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1 Introduction

The present paper pertains to a line of research in social choice theory aimed
at understanding the logical underpinning of Arrow’s impossibility theorem [1]
and also exploring its scope, as well as extending Arrow-type results to infinite
electorates.
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This line of research originates in the work of Kirman and Sondermann [11],
which characterizes the so-called Arrow-rational social welfare functions by es-
tablishing a bijective correspondence between them and the collection of ultrafil-
ters over the set of individuals. The Kirman-Sonderman correspondence hinges
on the fact that the decisive coalitions associated with any Arrow-rational social
welfare function form an ultrafilter over the set of individuals. Herzberg and
Eckert [8] gave a very elegant generalization of the Kirman-Sondermann corre-
spondence in a model-theoretic setting by characterizing Arrow-rational social
welfare functions as exactly those defined in terms of an ultraproduct construc-
tion parametrized by the ultrafilter of their associated decisive coalitions.

In the literature on social choice, there are several ways to treat abstention4.
The first approach is to ignore any voters that abstain, and thus working in
a variable domain model (see Pivato [14]). The second approach is to treat
abstention as if the voters ranked all candidates equally. The third approach is
to treat abstention as a separate type of input that may be elicited from a voter.
This means that there are two types of inputs that voters may submit: ranking
of candidates or abstention. Our method belongs to the third approach.

In the present paper, the results in [8] are extended to a setting in which the as-
sumption that every individual votes/expresses a judgment is dropped. Allowing
the empty model to occur in profiles is a natural way to formalize the vote ab-
stention of the corresponding individual. However, the standard model-theoretic
notion of ultraproduct is not amenable to support this natural formalization of
vote abstention, given that it is enough for a coordinate to be empty for the
standard ultraproduct construction to yield the empty set/model. This would
correspond to situations in which the abstention of one voter would be enough
to declare the voting round null. While this is true in some situations, there
are many settings (e.g. referenda) in which the voting round is declared null
unless a certain quorum of voters is met. Technically, the contribution of the
present paper is based on replacing the standard model-theoretic ultraproduct
construction with a generalized one, introduced by Makkai [13] in a category-
theoretic setting. The main advantage of Makkai’s ultraproduct is that it yields
the empty model unless nonempty models occur in each coordinate belonging to
some member of its associated ultrafilter. In this respect, Makkai’s ultraproduct
reflects more faithfully than the standard one the indications of the ‘large sets’
of the ultrafilter.

We observe that, in the extended setting accounting for vote abstention, Arrow’s
impossibility theorem strengthens. Indeed, the usual assumption, also required
in [8], on the existence of three non-isomorphic models of the theory is dropped,
and replaced by the weaker requirement on the existence of two non-isomorphic

4 Notice that we use the term “abstention” in a way which is di↵erent from how it
is typically used in the social choice literature. In particular, abstention does not
mean being indi↵erent between two options (this would correspond, in our setting,
to allowing the model associated with any voter to be a partial but not necessarily
linear order). By abstention, we mean that voters do not take part in the voting
process altogether.
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models. This allows us to extend e.g. Arrow’s impossibility theorem [1] to a
setting of elections with only two candidates (cf. discussions at the end of Section
2).
Finally, from a more methodological perspective, besides allowing for the exten-
sion of the results in [8] to a setting accounting for vote abstention, Makkai’s ul-
traproduct construction lends itself to connecting the model-theoretic approach
to judgment aggregation to the algebraic and category-theoretic approaches in
[4], [7], [9] and [10]. Establishing these systematic connections is the focus of
ongoing research.

Structure of the paper. In Section 2, preliminaries are collected about Arrow-
rational aggregators, the first leg of the generalized Kirman-Sondermann corre-
spondence is introduced, and the Arrow’s impossibility theorem for vote absten-
tion is briefly discussed. In Section 3, the generalized ultraproduct construction
is introduced as a specialization of Makkai’s general definition to the present
model-theoretic setting. In Section 4, relevant properties are collected of the
generalized ultraproduct construction. In Section 5, the second leg of the gener-
alized Kirman-Sondermann correspondence is introduced, and the proof of the
Kirman-Sondermann isomorphism is given. In Section 6, the case study of pref-
erence aggregation in the setting of vote abstention is discussed.

2 Arrow-rational aggregators

Fix a first-order language L, consisting of identity ⇡, constant symbols c for each
element in a given non-empty set A and of relation symbols R each of which of
finite arity k = k(R). Let S denote the set of atomic L-formulas, and I the
Boolean closure of S. Fix a consistent set T of universal L-sentences, let ⌦ be
the class of models M of T the domain of which coincides with the subset AM of
the interpretations in M of the constant symbols in L. In what follows, we will
always consider models up to isomorphism. Hence, models in ⌦ can be thought of
as equivalence classes of isomorphic models. We let |⌦| denote the cardinality of
⌦ modulo isomorphism. We will denote L-structures by B, and elements in ⌦ by
M,N , possibly with subscripts or superscripts. Sometimes, abusing notation, we
will use M,N for elements in ⌦[{?}. We let R, . . . , c, . . . denote the symbols in
the language L and let RB, . . . , cB, . . . denote the corresponding semantic object
in the L-structure B. For each L-structure B, let AB := {cB | c constant symbol
in L}. We let |M | denote the domain of M . As usual, for any model M and
formula �, we write M |= � to indicate that � is true of M .
The extra assumption that the universe of each model M in ⌦ is the set AM =
{cM | c is a constant symbol in L} guarantees the following

Fact 1. Any two models M1,M2 2 ⌦ [ {?} such that M1 |= � i↵ M2 |= � for

any � 2 I are isomorphic.

Proof. The claim trivially holds both when M1 and M2 coincide with the empty
set, and when only one of the two coincides with the empty set (in the latter
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case the assumptions do not hold: indeed, the sentence c ⇡ c for any constant
symbol c holds of the nonempty model and does not hold of the empty model).
If M1 and M2 are both nonempty, then their domains bijectively correspond:
indeed, |M1| = AM1 ⇠= AM2 = |M2|. By definition, this bijective correspondence
identifies the interpretations of all constant symbols. Since by assumption M1 |=
R(c1, . . . ck) i↵ M2 |= R(c1, . . . ck) for any relation symbol R and all constant
symbols c1, . . . ck, it is a straightforward verification that this correspondence
identifies also the interpretations of each relation symbol.

Fix a non-empty set I, which we will think of as the set of individuals. The
subsets of I will be referred to as coalitions. Elements M 2 (⌦ [ {?})I are the
profiles. For any such profile, and any � 2 I, the coalition supporting � given M
is the set C(M,�) := {i 2 I | Mi |= �}.
An aggregator is a partial map f : (⌦ [ {?})I ! ⌦ [ {?}. The domain of f is
denoted dom(f).

Definition 1. (cf. [8], definition before Remark 3.3) An aggregator f is Arrow-

rational if it satisfies the following conditions:

(A1) Universal Domain: dom(f) = (⌦ [ {?})I .
(A2) Generalized Pareto Principle: for any M 2 dom(f) and any � 2 I,

if f(M) |= �, then C(M,�) 6= ?.

(A3) Generalized Systematicity: for all M,N 2 dom(f) and all �, µ 2 I,

if C(M,�) = C(N,µ), then f(M) |= � i↵ f(N) |= µ.

The collection of Arrow-rational aggregators is denoted by AR.

Definition 2. (Decisive coalition) For any aggregator f , a coalition C ✓ I
is f -decisive if, for any � 2 I and any M 2 dom(f),

if C = C(M,�), then f(M) |= �.

Let Df denote the set of the f -decisive coalitions.

The following lemma is an immediate consequence of the definitions involved:

Lemma 1. For any aggregator f satisfying (A3), any M 2 dom(f) and � 2 I,

C(M,�) 2 Df i↵ f(M) |= �.

The following lemma shows that the assignment f 7! Df defines a map ⇤ :
AR ! �I, where �I denotes the set of ultrafilters over I. The map ⇤ provides
one direction of the generalized Kirman-Sondermann correspondence we aim at
obtaining. The following lemma is a variant of Lemma 5.3 in [8], which assumes
the aggregator to be weakly Arrow-rational5 instead of Arrow-rational, as is done

5 An aggregator is weakly Arrow-rational if it satisfies conditions of (A2), (A3) of
Definition 1 and the following condition (A1’): there exist models M1,M2,M3 2 ⌦
s.t. {M1,M2,M3}I ✓ dom(f), and M1,M2,M3 respectively are models of three
pairwise inconsistent L-sentences.
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here. Another perhaps more interesting di↵erence is that here we assume that
there are at least two non-isomorphic models in ⌦, whereas Lemma 5.3 in [8]
assumes the existence of at least three non-isomorphic models in ⌦. The proof
of this lemma can be found in an expanded version of the present paper [2].

Lemma 2. For any f 2 AR, the collection Df is an ultrafilter over I.6

Notice that there are significant cases in which the lemma above is not implied by
Lemma 5.3 in [8]. The reason is that, in significant cases, Arrow-rationality does
not imply weak Arrow-rationality. Indeed, it was shown in [8, Remark 3.2] that
condition (A1) implies condition (A1’) if µ, ⌫ 2 S exist such that µ^⌫, µ^¬⌫ and
¬µ ^ ⌫ are each consistent with T . In this case, three pairwise di↵erent models
M1,M2,M3 exist in ⌦ such that M1 |= µ ^ ⌫,M2 |= µ ^ ¬⌫ and M3 |= ¬µ ^ ⌫,
which then makes (A1) su�cient for (A1’). However, let us provide a significant
example in which such µ and ⌫ do not exist, and Arrow-rationality does not imply
weak Arrow-rationality. Indeed, let L consist of one binary relation symbol <
and two constant symbols a and b. Let T be the L-theory that says that < is
a strict linear order and that there are exactly two alternatives a and b (this
example models elections with only two candidates). Then, up to isomorphism,
there are exactly two models for T . Hence, in this case, condition (A1) does
not imply condition (A1’). Moreover, the assumptions of the lemma above are
satisfied by this example, whereas those of Lemma 5.3 in [8] are not.

2.1 Arrow-type impossibility for vote abstention

Definition 3. An aggregator f : (⌦ [ {?})I ! ⌦ [ {?} is dictatorial if there
exists some i 2 I such that f(M) = Mi for any profile M .

Lemma 3. Any aggregator f : (⌦ [ {?})I ! ⌦[{?} satisfying (A3) and such

that Df is a principal ultrafilter is dictatorial.

Proof. Let i0 2 I be the generator of Df . It is enough to show that f(M)
is isomorphic to Mi0 for any profile M . By Fact 1, it is enough to show that
f(M) |= � i↵ Mi0 |= � for any � 2 I. Indeed, by Lemma 1,

f(M) |= � i↵ C(M,�) 2 Df i↵ Mi0 |= �.

As an immediate consequence of the lemmas above we obtain:

6 Recall that, for every non-empty set I, a filter D over I is a collection of subsets of
I which is closed under supersets and intersection of finitely many members. A filter
D is proper if ? /2 D. An ultrafilter over I is a maximal proper filter. Maximality
can be equivalently characterized by the following conditions: (a) for any X ✓ I, if
X /2 D then I \X 2 D; (b) for all X,Y ✓ D, if X [ Y 2 D, then either X 2 D or
Y 2 D. An ultrafilter D over I is principal if it is of the form {X ✓ I | i0 2 X} for
some i0 2 I, and is nonprincipal otherwise. An immediate consequence is that, if I
is finite, all ultrafilters over I are principal.
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Corollary 1. If T is a universal L-theory such that |⌦| � 2, then any Arrow-

rational aggregator f : (⌦ [ {?})I ! ⌦ [ {?} such that the ultrafilter Df is

principal is dictatorial.

The assumption |⌦| � 2 in the statement of the corollary above is needed in
order to apply Lemma 2. As is well known, in the standard setting of Arrow’s
theorem, the analogous corollary fails for |⌦| = 2, the majority rule being a
counterexample. However, notice that, in the present setting in which aggrega-
tors are maps f : (⌦ [ {?})I ! ⌦ [ {?}, the majority rule is not guaranteed
anymore to define an aggregator. Indeed, let I = {i1, i2, i3} and A = {a, b}. Let
T be the universal theory of two-element linear orders (cf. Section 6).
Then ⌦ consists, up to isomorphism, of the models Ma (the one in which a
is preferred to b, that is, in which Rab is true), and Mb (the one in which b
is preferred to a, that is, in which Rba is true). No universal aggregator f :
(⌦ [ {?})I ! ⌦ [ {?} satisfies the following condition:

f(M) |= � i↵ |{i | Mi |= �}| > |{i | Mi |= ¬�}|. (2.1)

Indeed, consider the input M = (Ma,Mb,?) and the sentences Rab, Rba and
a ⌘ a. Clearly, {i | Mi |= Rab} = {i1}, {i | Mi |= Rba} = {i2} and {i | Mi |= a ⌘
a} = {i1, i2}. If f satisfies (2.1), this implies that f(M) |= ¬Rab, f(M) |= ¬Rba
and f(M) |= a ⌘ a. However, none of Ma,Mb,? satisfy the three sentences
simultaneously, therefore f cannot be well-defined at M = (Ma,Mb,?), and
thus f cannot be universal.

3 Generalized ultraproduct construction

The remainder of the paper is aimed at providing a setting which incorporates
the Arrow-type impossibility result for vote abstention as a special case. Towards
this aim, in the present section a construction is introduced which, for each (ul-
tra)filter D over I and each profile M 2 (⌦[{?})I , yields an L-model U(M,D).
This construction amounts to the specialization of Makkai’s ultraproduct con-
struction (cf. [13, Section 1.3]) from a more general category-theoretic setting to
the model-theoretic setting of interest here. In the remainder of this subsection
we fix a set I and an (ultra)filter D over I.
We find it useful to make use of the following auxiliary definition: for any I-
indexed family of sets S = {Si | i 2 I}, let the generalized union product of S
be defined as follows:

GUPD(S) :=
a

J2D

Y

j2J

Sj =
[

{{(si)i2J | si 2 Si} | J 2 D}.

Notice that we are not excluding Si to be empty for some i 2 I. This definition
naturally applies also to I-indexed families R = {Ri | i 2 I} where Ri is a k-ary
relation (for a fixed k � 1) on a given set Si for each i 2 I:7

GUPD(R) :=
a

J2D

Y

j2J

Rj =
[

{{(si)i2J | si 2 Ri} | J 2 D}.

7 In this case, we will say that R is a family of k-ary relations over S.
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The definition above also applies when k = 0, if we regard any element ci 2 Si

as a 0-ary relation Ri on Si.8 Under this stipulation, I-indexed families R of
0-ary relations can be identified with I-indexed sequences c = (xi)i2I such that
for every i 2 I

xi =

(
ci if ci 2 Si

⇤ if Si = ?,

where ⇤ /2
S

i2I Si. Then, for every J 2 D, the product set
Q

j2J Rj reduces to
the sequence (xj)j2J , and hence

GUPD(c) :=
a

J2D

Y

j2J

Rj =
[

{(xj)j2J | J 2 D}.

For the sake of readability, we will drop the subscripted D when this causes no
confusion. Clearly, GUP (c) \ GUP (S) 6= ? i↵ some J 2 D exists such that
cj 2 Sj for every i 2 J .
Notice that if R is an I-indexed family of k-ary relations over S, then GUP (R)
is not a k-ary relation on GUP (S). Fortunately, this situation can be remedied
as follows. For any set S and k � 1, let Sk denote the k-ary universal relation
on S. The following isomorphism holds for any J 2 D and any k � 1:

�J :
Y

j2J

(Sj)
k �! (

Y

j2J

Sj)
k

which maps the J-indexed array (sj)j2J of k-tuples sj = (sj1, . . . , s
j
k) 2 (Sj)k to

the k-tuple of J-indexed arrays ((sj1)j2J , . . . , (s
j
k)j2J). Since

Q
j2J Rj ✓

Q
j2J(Sj)k,

the �J -direct image of
Q

j2J Rj is a k-ary relation:

�J [
Y

j2J

Rj ] ✓ (
Y

j2J

Sj)
k.

Hence, GUP (R) induces the k-ary relation

GUP 0(R) :=
[

{�J [
Y

j2J

Rj ] | J 2 D} ✓ (GUP (S))k.

Consider the equivalence relation on GUP (S)9 defined as follows:

(sj)j2J ⌘D
S (th)h2H i↵ {i 2 J \H | si = ti} 2 D.

Definition 4. (cf. [13], Section 1.3) For any profile M 2 (⌦ [ {?})I , the gen-

eralized ultraproduct of M over D is the L-model U = U(M,D) specified as

follows:

8 Regarding elements c 2 S as 0-ary relations on S departs from the usual convention
in model theory, according to which 0-ary relations are truth-values.

9 For ease of notation, we will often drop the subscript in ⌘D
S and rely on the context

for its correct interpretation.
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– the universe |U(M,D)| of U(M,D) is

U(S,D) := GUP (S)/⌘D
S ,

where S = {|Mi| | i 2 I};
– for any constant symbol c,

cU = cU(M,D) := [(xj)j2J ]⌘D
S
;

where (xj)j2J 2 GUP (c) \ GUP (S), and c = (xi)i2I such that for every

i 2 I

xi =

(
cMi

if Mi 6= ?
⇤ otherwise ;

– for any k-ary relation symbol R (k � 1), the k-ary relation RU = RU(M,D)

on U is defined as follows:

([(sj1)j2J1 ]⌘D
S
, . . . , [(sjk)j2Jk ]⌘D

S
) 2 RU

i↵ ((tj1)j2J , . . . (t
j
k)j2J) 2 GUP 0(R)

for some J 2 D and some (tj1)j2J , . . . , (t
j
k)j2J such that, for every 1  `  k,

(tj`)j2J ⌘D
S (sj`)j2J` .

Notice that the elements of GUP (c)\GUP (S) are all identified by ⌘D
S , so cU is

well-defined. Notice also that cU is defined only if GUP (c)\GUP (S) 6= ?, and
as discussed early on, this is the case i↵ some J 2 D exists such that Mj 6= ?
for every j 2 J . On the other hand, as we will discuss next (cf. Fact 2), this
condition also characterizes the non-emptiness of U(M,D).

4 Properties of the generalized ultraproduct construction

Let S be an I-indexed family of sets. For any ultrafilter D over I and any J 2 D,
if Si = ? for some i 2 J , then

Q
i2J Si = ?. Hence:

Fact 2. For every I-indexed family of sets S and any ultrafilter D over I,

GUP (S) 6= ? i↵ some J 2 D exists s.t. Si 6= ? for all i 2 J.

Recall that if D is a principal ultrafilter, D is generated by the singleton {i0} for
some individual i0 2 I, which can be identified with the dictator. The following
fact is an immediate consequence of the fact above:

Fact 3. For every profile M and any principal ultrafilter D over I,

U(M,D) = ? i↵ Mi0 = ?. (4.1)

Definition 4 generalizes the following
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Definition 5. For any (ultra)filter D on I, and any profile M 2 ⌦I
, the stan-

dard ultraproduct of M over D is the L-model U 0 = U 0(M,D) specified as

follows:

– the universe |U 0(M,D)| of U 0(M,D) is

Y

i2I

Mi/ ⇠D,

where for any (si)i2I , (ti)i2I 2
Q

i2I Mi,

(si)i2I ⇠D (ti)i2I i↵ {i 2 I | si = ti} 2 D;

– for any constant symbol c,
cU

0
:= [c]⇠D

where c = (cMi)i2I ;

– for any k-ary relation symbol R (k � 1), the k-ary relation RU 0
= RU 0(M,D)

on U 0
is defined as follows:

�
[(si1)i2I ]⇠D , . . . , [(s

i
k)i2I ]⇠D

�
2 RU 0

i↵ {i 2 I | (si1, . . . , sik) 2 RMi} 2 D.

The definition above is in general di↵erent from Definition 4. Indeed, if Mi = ?
for some i 2 I, then U 0(M,D) = ?, while U(M,D) does not need to be empty
(cf. Fact 2). However, if Mi 6= ? for any i 2 I, then the two constructions can
be identified, as shown in the following

Fact 4. For any (ultra)filter D on I, and any profile M 2 (⌦[{?})I , if Mi 6= ?
for every i 2 I then U(M,D) and U 0(M,D) are isomorphic.

Proof. Clearly, for all (yi)i2I and (y0i)i2I ,

(yi)i2I ⌘D (y0i)i2I i↵ {i 2 I | yi = y0i} 2 D i↵ (yi)i2I ⇠D (y0i)i2I .

Moreover, for every J 2 D and for every (tj)j2J there exists some (yi)i2I s.t.
(tj)j2J ⌘D (yi)i2I : indeed, the assumption that Mi 6= ? for every i 2 I guaran-
tees that there exists at least one I-indexed array defined as follows:

yi =

(
ti if i 2 K

any y 2 Mi 6= ? otherwise.

By construction, {i 2 I\J = J | yi = ti} = J 2 D, and hence (tj)j2J ⌘D (yi)i2I .
From the facts above, it follows that the map ' : |U(M,D)| ! |U 0(M,D)|
defined by the assignment [(tj)j2J ]⌘D 7! [(yi)i2I ]⇠D is well defined and has an
inverse  : |U 0(M,D)| ! |U(M,D)| defined by the assignment [(yi)i2I ]⇠D 7!
[(yi)i2I ]⌘D . Moreover, these assignments identify cU

0
and cU for every constant

symbol c, and also identify RU and RU 0
for every k-ary relation symbol R.

Indeed, it can be easily verified that '(cU ) = cU
0
and that

([(sj1)j2J1 ]⌘D , . . . , [(s
j
k)j2Jk ]⌘D ) 2 RU i↵ ('([(sj1)j2J1 ]⌘D ), . . . ,'([(s

j
k)j2Jk ]⌘D )) 2 RU 0

.
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The following is a restatement of [13, Theorem 1.3.1] specialized to the model-
theoretic setting of our interest. The proof of this theorem appears in the ex-
tended version of the present paper (cf. [2]).

Theorem 5. (Generalized  Los’s Theorem). The following are equivalent for any

formula �(x1, . . . , xn) with n free variables and any profile M 2 (⌦ [ {?})I :
– U(M,D) |= �

�
[s1J1 ]⌘D , . . . , [sn

Jn ]⌘D

�
;

– {i 2 J1 \ . . . \ Jn | Mi |= � (s1,i, . . . sn,i)} 2 D.

5 Generalized Kirman-Sondermann correspondence

The present section is aimed at introducing the second half of the generalized
Kirman-Sondermann correspondence (the first half was discussed at the end of
Section 2, before Lemma 2), and characterizing Arrow-rational aggregators in
terms of the generalized ultraproduct construction introduced in the previous
subsection. Recall that, for any L-structure B with domain B and any C ✓ B
such that AB ✓ C, the restriction of B to C is the L-structure the universe
of which is C, which is obtained by restricting the interpretation of all relation
symbols to C. For every M 2 ⌦, let resAM denote the restriction of M to AM .
In what follows, we find it convenient to define resAM also when M is the empty
model. If M = ?, then we stipulate that resAM = ?.

Lemma 4. For all � 2 I,

resAU(M,D) |= � i↵ C(M,�) 2 D.

Proof. By the generalized  Los’s theorem, C(M,�) = {i 2 I | Mi |= �} 2 D i↵
U(M,D) |= �. Since by assumption � is quantifier-free, the latter condition is
equivalent to resAU(M,D) |= �.

Definition 6. For every ultrafilter D over I, let fD : (⌦ [ {?})I ! ⌦ [ {?} be

defined by the assignment

M 7! resAU(M,D).

By  Los’s theorem, U(M,D) |= T for every profile M . Since T is a universal
theory, this implies that resAU(M,D) |= T , which shows that fD is well defined.
The following proposition shows that the assignment D 7! fD defines a map
� : �I ! AR.

Proposition 1. For every ultrafilter D over I, the aggregator fD is Arrow-

rational.

Proof. Condition (A1) is verified by construction. As to (A2), fix a profile M and
� 2 I, and assume that fD(M) |= �, that is, resAU(M,D) |= �. Then Lemma
4 implies that C(M,�) 2 D. Hence C(M,�) must be nonempty, since D is an
ultrafilter, and hence is proper. As to (A3), let C(M,�) = C(N,µ) for some
M,N and �, µ 2 I. Hence, by Lemma 4,

fD(M) |= � i↵ C(M,�) 2 D i↵ C(N,µ) 2 D i↵ fD(N) |= µ.
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Next, we are going to show that the maps ⇤ and � defining the Kirman-
Sondermann correspondence (cf. discussions before Lemma 2 and before Propo-
sition 1) are inverse to one another.

Proposition 2. For every f 2 AR, fDf and f can be identified up to isomor-

phism.

Proof. By Lemmas 4 and 1,

resAU(M,Df ) |= � i↵ C(M,�) 2 D i↵ f(M) |= �

for any profile M and any � 2 I. Then the statement follows from Fact 1.

In the proof of the next proposition, we make crucial use of the assumption that
at least two non-isomorphic models exist in ⌦.

Proposition 3. For every D 2 �I, DfD = D.

Proof. Fix X ✓ I, and let us show that X 2 DfD i↵ X 2 D. By assumption,
two non-isomorphic models M,N exist in ⌦ [ {?}. As shown in the proof of
Proposition 2, this implies that M |= � and N 6|= � for some � 2 I. Let us define
the profile M 2 (⌦ [ {?})I as follows: for any i 2 I, let

Mi =

(
M if i 2 X

N if i /2 X.

By construction, C(M,�) = X, and hence the required equivalence can be
proved as follows:

C(M,�) 2 DfD i↵ fD(M) |= � (Lemma 1)

i↵ resAU(M,D) |= � (Definition 6)

i↵ C(M,�) 2 D. (Lemma 4)

The following is an immediate consequence of Propositions 2 and 3:

Theorem 6. (Kirman-Sondermann correspondence for vote abstention).

For any language L, any universal L-theory T with at least two non-isomorphic

models, and any set I of individuals, the set AR of Arrow-rational aggregators

(cf. Definition 1) and the set �I of the ultrafilters over I bijectively correspond

via the map ⇤ : AR ! �I defined by the assignment f 7! Df . The inverse of ⇤
is the map � : �I ! AR, defined by the assignment D 7! fD.

6 Arrow-type impossibility theorem for vote abstention

By taking concrete universal theories T , the treatment developed so far special-
izes to concrete settings in social choice. As an example, in the present section,
we capture and discuss the theory of preference aggregation in settings in which
individuals might abstain from voting.
The case of preference aggregation over n candidates is modelled, as is done in
[9], by taking L to be a language with n constant symbols a1, . . . , an and one
binary relation symbol R. Consider the following theory Tn:
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– 8x(¬Rxx) (irreflexivity);
– 8x8y8z(Rxy ^Ryz ! Rxz) (transitivity);
– 8x8y(Rxy _Ryx _ x ⇡ y) (completeness);
– 8x(¬x ⇡ x) _ 8x(x ⇡ a1 _ . . . _ x ⇡ an);
– 8x8y(x ⇡ aj ^ y ⇡ ak ! ¬x ⇡ y) for j 6= k;

The first three sentences state that each model Mi of T is a linear order given by
the individual i, and the last two items state that the domain of each model is
either empty or consists of n pairwise distinct elements aM1 , . . . , aMn . Therefore,
the aggregator f : (⌦ [ {?})I ! ⌦[{?} aggregates a collection of linear orders
(or empty order, corresponding to the voter abstention case) into a single linear
order (or empty order).
When n � 2, it is easy to see that |⌦| � 2; therefore Corollary 1 applies, yielding:

Theorem 7. (Generalized Arrow impossibility theorem for preference aggrega-

tion). For Tn given above (n � 2) and for any finite I, any Arrow-rational

aggregator f : (⌦ [ {?})I ! ⌦ [ {?} is dictatorial.

The present setting for vote-abstention allows to prove a strengthened version
of Arrow’s impossibility theorem in preference aggregation which, unlike the
standard one, holds e.g. also for 2-candidate elections. The technical reason for
this is to be traced in the proof of Lemma 2, omitted in the present paper
but available in [2], which is a variant of Lemma 5.3 in [8]. Indeed, given two
non-isomorphic models, the empty model plays the role of the third one. As
discussed after Corollary 1, the features of the present set up are such that the
counterexamples to the analogous strengthening in the standard setting are not
definable anymore.
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