. If T has a left
p-trace, split M in parts M; s.t. Vi, 4.(M;) < 4(M). Then glue the parts
together with the Yoneda Lemma.
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By induction on #(I) = (#.(M) + & (M), card(M)).

@ If T is not strongly connected: we can split 1 in two parts My, M5 s.t.
card(lMy), card(MMy) < card(I1).We then glue the two solutions together
using the Beki¢ Lemma.

@ If I is strongly connected: take a cycle I that covers 1. If T has a left
p-trace, split M in parts M; s.t. Vi, 4.(M;) < 4(M). Then glue the parts
together with the Yoneda Lemma. If T as a right v-trace, same
reasoning.
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Semantical results

Fullness Theorem (F.-S. 2013)

Every arrow f : s — t of M is the solution of a circular proof.
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Semantical results

Fullness Theorem (F.-S. 2013)

Every arrow f : s — t of M is the solution of a circular proof.

Proof.
Obvious for most diagrams (by contruction of the rules).
Except for this onel!

f'
F(X) e,,{:,(,),,,, F a)
EI_I EcOpycat
£y a = [M] ak F(a) F(a)t F(x)
ut
X (.---.f ----- a LF(X)RFiX
ak x
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Cut-elimination
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Cut-elimination

Theorem (Santocanale, 2001)

There is no cut-free circular proof whose interpretation in Sets is the
diagonal A : N — N2
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Diagonal map (with

N — N?

—— RAx
1-1 N-M

R+o R+
1-14+M NE1+M

L+

1+NFE1+M
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Cut-elimination

WHAT|IF WE CONSIDER

.
Fs- *n
o1 fEcom

mﬂﬁ%ﬂ PROO
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Tape automaton

Strategy: “Push” the cuts away from the root.
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Tape automaton

Strategy: “Push” the cuts away from the root.

Main difficulties:
@ We must use lazy evaluation (hence the output is infinite).
e Cut VS Cut
tobti Bkt
———Cut

ot t2Ft3c
ut

toF t3
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Tape automaton

Strategy: “Push” the cuts away from the root.

Main difficulties:
@ We must use lazy evaluation (hence the output is infinite).
e Cut VS Cut

tobti Bkt tiEt bt
——F  Cut = —— Cut
ot btz toFt1 ti1-t3
Cut <~ Cut
toF t3 to t3
U Merge

tobtn Bkt bt
Cut

to - t3
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Tape automaton

Definition

A tape is a finite list M := [u1, . .., u,] of composable vertices of I.
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A tape is a finite list M := [u1, . .., u,] of composable vertices of I.

e Finite state machine (over a circular
proof ).
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A tape is a finite list M := [u1, . .., u,] of composable vertices of I.

e Finite state machine (over a circular
proof ).

o Carries a tape (of states) in memory.
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Tape automaton

Definition

A tape is a finite list M := [u1, . .., u,] of composable vertices of I.

e Finite state machine (over a circular
proof ).
o Carries a tape (of states) in memory.

@ Outputs a branch (chosen
nondeterministically) of the cut-free
infinite proof tree.
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Commutative reductions (left)

LAx
Okt bkt -

Ok t,

Cut
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Commutative reductions (left)

Y L:>F“p
1 1 2
—Cut 0k t,

Ok t,

LAx
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Commutative reductions (left)

T LFlip LA
1 T SR x
—Cut 0k t,
Okt
F(X)Ft1
—— LFix
X+t ikt
Cut
XFt,
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Commutative reductions (left)

LAx

Okt bty -

Ok t,

F(X)Ft1
——— LFix
Xkt k-t

XFt,
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Commutative reductions (left)

LAx

Okt bty -

Ok t,

F(X)Ft1
——— LFix
Xkt k-t

X+t
sty

—— Ly
So X 51ty ikt

So X 51ty
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Commutative reductions (left)

orn ke LFlip LA
) Tkt e %
—Cut 0k t,
0k t,
F(X) -t R FH b e
Forn LFlip FXFm are -
Xkt ikt - — Xkt
Cut LFix
Xt t, Xty
-t . =t t1 -t
Sk 1 Lxy LF||p Sk 1 0 2 Cut
So X s b t1 kbt - - Sk b= tn
Cut ——F— Lxy
so X sty S0 X 51ty
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Commutative reductions (left)

LAx

Okt bty -

Ok t,

F(X)Ft1
——— LFix
Xkt k-t

X+t
sty

—— Ly
So X 51ty ikt

So X 51ty
soFti sikt
_ L

+
so+s -ty t1-t

sp+ sty

Jérdme Fortier (UQAM / AMU

Cut

Cut

Cut

LFlip =
— X
0k t,

. F(X)F t F
LFlip fXFn are - o
— XEt,

LFix
Xty

. Ft it
LFlip S Tho bR Cut
— skt ty

Lxy
So X s1 bty
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Commutative reductions (left)

LAx
0kt bt -
Ok t,
F(X)Ft1
Xttt bkt
XFty
sty
—  Lxy
So X 51ty ikt
So X 51ty
sobt sikEt
so+ sty t -t
sp+ sty

Jérdme Fortier (UQAM / AMU

Cut

Cut

Cut

LFlip
—

Cuts in circular proofs

LAx

Ok t,

FX)Fti ikt

soFt tbt ssEFth bttt

so b tn sikty
L+

so+ sty
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Commutative reductions (righ

ok tos mariox RElp RA
—2Fth1 -1 — x
" " " Cut toF1
toh 1
th-1 = F(X) AFi RFlip ~ thabth1 tha b F(X) ut
—_— 1X 1'%
tho b tao1 t,,,wXCt — tokF(X)RF_
108 _— 1X
to = X to - X
th-1 b s . th-1 b s
1% gy, RFlip ok o
tho b th1 tn71"so+51c . 7 tpoF it tha b s -
u K
tobso+s1 tobFso+s1
th-1F 50 tn—1|_51R RFlip . th—2 - tpo1 tn—l}_SOCt BRI 7 Yl A tnfl}_slci:
— X RX u 0
tho b th_1 th-1 F So X s1 cut — to - so to b s1
1'%
to - s0 % 51 to - S0 X 51
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Elimination of identities

Id
ti_1 ks sks S"t,‘+2

Cut
to F t,
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Elimination of identities

Id
ti_1 ks sks S"t,‘+2

Cut

to F t,

{1dElim

t_1bFs sk tito
Cut

to - tp

IdElim(M, i) = Remove u; from M.
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Essential reductions

Otherwise, M = [R...RL...L].
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Essential reductions

Otherwise, M = [R...RL...L].

tiiibso tiibs Sk b tiv1
RX Xk
tii1 b spx sy So X 811 tiy1 .
Cut
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Essential reductions

Otherwise, M = [R...RL...L].

tiibso tioib s Sk b tiv1

Rx Lx Reduce ... . 1Fs skt
ti_1Fsp X st Sp X 51 tiv1 — ! ! Cut
Cut to bty
to bty
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Essential reductions

Otherwise, M = [R...RL...L].

tiiibso tiibs Sk b tiv1
Rx Lxk Reduce ... ti_1bse skt
ti_1Fsp X st Sp X 51 tiv1 — Cut
Cut to bty
to bty
i1t sk So - tiy1 sib ot
Rtk L+ Reduce ... . bs skt -
< ti1bsg+ s so+s1 b tiva — Cut
Cut to bty
to b tn
tiq F F(X) F(X) F ti
RFix LFix
tii kX X F ti .
Cut
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Essential reductions

Otherwise, M = [R...RL...L].

tiiibso tiibs Sk b tiv1
RX Xk
ti_1Fsp X st Sp X 51 tiv1 .
Cut
to bty
i1t sk So - tiy1 sib ot
Rtk
Cticibspts So 451k tiga
Cut
to bty
ti1 - F(X) FX)F tis
RFix LFix
ti1k X XF ti .
Cut
t bty
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Cuts in circular proofs

ti1 sk skt
Cut
to bty
tici b sk sk h tiga
Cut
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Cut-elimination algorithm
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Cut-elimination algorithm

@ Internal phase: Perform internal transformations (Merge, [dElim,
Reduce) while you can't do anything else.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 29 / 36



Cut-elimination algorithm

@ Internal phase: Perform internal transformations (Merge, IdElim,
Reduce) while you can't do anything else.

@ Production phase: Build a part of the output tree (LFlip, RFlip,
|dOut) whenever you can!

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 29 / 36



Cut-elimination algorithm

@ Internal phase: Perform internal transformations (Merge, IdElim,
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Cut-elimination algorithm

@ Internal phase: Perform internal transformations (Merge, IdElim,
Reduce) while you can't do anything else.

@ Production phase: Build a part of the output tree (LFlip, RFlip,
|dOut) whenever you can!

@ Repeat forever...

Theorem (F.=S., 2013)

For every input tape M, the internal phase halts!
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Proof. Suppose it does not halt...

My = [un v w3]

My = [w1 wx w3 ]

M; = [us up  usz s uss |
My = [us usx  usz  Usa Ugs |
Ms = [us1 us2 us3  usg ]

Ms = [usr us2 Us3s  Usa ]
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Proof. Suppose it does not halt...

M
Merge {
M,
Merge \,L
Ms
Reduce L
My
IdElim |}
Ms
Reduce {|

Me

Jérdme Fortier (UQAM / AMU)

[un w2
I
[w1 w2
I

[us1 w3

lo
[usn  us
[us1  us2
[ U1 Ue2

3 ]

us3

us3

us3

Ug3

Cuts in circular proofs

u24 |
uzs  Uss |
Ugs  Ugs |
Usq ]

o

Up4 ]
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Proof. Suppose it does not halt...

Mi = [u  uvi2 i3]
Merge { 1 1J \i L
My = [un U U HU24_ ]
Merge \,L 1 & ol ol K L
My = [usi sy sz uza s ]
Reduce |} 1 0 lO €L L
My = [us usx  uss _U:m _U;5 ]
IdElim {} 1 1L 1 i
Ms = [usi usp usy  usa ]
Reduce \ 1 1 J 0 l 0
Ms = [usr U2 Uz  Upa |
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Proof. Suppose it does not halt...

N

1

My = [un ui2 u13 |
Merge { iR 1J \i " L

My = [un up w3z U]
Merge L 1 & w L L - L

My = [us1 wx U3 u3g  uss )
Reduce L 1 0 lO 1 1

My = [us usx sz U Ugs |
IdElim {} 1 1 ) 1 J_

Ms = [usy us2  us3  uss |
Reduce \ 1 1 J 0 l 0

Ms = [usr U2 Uss  Uss ]
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Proof. Suppose it does not halt...

N

1

My = [un ui2 u13 |
Merge { iR 1J \i " L

My = [un up w3z U]
Merge {} 1 & w L L R L

My = [us1 (U2 u33) w3 uss |
Reduce |} 1 0 0 L L

My = [us usx sz U Ugs |
IdElim {} 1 1 1 1

Ms = [usy us2 (us3  usg)]
Reduce \ 1 1 0 0

Ms = [usr U2 Uss  Uss ]
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Proof. Suppose it does not halt...

My =
Merge {
My =

Merge L

M =
Reduce L

My =
IdElim |}

Ms =
Reduce \J,

Mg =
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Proof. Suppose it does not halt...
\U = k
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@ VW is an infinite finitely branching tree.

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 31/ 36



@ VW is an infinite finitely branching tree.

@ The set Bo(W) of its infinite branches is non-empty. (Kénig)

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 31/ 36
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WV is an infinite finitely branching tree.

°
@ The set Bo(W) of its infinite branches is non-empty. (Kénig)
@ B (W) is lexicographically ordered, it is a complete lattice.

°

Infinite branches of W, correspond to infinite paths in 1.
Therefore, they satisfiy the guard condition!

Boo(W) = u-branches U v-branches
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WV is an infinite finitely branching tree.

°
@ The set Bo(W) of its infinite branches is non-empty. (Kénig)
@ B (W) is lexicographically ordered, it is a complete lattice.

°

Infinite branches of W, correspond to infinite paths in 1.
Therefore, they satisfiy the guard condition!

Boo(W) = u-branches U v-branches

Lemma (F.-S., 2013)

© The least infinite branch of V is a v-branch.

@ Let E be a nonempty collection of v-branches and let v =\/ E. Then ~y is a
v-branch.

© If 8 is a v-branch, then there exists another v-branch 3’ = 3.
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So what?

Let
E = All the v-branches
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Let
E = All the v-branches

Byl E+#wo.
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Let
E = All the v-branches

Byl E#o. Let v =\/E. By 2, vis a v-branch.
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Let
E = All the v-branches

By 1l E# 2. Let v =\/E. By 2, v is a v-branch. Hence by 3, there is
another v-branch + = .
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Let
E = All the v-branches

By 1l E# 2. Let v =\/E. By 2, v is a v-branch. Hence by 3, there is
another v-branch 4/ = ~. But then, 7/ € E and therefore v/ < \/ E = ~.
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Cut-eliminating infinite proof-trees

@ We can cut eliminate a cut-free infinite proof against a fixed circular
proof I1.

@ We obtain a cut-free infinite proof.
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@ We can cut eliminate a cut-free infinite proof against a fixed circular
proof I1.

@ We obtain a cut-free infinite proof.

Considering that for any p-definable set X,

X =~ Winning strategies for & in some game
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proof I1.
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X =~ Winning strategies for & in some game
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1

Jérdme Fortier (UQAM / AMU) Cuts in circular proofs Delft, February 2014 33 /36



Cut-eliminating infinite proof-trees

@ We can cut eliminate a cut-free infinite proof against a fixed circular
proof I1.

@ We obtain a cut-free infinite proof.

Considering that for any p-definable set X,

X =~ Winning strategies for & in some game
Cut-free infinite valid proofs of 1 F X,

1

Cut-elimination is a generic algorithm for computing all the p-definable
functions.
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Computability problems

@ What are the set-theoretic functions that one can denote with circular
proofs and computed with cut-elimination?
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Computability problems

@ What are the set-theoretic functions that one can denote with circular
proofs and computed with cut-elimination?

Primitive recursive < p-definable < Recursive

@ Which of those bounds are strict?
o Is the Ackermann function definable?
o What about streams?

@ And trees?
Regular tree < pu-definable
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Computability problems

@ What are the set-theoretic functions that one can denote with circular
proofs and computed with cut-elimination?

Primitive recursive < p-definable < Recursive

@ Which of those bounds are strict?
o Is the Ackermann function definable?
o What about streams?

@ And trees?
Regular tree < pu-definable

@ What about higher order pushdown trees?
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Proof-theoretic problems
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Proof-theoretic problems

@ How can we enrich the proof system (and corresponding model) while
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e Find links with existing circularities (get a categorical perspective)

o Add contexts, linear logic s ...s, F t1...t, (Baelde)
o Add modalties Ot, {t, ... (Walukiewicz)
o Add first order. (Brotherston—Simpson, Rosu, Lismont)

@ Philosophical question: What is the meaning of circularity in
mathematical reasoning?
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