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Abstract

This paper proposes a new topic in substructural logic for use in re-

search joining the fields of relevance and fuzzy logics. For this, we consider

old and new relevance principles. We first introduce fuzzy systems sat-

isfying an old relevance principle, i.e., Dunn’s weak relevance principle.

We present ways to obtain relevant companions of the weakening-free uni-

norm (based) systems introduced by Metcalfe and Montagna and fuzzy

companions of the system R of relevant implication (without distribu-

tivity) and its neighbors. The algebraic structures corresponding to the

systems are then defined, and completeness results are provided. We next

consider fuzzy systems satisfying new relevance principles introduced by

Yang. We show that the weakening-free uninorm (based) systems and

some extensions and neighbors of R satisfy the new relevance principles.

1 Introduction

• The purpose of this paper: to extend the world of fuzzy logic to the realm of
relevance logic, and vice versa.

• (Fuzzy logic, [3]) A (weakly implicative) logic L is said to be fuzzy if it is
complete w.r.t. linearly ordered matrices (or algebras) and core fuzzy if it
is complete w.r.t. standard algebras (i.e., algebras on the real unit interval
[0, 1]).

• (Old relevance principles, [1, 4]) A system is said to be strongly relevant if it
satisfies the strong relevance principle (SRP) in [1] that ' !  is a theorem
only if ' and  share a propositional variable and weakly relevant if it satisfies
the weak relevance principle (WRP) in [4] that ' !  is a theorem only if
either (i) ' and  share a propositional variable or (ii) both ¬' and  are
theorems.
� These principles work for relevance systems without propositional con-
stants.
⇤NDJFL, 56(2015), 471-491.
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• (New relevance principles, [7]) A system is said to be strongly relevant if
it satisfies the new strong relevance principle (NSRP) in [7] that ' !  
is a theorem only if ' and  either explicitly or strong implicitly share a
propositional variable and weakly relevant if it satisfies the new weak relevance
principle (NWRP) that ' !  is a theorem only if either (i) ' and  share
either explicitly or strong implicitly share a propositional variable, or (ii) both
¬' and  are theorems.
� These principles work for relevance systems with and without propositional
constants.

• � The system R (= R

0) is strongly relevant in that it satisfies the principle
SRP, and the system RM (= RM

0) is weakly relevant in that it satisfies
the principle WRP.1 However, the system UL is neither strongly nor weakly
relevant because it proves such formulas as (↵) (' ^ ¬') ! ( _ ¬ ).
� The weakening-free fuzzy systems in [6] are all relevant in the sense that
they satisfy the principle NSRP or the principle NWRP since theorems such
as (↵) strong implicitly share at least one propositional variable.

• We call the relevance principles in [1, 4] old relevance principles and the
relevance principles in [7] new relevance principles. Here, we introduce logics
being both fuzzy in Cintula’s sense and relevant in the old and new senses.

2 Fuzzy-relevance logics (I)

In this section, we introduce several fuzzy-relevance systems satisfying the prin-
ciple WRP and their corresponding non-fuzzy relevance systems.

2.1 Syntax

We base (fuzzy-)relevance logics on a countable propositional language with
formulas FOR built inductively as usual from a set of propositional variables
VAR, binary connectives!,&,^,_, and constants f, t, with defined connectives:

df1. ¬' := '! f, and
df2. '$  := ('!  ) ^ ( ! ').

We moreover define 'n
t

as '
t

& . . .&'
t

, n factors, where '
t

:= ' ^ t, and simi-
larly for 'n.

1Here, we regard Rt (the R with the constant t) as R. Often in the literature of relevance

logic, R is used for the t-free fragment of Rt. One reason for that is that Rt proves formulas
such as (�) (' ^ t) ! (t _  ) and so seems not to satisfy the old relevance principles (cf.
see [5]). However, we have to mention that, in the literature of relevance logic (e.g., [2]), the
constant t is interpreted as the conjunction of all true sentences. Thus, (�) does implicitly

satisfy SRP, and so the relevance principles in a sense do not fail in Rt. Hence, here we
assume that such formulas satisfy SRP. We shall, in Sect. 3, introduce NSRP and NWRP as
principles allowing implicit variable sharing.
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We start with the following axiomatization of RMAILL (Relevant multi-
plicative additive intuitionistic linear logic) as the basic relevance logic defined
here.2

Definition 1. RMAILL consists of the following axiom schemes and rules:
A1. '! ' (self-implication, SI)
A2. (' ^  ) ! ', (' ^  ) !  (^-elimination, ^-E)
A3. (('!  ) ^ ('! �)) ! ('! ( ^ �)) (^-introduction, ^-I)
A4. '! (' _  ),  ! (' _  ) (_-introduction, _-I)
A5. (('! �) ^ ( ! �)) ! ((' _  ) ! �) (_-elimination, _-E)
A6. ('& ) ! ( &') (&-commutativity, &-C)
A7. ('&t) $ ' (push and pop, PP)
A8. ('! ( ! �)) $ (('& ) ! �) (residuation, RE)
A9. ('!  ) ! (( ! �) ! ('! �)) (su�xing, SF)
A10. ' _ ¬' (excluded middle, EM)
'!  ,' `  (modus ponens, mp)
', ` ' ^  (adjunction, adj)

Relevant uninorm logic RUL, the basic relevant fuzzy logic defined here, is
RMAILL extended with the “prelinearity” axiom scheme below.

Definition 2. RUL is RMAILL plus
A11. ('!  )t _ ( ! ')t (PLt)

Relevant fuzzy logics are defined by extending RUL with suitable axiom
schemes as follows:

Definition 3. A logic is an axiomatic extension ( extension for short) of L
if and only if (i↵) it results from the addition of axiom scheme(s) to L. In
particular, the following are relevant fuzzy logics extending RUL:

• Involutive RUL RIUL is RUL plus (DNE) ¬¬'! '.
• Idempotent RUL RUML is RUL plus (ID) ('&') $ '.
• Involutive RUML RIUML is RIUL plus (ID) and (FP) t $ f3.

The system LRW is the FLe with (DNE). Fuzzy relevance logics are defined
by extending LRW or RMAILL with suitable axiom schemes as follows.

Definition 4. The following are fuzzy relevance logics extending LRW:

• Fuzzy LRW FRW is LRW plus A11 and (EM).
• Fuzzy LR FR is FRW plus (SIN) '! ('&').
• Fuzzy LRM FRM (= RM) is FR plus (SDE) ('&') ! '.

For easy reference, we let Ls be the set of fuzzy-relevance logics defined
previously.

2The systems RMAILL and MAILL are the FLe with (EM) and FLe?, respectively,
(cf. see [5]).
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Definition 5. Ls = {RUL, RIUL (= FRW), RUML, RIUML, FR, RM
(= FRM)}.

The relevant (local) deduction theorem (R(L)DT) for L is as follows:

Proposition 1. Let T be a theory over L (2 Ls) and ', be formulas.

(i) (RLDT) T [ {'} `L  i↵ there is n such that T `L '
n
t !  .

(ii) (RDT) For L with (SIN), T [ {'} `L  i↵ T `L 't !  .

2.2 Semantics

Suitable algebraic structures for the (fuzzy-)relevance logics are obtained as
varieties of residuated lattices in the sense of [5].

Definition 6. A pointed commutative residuated lattice is a structure (A, t, f,^,_, ⇤,!
) such that4:

(I) (A,^,_) is a lattice.

(II) (A, ⇤, t) is a commutative monoid.

(III) y  x ! z i↵ x ⇤ y  z, for all x, y, z 2 A (residuation).

(IV) f is an arbitrary element of A.

As 'n in Sect. 2.1, by xn, we denote x ⇤ . . . ⇤ x, n factors.
Note that the class of pointed commutative residuated lattices characterizes

the system FLe. Thus, we henceforth call such residuated lattices FLe-algebras.

Definition 7. Let ¬x := x ! f , and xt := x ^ t.

(i) (RMAILL-algebra) An RMAILL-algebra is a pointed commutative residu-
ated lattice satisfying the condition:
(EM) t  x _ ¬x.

(ii) (RUL-algebra) An RUL-algebra is an RMAILL-algebra satisfying the con-
dition:
(PLt) t  (x ! y)t _ (y ! x)t.

In an analogy to Definition 7, we can define algebras corresponding to the
systems introduced in Definitions 3 and 4. As in Sect. 2.1, for brevity, by L-
algebra(s), we henceforth ambiguously express algebras corresponding to all L
systems.

Definition 8. (Evaluation) Let A be an L-algebra. An A-evaluation is a func-
tion v : FOR ! A satisfying: v('!  ) = v(') ! v( ), v('^ ) = v(')^v( ),
v(' _  ) = v(') _ v( ), v('& ) = v(') ⇤ v( ), v(t) = t, v(f) = f , (and hence
v(¬') = ¬v(')).

4A lattice does not have to have top and bottom elements > and ?, and so t and f need
not be the same as > and ?, respectively, in pointed commutative residuated lattices. Note
that lattices having > and ? are called bounded lattices (see (I0) in Sect. 4).
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Definition 9. ([3]) Let A be an L-algebra, T a theory, ' a formula, and K a
class of L-algebras.

(i) (Tautology) ' is a t-tautology in A, briefly an A-tautology (or A-valid),
if v(') � t for each A-evaluation v.

(ii) (Model) An A-evaluation v is an A-model of T if v(') � t for each ' 2 T .
By Mod(T, A), we denote the class of A-models of T .

(iii) (Semantic consequence) ' is a semantic consequence of T w.r.t. K, de-
noted by T |=K ', if Mod(T,A) = Mod(T [ {'},A) for each A 2 K.

Definition 10. (L-algebra, [3]) Let A, T , and ' be as in Definition 9. A is an
L-algebra if, whenever ' is L-provable in any T (i.e., T `L ', L an L logic), it
is a semantic consequence of T w.r.t. {A} (i.e., T |={A} ', A a corresponding

L-algebra). By MOD(L), we denote the class of L-algebras; by MODl(L), the
class of linearly ordered L-algebras. Finally, we write T |=L ' and T |=l

L ' in
place of T |=MOD(L) ' and T |=MODl(L) ', respectively.

Cintula [3] defined weakly implicative logic (WIL) as a logic satisfying A1,
(mp), transitivity (' !  , ! � ` ' ! �), and congruence w.r.t connectives
and called a WIL L a fuzzy logic (i.e., a weakly implicative fuzzy logic, WIFL) if
it is complete w.r.t. linearly ordered (corresponding) matrices. He also showed
that, for a finitary WIL L, the following are equivalent:

(1) L is a fuzzy logic.

(2) L has the Linear Extension Property, i.e., for each theory T , if T 6` ', then
there is a consistent linear theory T 0 ◆ T such that T 0 6` '.

(3) L has the Prelinearity Property, i.e., for each theory T if T,'!  ` � and
T, ! ' ` �, then T ` �.

(4) L has the Subdirect Decomposition Property, i.e., each ordered L-matrix is
a subdirect product of linearly ordered L-matrices.

Theorem 1. Let L be an RMAILL. Then L is a fuzzy logic i↵, for each n,
`L ('!  )nt _ ( ! ')nt .

Then, from Theorem 1, we establish the following corollaries:

Corollary 1. (Strong completeness) Let T be a theory over L (2 Ls) and ' a
formula. T `L ' i↵ T |=l

L '.

Corollary 2. L is a fuzzy logic (in Cintula’s sense).

Theorem 2. (i) L does not satisfy SRP (in [1]).

(ii) L satisfies WRP (in [4]).

Corollary 3. L is a relevance logic (in the weak sense of [4]).

Corollary 4. L is both a fuzzy logic and a relevance logic.
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2.3 Substructural relevance logics (I)

Let RMAILL, RMALL (= LRW plus (EM)), LR, RMAILML, LRM, and
RMALML be the systems excluding (PL

t

) from the systems RUL, RIUL (=
FRW), FR, RUML, RM, and RIUML, respectively. We let Ls� be the set
of these systems, i.e.,

Definition 11. Ls� = {RMAILL,RMALL,LR,RMAILML,LRM, RMALML}.

Theorem 1 in [3] says that, for a WIL L, T ` ' i↵ T |= ', and so we obtain
the following corollary:

Corollary 5. (Strong completeness) For each theory T over L� (2 Ls�) and
formula ', T `L� ' i↵ T |=L� '.

Let us verify the relevance of L� (2 Ls�).

Proposition 2. LRM and RMALML each proves ¬('! ') ! ( !  ).

Corollary 6. For L� 2 {LRM,RMALML}, L� does not satisfy SRP (in
[1]).

Theorem 3. (i) For L� 2 {RMAILL,RMALL,RMAILML,LR}, L�

satisfies SRP (in [1]).

(ii) For L� 2 {LRM,RMALML}, L� satisfies WRP (in [4]).

Corollary 7. L� is a relevance logic (in the strong or weak sense of [1, 4]).

3 Propositional constants and new relevance prin-

ciples

We briefly recall new strong and weak relevance principles introduced in [7], i.e.,
NSRP and NWRP, because they are unfamiliar to the readers. Before introduc-
ing new relevance principles, we introduce their weak versions and related fact
in order to help the readers better understand them.

Definition 12. ([7])

(i) (The implicit strong relevance principle, ISRP) '!  is a theorem only if
' and  implicitly share a propositional variable where the word “implic-
itly” means that we can identify a sharing variable by means of metadefi-
nitions or interpretations such as df3 to df6, df30, and df40.

(ii) (The implicit weak relevance principle, IWRP) ' !  is a theorem only
if (a) ' and  implicitly share a propositional variable or (b) both ¬' and
 are theorems.

Let '!  satisfy the relevance principle ISRP (IWRP resp) in a logic L if
it is a theorem of L and its antecedent ' and consequent  implicitly share a
propositional variable (or both the negation of its antecedent and its consequent
are theorems). Then we can prove the following:
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Proposition 3. (cf. [7])

(i) (' ^ t) ! (t _  ) satisfies ISRP in R.

(ii) (('! F) & ') !  satisfies ISRP in RT and UL.

(iii) (('! F) ^ ') !  satisfies ISRP in RT.

(iv) (('! ') ! f) ! ( !  ) satisfies ISRP in IUML.

(v) (' ^ ¬') ! ( _ ¬ ) satisfies IWRP in RM.

(vi) ¬('! ') ! ( !  ) satisfies IWRP in RM and RMT.

The principles ISRP and IWRP, however, do not prevent us from giving
metadefinitions of propositional constants to the systems having their object-
definitions. (Note that the constants T and F can still be interpreted as df5
(T = the disjunction of all sentences.) and df6 (F = the conjunction of all
sentences), respectively, in CL.) Let a propositional constant be strongly meta-
definable in a logic L if it is meta-definable but not object-definable in L, e.g.,

the constants t and f in R and T and F in R

T; let the antecedent and con-
sequent of an implication strong implicitly share a propositional variable if we
can establish variable sharing between them by virtue of strong metadefinitions.

Definition 13. ([7])

(i) (The new strong relevance principle, NSRP) '!  is a theorem only if '
and  either explicitly or strong implicitly share a propositional variable.

(ii) (The new weak relevance principle, NWRP) '!  is a theorem only if (i)
' and  either explicitly or strong implicitly share a propositional variable,
or (ii) both ¬' and  are theorems.

4 Fuzzy-relevance logics (II)

4.1 Fuzzy-relevance logics with constants T, F

In this section, we introduce several substructural fuzzy-relevance systems sat-
isfying new relevance principles, i.e., NSRP and NWRP. First, we provide ax-
iomatizations of the L with constants T, F.

Definition 14. (i) UL is RUL minus (EM) plus constants F, T, and
A12. F ! ' (ex falsum quodlibet, EF)
A13. '! T (verum ex quolibet, VE)

(ii) IUL (= FRWT) is UL plus (DNE).

(iii) FRT is IUL plus (SIN).
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(iv) UML is UL plus (ID).

(v) RMT is UML plus (DNE).

(vi) IUML is RMT plus (FP).

Definition 15. LsT = {UL, IUL (= FRWT), FRT, UML, RMT, IUML}.

Proposition 4. (i) L (2 Ls) proves
(1) (' ^ t) ! (t _  )

(ii) LT (2 LsT) proves
(1) (' ^ ¬') ! ( _ ¬ )
(2) (('! F) & ') !  

(iii) FRT, UML, RMT, and IUML each proves
(1) (('! F) ^ ') !  

(iv) RMT and IUML each proves
(1) ¬('! ') ! ( !  )

First, note that, using the standard technique, we can provide algebraic com-

pleteness results for LT (2 LsT). For this, it su�ces to note that LT-algebras
are obtained as varieties of pointed bounded commutative residuated lattices,

i.e., for LT-algebras, it su�ces to replace the condition (I) in Definition 6 with

(I0) (A,>,?,^,_) is a bounded lattice with top element > and bottom ele-
ment ?.

Since the condition (I0) can be defined in equations, it is clear that the class of

LT-algebras forms a variety. Then, as in [6], we can show that LT is complete

w.r.t. an algebraic semantic given by a variety of LT-algebras. Moreover, as in
Sect. 2.2, we can prove the following:

Theorem 4. Let L be a multiplicative additive intuitionistic linear logic. Then
L is a fuzzy logic i↵, for each n, `L ('!  )nt _ ( ! ')nt .

Corollary 8. (Strong completeness) Let T be a theory over LT (2 LsT) and
' a formula. T `

LT
' i↵ T |=l

LT
'.

Corollary 9. LT is a fuzzy logic (in Cintula’s sense).

Proposition 5. (i) ('^ t) ! (t_ ) satisfies NSRP in L (2 Ls) and LT (2
LsT).

(ii) (' ^ ('! f)) ! ( _ ( ! f)) satisfies NSRP in LT (2 LsT).

(iii) (('! F) & ') !  satisfy NSRP in LT (2 LsT).
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(iv) (('! F)^') !  satisfy NSRP in LT 2 {FRT,UML,RMT, IUML}.

(v) ¬('! ') ! ( !  ) satisfies NSRP in IUML.

(vi) ¬('! ') ! ( !  ) satisfies NWRP in RMT.

Theorem 5. (i) For LT 2 LsT \ {RMT}, LT satisfies NSRP.

(ii) RMT satisfies NWRP.

Corollary 10. (i) For LT 2 LsT \ {RMT}, LT is a relevance logic (in the
new strong sense of [7]).

(ii) RMT is a relevance logic (in the new weak sense of [7]).

Corollary 11. LT is both a fuzzy logic and a relevance logic.

4.2 Substructural relevance logics (II)

Let MAILL, MALL (= LRW

T), LRT, MAILML, LRM

T, and MALML

be the systems eliminating (PL
t

) from the systems UL, IUL (= FRW

T),

FR

T, UML, RM

T, and IUML, respectively. We let LsT� be the set of
these systems, i.e.,

Definition 16. LsT� = {MAILL,MALL,LRT,MAILML,LRMT, MALML}.

Theorem 1 in [3] says that, for a WIL L, T ` ' i↵ T |= ', and so we obtain
the following corollary:

Corollary 12. (Strong completeness) For each theory T over LT (2 LsT�)
and formula ', T `

LT� ' i↵ T |=
LT� '.

Let us verify the relevance of LT� (2 LsT�).

Proposition 6. LRMT and MALML each proves ¬('! ') ! ( !  ).

Corollary 13. LRMT does not satisfy NSRP (in [7]).

Theorem 6. (i) For LT� 2 {MAILL,MALL,LRT,MAILML,MALML},
L� satisfies NSRP (in [7]).

(ii) LRMT satisfies NWRP (in [7]).

Corollary 14. LT� is a relevance logic (in the new strong or weak sense of
[7]).
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5 Concluding remarks

We introduced several fuzzy-relevance logics with and without constants T, F
and provided completeness results for them by showing that such logics are WI-
FLs. We furthermore proved that they satisfy old and new relevance principles.
In addition, we considered relevance logics obtained from the fuzzy-relevance
logics by omitting prelinearity. All of the systems investigated here are exten-
sions of the substructural logic FLe and so they are all substructural logics.
They also have the associative intensional conjunction (so called fusion) &.
Therefore, such systems all can be called associative (fuzzy-)relevance logics.

The fuzzy-relevance logics without constants T and F are not characterized
by models based on uninorms. Note that the uninorm-based systems introduced
in [6] have constants T and F, and the systems with T and F investigated here
are not relevant in the old senses. This implies that, as far as uninorm (based)
systems have T and F, they cannot be relevant in the old senses and so are not
fuzzy-relevance logics in the old senses.
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