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Abstract. We introduce a display calculus for the logic of Epistemic Actions
and Knowledge (EAK) of Baltag-Moss-Solecki. This calculus is cut-free and
complete w.r.t. the standard Hilbert-style presentation of EAK, of which it is a
conservative extension, given that—as is common to display calculi—it is de-
fined on an expanded language in which all logical operations have adjoints. The
additional dynamic operators do not have an interpretation in the standard Kripke
semantics of EAK, but do have a natural interpretation in the final coalgebra. This
proof-theoretic motivation revives the interest in the global semantics for dynamic
epistemic logics pursued among others by Baltag [4], Cirstea and Sadrzadeh [8].

1 Introduction

Dynamic logics form a large family of nonclassical logics, and perhaps the one en-
joying the widest range of applications. Indeed, they are designed to formalize change
caused by actions of diverse nature: updates on the memory state of a computer, dis-
placements of moving robots in an environment, measurements in models of quantum
physics, belief revisions, knowledge updates, etc. In each of these areas, formulas ex-
press properties of the model encoding the present state of affairs, as well as the pre-
and post-conditions of a given action. Actions are semantically represented as trans-
formations of one model into another, encoding the state of affairs after the action
has taken place. Languages for dynamic logics are expansions of classical proposi-
tional logic with dynamic operators, parametrized with actions; dynamic operators are
modalities interpreted in terms of the transformation of models corresponding to their
action-parameters.

However, when dynamic logics feature both dynamic and ‘static’ modalities, as in
the case of the Dynamic Epistemic Logics, they typically lose many desirable proper-
ties, such as the closure under uniform substitution. This and other difficulties make
their algebraic and proof-theoretic treatment not straightforward, and indeed, the exist-
ing proposals appeal to technical solutions which do not meet some of the requirements
commonly sought for in proof-theoretic semantics [21,22]. In [2], a tableaux calculus
is introduced, which is labelled, and restricted to the logic of Public Announcements
(PAL); in [15] and [16], sequent calculi are presented, covering truthful and arbitrary
public announcements respectively, which are again labelled. In [5] and [9], sequent cal-
culi are defined, which are nested; these calculi are sound and complete w.r.t. a certain
algebraic semantics which is more general than the standard Kripke semantics for the
logic of Baltag-Moss-Solecki; they manipulate sequents whose succedents are unary,
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and in which three types of objects feature on a par (formulas, agents and actions); fi-
nally, two different entailment relations occur, for actions and propositions, respectively,
which need to be brought together by means of rules of hybrid type.

In the present paper, we bring into focus that (at least one aspect of) the difficulties
hinted at above is the following. Whereas the interpretation of the adjoints of static
modal operators is equally available in standard models and in the final coalgebra, this
is no longer the case for dynamic modalities. In particular, Section 2 will emphasize that
dynamic modalities do not in general come in adjoint pairs w.r.t. the standard Kripke
semantics. In other words, display postulates (cf. Section 2) are not sound for dynamic
modalities w.r.t. to the standard semantics. However, the soundness of these display
postulates will be shown w.r.t. the final coalgebra semantics.

After reviewing dynamic epistemic logic (EAK) in Section 3, we define the Belnap’s
style display calculus D.EAK in Section 4. In Section 5, we outline the proofs that
D.EAK is sound w.r.t. the final coalgebra semantics, complete w.r.t. the well known
Hilbert-style presentation of EAK, and that the cut rule is eliminable. In Section 6 we
briefly discuss why D.EAK is a conservative extension of EAK, and we outline some
ongoing research directions.

2 Coalgebraic semantics of dynamic logics

Modal formulas A are interpreted in Kripke models M = (W, R, V) as subsets of their
domains W, and we write [A]l;;, € W for their interpretation. Equivalently, we can
describe the interpretation of A in each Kripke model via the final coalgebra* Z first
by defining [[A]lz to be the set of elements of Z satisfying A, and then by recovering
[Allys € W as

[AThs = £~ ([AT2). 1

where f is the unique homomorphism M — Z. This construction works essentially
because, in the category of models/Kripke structures/coalgebras, homomorphisms (i.e.
functional bisimulations) preserve the satisfaction/validity of modal formulas. Bisimu-
lation invariance is also enjoyed by formulas of such dynamic logics as EAK (cf. Sec-
tion 3). Hence, for these dynamic logics, both Kripke semantics and the final coalgebra
semantics are equivalently available. However, so far the community has not warmed
up to adopting the final coalgebra semantics for dynamic logic, Baltag’s [4], and Cirstea
and Sadrzadeh’s [8] being among the few proposals exploring this setting. This is unlike
the case of standard modal logic, in which the coalgebraic option has taken off, to the
point that it has given rise to a field in its own right. In the present section, we offer new
reasons to consider the final coalgebra semantics for dynamic logic; indeed, we bring
to the fore one aspect in which the final coalgebra semantics for dynamic logics is more
advantageous than the standard semantics.

The interpretation of dynamic modalities is given in terms of the actions parametriz-
ing them. Actions can be semantically represented as transformations of Kripke models,

4 Here we rely on the theorem of [1] that the final coalgebra Z exists. Moreover, even if the
carrier of Z is a proper class, it is still the case that subsets of Z correspond precisely to ‘modal
predicates’, that is, predicates that are invariant under bisimilarity, see [14].
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i.e., as relations between states of different Kripke models. From the viewpoint of the
final coalgebra, any action symbol « can then be interpreted as a binary relation @z on
the final coalgebra Z. In this way, the following well known fact becomes immediately
applicable to the final coalgebra model:

Proposition 1. Every relation R C X X Y gives rise to the modal operators
(R),[R]: PY - PX and (R°),[R°] : PX - PY

defined as follows: for every V. C X and every U C Y,

RYU={xeX|Iy.xRy&yec U} [RIU={xeX|Vy.xRy = yeU}
(R ={yeY|dx.xRy & x eV} [REIV={yeY|Vx.xRy = xeV}.

These operators come in adjoint pairs:

(RYUCV iff UCIRIV 2)
(R®YV C U iff VCIRIU 3)

Let {az), [az], {(@z°), [az°] be the semantic modal operators given by Proposition 1 in
the special case where X = Y is the carrier Z of Z; they respectively provide a natural
interpretation in the final coalgebra Z for the four connectives (), [a], @, @, para-
metric in the action symbol a@. As a direct consequence of the adjunctions (2), (3), the
following display postulates, which are so crucial for the present work, are sound under
this interpretation (cf. Section 5.1 for more details on this interpretation).

X+{alY _

@

{a}

{a}

{a})X+Y
Xray © axry

On the other hand, standard Kripke models are not in general closed under (the inter-

pretations of) @ and . As a direct consequence of this fact, we can show that e.g. the

display postulate ({i’_]) is not sound in some Kripke models M for any interpretation of
@

formulas of the form '@ B in M.

([ (& &)

Fig. 1. The models M* and M.

Indeed, consider the model M represented on the right-hand side of the picture above;
let the action a be the public announcement (cf. [3]) of the atomic proposition r, and
let A := Op and B := g; hence M is the submodel on the left-hand side of the picture.
Leti: M® — M be the submodel injection map. Clearly, [Op]l;; = @, which implies
that the inclusion [A]ly; € [[@ Bl trivially holds for any interpretation of ‘@ B in M;
however, i[[Op]ly«] = {u}, hence [{a)Oplly = laly Nilloplye] = V(r) N{u} = {u} £
{v} = [[g]lss, which falsifies the inclusion [{(@)ATy; € [Blly. This proves our claim.
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3 The logic of epistemic actions and knowledge

In the present section, the relevant preliminaries on the syntax and semantics of the
logic of epistemic actions and knowledge (EAK) [3] will be given, which are different
but equivalent to the original version [3], and follow the presentation in [13, 17].

Let AtProp be a countable set of proposition letters. The set £ of formulas A of (the
single-agent’ version of) the logic of epistemic actions and knowledge (EAK) and the
set Act(L) of the action structures a over L are built simultaneously as follows:

A:=peAtProp| —-A|AVA| QA |(a)A (a € Act(L)).

An action structure over Lis atuple a = (K, k, @, Pre,), such that K is a finite nonempty
set, k € K, « € K X K and Pre, : K — L. Notice that @ denotes both the action
structure and the accessibility relation of the action structure. Unless explicitly specified
otherwise, occurrences of this symbol are to be interpreted contextually: for instance,
in jak, the symbol @ denotes the relation; in M“, the symbol o denotes the action
structure. Of course, in the multi-agent setting, each action structure comes equipped
with a collection of accessibility relations indexed in the set of agents, and then the
abuse of notation disappears.

Sometimes we will write Pre(a) for Pre, (k). Let a; = (K, i, a, Pre,) for every action
structure @ = (K, k, @, Pre,) and every i € K. Intuitively, the actions «; for kai encode
the uncertainty of the (unique) agent about the action that is actually taking place. The
standard stipulations hold for the defined connectives T, L, A, — and <.

Models for EAK are relational structures M = (W, R, V) such that W is a nonempty
set, RC WxW,and V : AtProp — P(W) is a map. The evaluation of the static fragment
of the language is standard. For every Kripke frame ¥ = (W, R) and every & C KX K, let
the Kripke frame [[, 7 := ([[x W, R x @) be defined® as follows: [ [x W is the |K|-fold
coproduct of W (which is set-isomorphic to W X K), and R X « is the binary relation on
LIx W defined as

w,D(Rx a)(u,j) iff wRu and iaj.

For every model M = (W, R, V) and every action structure @ = (K, k, @, Pre,), let

]_[M::(]_[WRXa,]_[V)
@ K K

be such that its underlying frame is defined as detailed above, and (] [x V)(p) := [1x V(p)
for every p € AtProp. Finally, the update of M with the action structure « is the sub-
model M® := (W*,R*, V%) of | [, M the domain of which is the subset

W®:={w,j) € U W | M,w - Pre,(j)}.
K

5> The multi-agent generalization of this simpler version is straightforward, and consists in taking
the indexed version of the modal operators, axioms, and interpreting relations (both in the
models and in the action structures) over a set of agents.

® We will of course apply this definition to relations a which are part of the specification of
some action structure; in these cases, the symbol « in [ [, F will be understood as the action
structure. This is why the abuse of notation turns out to be useful.
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Given this preliminary definition, formulas of the form (@)A are evaluated as follows:
M,w i {a)A iff M,w - Pre,(k) and M*, (w,k) I A.

Proposition 2 ( [3, Theorem 3.5]). EAK is axiomatized completely by the axioms and
rules for the minimal normal modal logic K plus the following axioms:

1. {a)p © (Pre(a) A p);

2. {@)=A & (Pre(a) A ~(a)A);

3. {(a)(AV B) & ({a)A V {a)B);

4. {@)OA & (Pre(a) A \V/{O{a)A | kai)).

An immediate and well known consequence of the theorem above is that every L-
formula is EAK-equivalent to some formula in the static fragment of £. This implies
in particular that £-formulas are invariant under standard bisimulation, and this fact
extends of course to the multi-agent version.

The representation of actions as action structures is just one possible approach. Here
we prefer to keep a black-box perspective on actions, and to identify agents a with the
indistinguishability relation they induce on actions; so, in the remainder of the paper,
the role of the action-structures a; for kai will be played by actions S such that aag.

4 EAK displayed

In the present section, the display calculus D.EAK for the logic EAK (cf. section 3) is
introduced piecewise: in the next subsection, display calculi will be presented which are
multi-modal versions of display-style sequent calculi proposed in the literature for the
(bi-)intuitionistic versions of basic and tense normal modal logic [11,21]. This presenta-
tion is modular w.r.t. intuitionistic logic: namely, for the sake of a more straightforward
extension to the intuitionistic counterparts of PAL and EAK [13, 17], it takes the con-
nectives in the language of IEAK as first-class citizens; the classical base is captured
by adding the two Grishin rules (see below) to the system. In section 4.2, the rules for
the dynamic connectives are introduced. The calculus D.EAK consists of all the rules
in the two subsections.

The language £(m-IK) of the multi-modal version of Fischer Servi’s intuitionistic
modal logic IK features one pair of modal connectives for each element a in a set A of
agents, and consists of formulas built from a set of atomic propositions {p, g, r, ...} and
one constant L, according to the following BNF grammar:

A=p| L | AM | AVA | A5 A | GA | OA.

The language L(tm-IK) of the “tense-like” version of m-IK is obtained by expanding
L(m-IK) with one pair of (adjoint) modalities 4, and m,, for each a in A.

The language L(btm-IK) of the bi-intuitionistic version of tm-IK is obtained by
expanding the language of tm-IK with T and one extra propositional connective >—,
referred to as subtraction or disimplication,” which behaves as the dual intuitionistic im-
plication. The reader is referred to [18] for an axiomatic presentation of bi-intuitionistic
logic and to [11, 12] for its relative display calculi.

7 Formulas A > B are classically equivalent to =A A B.
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4.1 The static fragment

Display calculi typically involve sequents X + Y, where X and Y are structures, built
from formulas A (in the present case, A € L(m-IK) (resp. L(tm-IK), £(btm-IK))) and
the structural constant I by means of structural connectives (or proxies), according to
the following BNF grammar®:

X=1A|X>X]|X;X | &,X | 0, X.

Each structural connective is associated with a pair of logical connectives, as follows:

Proxies > ; 1 o, ., Structural symbols
Connectives | >[ =] A[ V| T[ L] ©a[ Oa| 4. ma| Operational symbols

moreover, structural connectives form adjoint pairs by definition (which will be wit-
nessed in the ensuing display postulates), as follows:

;4> >4 Oy 1 @&y o, 40y

The display calculi D.m-IK, D.tm-IK and D.btm-IK are defined by means of rules which
are classified as structural and as operational rules. The structural rules below only con-
cern structural connectives, and are common to the three of them (where the structures
X~ and Y~ are dynamic-proxy-free):’

1 X+Y : X+Z W, X:X+Y I+X I
prp IFX>Y = Y rX>Z XrY ©  IroX
XA ALY YrX ZrY YrX;X I-X 1
_———— Cut ————I Wr Cr
XrY X>Yrl Y>ZrX® YrX Ir X
Y:X+Z X, Y;2)+rW 4 YroX>o0Z . X;YHZ . %XtHY
X:YrzZ X:YV)ZFW C Y roX>2) * YrX>Z = XreY
Zr XY WEZ:Y): X YreX>eZ . ZrY:X . XroY
Zrv:x " WrZ;(Y;X) “ Yre(X>2) * Y>ZrX = eXtrY

The operational rules govern the introduction of the logical connectives: here below
are the ones which are common to the three calculi:

LIk X A;B+Z BrY ArX XrA BrY
L TL AL \ —L
1+ THX AAB+Z BVA+Y ;X A—>BrX>Y
X1 XrHA Y+ B Z+B;A Z+A>B

1R TR AR 73 _
Xrl I+T X;Y+AAB Z+ BVA Z+A—> B

8 Notice that, in the context of the full calculus, the variables X, ¥, Z, W appearing in the rules in
the present subsection are to be interpreted as structures of the full language of D.EAK, unless
explicitly indicated otherwise with symbols such as X™¢.

® The weakening rules W, and Wy, are equivalent to the standard ones via the Display Postulates
(>) and (>), in these rules, the principal structure appears ‘in display’; besides making an easier
life in the proof of the cut elimination, we believe that this feature of W, and Wy is more in
line with the general design principles of display calculi. Notice also that the presence of the
rules E; and Er makes it possible for us to dispense with the structural connective < and its
relative rules, suchas A; B+ C/A+ C < B.
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Here below, from the left to right, are the operational rules completing D.m-IK (1%
and 2™ column), D.tm-IK (4" and 5" column), and D.btm-IK (3" column):

0AFX ArX Oa1 A>B+7Z L AFX ArX .,
CAFX DAL oX A—BrZ ®AFX " mAbeX
XrA XroA ArX YrB __ XrA XreA
aR aR R aR LEV3
o, X+ C.A X+O,A X>YrA>—B o X+ @A X+mA

Finally, the classical versions of each of these calculi can be obtained from the above
ones e.g. by adding the following Grishin’s structural rules [12,21]:

X>Y;2)r W WrX>(Y;2)
— 7 '} G,
X>V).ZrW ° Wr(X>1).Z

4.2 The dynamic fragment

The calculi introduced in the present subsection involve sequents X + Y, where X and Y
are structures, built from formulas A € L(m-IEAK) (resp. L(tm-IEAK), L(btm-IEAK))
and the structural constant I according to the following BNF grammar:

X:=T|A| X:X | X>X| &X|aX|{a)X| @X

Hence, the structural language above expands the one of the previous subsection with
structural connectives {a} and @ for each action @ € I'; these are by definition adjoint
to each other as follows: {a} 4 @ and @ 4 {a}. The proxy {a} is associated with the
logical connectives [@] and (@), and thus it occurs in the operational rules concerning
them. Likewise, new logical connectives @ and @ are introduced which stand in an
analogous relation with @, and which are adjoint to [a] and (@) as follows: (@) 4 @
and @ 4 [@]. As discussed in section 2, these new connectives have a natural interpre-
tation in the final coalgebra, but not in the standard semantics.

{a} @
el ()] @] @

The display calculi D.m-IEAK, D.tm-IEAK and D.btm-IEAK are defined by adding
the rules of the present subsection to D.m-IK, D.tm-IK and D.btm-IK, respectively;
the display calculus D.EAK is obtained by adding the Grishin rules to D.m-IK. The
rules in the present subsection come in four groups: pure and contextual structural and
operational rules. Here follow the pure structural rules; the dynamic display postulates
appear in the 5 column below:

X+Y

——— atomy, ———— atomg — & = balane

lalprp priatp (@)X o}y "
@Y > {@Zr X, (XY +Z |, @Y>TXrZ _ @X:@Yrz _ falXrY
¥ >2)rXx = {dGNHZ Y Gy >X)rZ - @XNRZ Xray
Yr{oX>{a}Z . Zr{a)Yi{a)X . YraX>2QaZzZ ZraY;aX Y+ {a}X

{R}v

YrimX>2) " Zr(av:X) " yrax>2) Zr @(Y:X) ° @YeX
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Here below are the pure operational rules:

ladr X XrA _,, —ArX _, Xrldd o
@ArX 7" HalX r(@)A [a]A + {a}X Xr[a]A "

The contextual rules encode inferences which can be performed only in the presence
of a given assumption (in the case at hand, the preconditions of the action parametrizing
a dynamic proxy). Here below the contextual structural rules:

reduce swap-in swap-out

Pre(@) (@Ar X Pre(@):lajo,X+ ¥ (Pre(@): (B X + Y | aap)

L - s-ing, s-outy,
{a}JA+r X Pre(@); oa{Bleas X +HY Pre(a) : {a}o.X + ;(Y | aaﬂ)

X+ Pre(@)>{@}A Y Pre(a) > [a}o.X (Y + Pre(@) > o8} X | aap)

X [}A “Yrp x o
F{a) k Pre(a) > oa{Blaap 3(Y 1 @aB) k Pre(a) > {a}o.X

The swap-in rules are unary and should be read as follows: if the premise holds, then
the conclusion holds relative to any action g such that @aB. The swap-out rules do not
have a fixed arity; they have as many premises'? as there are actions 3 such that aag;
in the conclusion, the symbol ;(Y | aa,B) refers to a string (---(Y;Y);---;Y) with
n occurrences of Y, where n is the number of actions § such that @aB. Finally, the
contextual operational rules:

reverse

Pre(a);{ajA+ X rev X+ Pre(a) > {a}A
Pre(@);[@lAr X Xt Pre(a) > (mA

revg

5 Soundness, completeness and cut elimination

5.1 Soundness in the final coalgebra

In the present section, we outline the soundness of D.EAK w.r.t. the final coalgebra se-
mantics. Structures will be translated into formulas, and formulas will be interpreted as
subsets of the final coalgebra, as discussed in section 2. In order to translate structures
as formulas, proxies need to be translated as logical connectives; to this effect, any given
occurrence of a proxy is translated as one or the other of its associated logical connec-
tives, according to which side of the sequent the given occurrence can be displayed on
as main connective [6,21], as reported in Table 1.

Sequents A + B will be interpreted as inclusions [A]l; € [Bll,; rules (A; + B; | i €
I)/C + D will be interpreted as implications of the form “if [A;]l; C [B;]l; for every
i € I, then [C]l; C [DI;”. As for rules not involving @, we will rely on the following
observation, which is based on the invariance of EAK-formulas under bisimulation (cf.
Section 3):

10 The swap-out rule could indeed be infinitary if action structures were allowed to be infinite,
which in the present setting, as in [3], is not the case.
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Table 1. Translation of proxies into logical connectives

Main if displayed in if displayed in
connective antecedent succedent
1 T 1
A;B AANB AV B
A>B A>—B A— B
oA QA DA
oA *A mA
{a}A (a)A [@]A
@A aTA aA

Lemma 1. The following are equivalent for all EAK-formulas A and B:
(1) [Allz € [Bllz;
(2) [Ally € By for every model M.

Proof. The direction from (2) to (1) is clear; conversely, fix a model M, and let f :
M — Z be the unique arrow; then (1) immediately implies that [A]l,, = f~'([All,) <
S7(BI) = [Bly-

In the light of the lemma above, and using the translations provided in Table 1, the
soundness of unary rules A + B/C + D not involving @, such as balance, {a@)r and
[a]., can be straightforwardly checked as implications of the form “if [Ally, € [Blly
on every model M, then [CT,, € [DI on every model M”. As an example, let us
check the soundness of balance: Let A, B be EAK-formulas such that [[A]l,; € [Blly
on every model M. Let us fix a model M, and show that [{@)Ally; € [[a]Bly. As
discussed in [13, Subsection 4.2], the following identities hold in any standard model:

[{a)ATly = [Pre(@)ly N ¢ ' TilTAT 1], )
[[]Ally = [Pre(@)]y = ¢ lilTAT 1), 5

where the map i : M* — [[, M is the submodel embedding, and ¢, : M — [], M is the
embedding of M into its k-colored copy. Letting g(-) := L;' [i[-]], we need to show

[Pre(a)lly N g([ATIme) € [Pre(@)lly = g(LBIue)-

This is a direct consequence of the Heyting-valid implication “if » < cthena A b <
a — ¢”, the monotonicity of g, and the assumption that [A]l;; € [B]ls, holds on every
model, hence on M“.

Actually, for all rules (A; + B; | i € I)/C + D not involving @ except balance, {a)g
and [a];, stronger soundness statements can be proven of the form “for every model M,
if [A;Qly € [Billy for every i € I, then [C1,, € [D]ls,” (this amounts to the soundness
w.r.t. the standard semantics). This is the case for all display postulates not involving
@, the soundness of which boils down to the well known adjunction conditions holding
in every model M. As to the remaining rules not involving @, thanks to the follow-
ing general principle of indirect (in)equality, the stronger soundness condition above
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boils down to the verification of inclusions which interpret validities of IEAK [13], and
hence, a fortiori, of EAK. Same arguments hold for the Grishin rules, except that their
soundness boils down to classical but not intuitionistic validities.

Lemma 2. (Principle of indirect inequality) Tfae for any preorder P and all a,b € P:
(1)a<b;

(2) x < a implies x < b for every x € P;

(3) b <yimpliesa <y foreveryy € P.

As an example, let us verify s-ouf;: fix a model M, fix EAK-formulas A and B, and
assume that for every action B, if @aB then [Pre(a)]ly N [CaB)Ally S (Bl i-e.,
that [Pre(a)lly N ULC(B)Ally | @aB} € [Blly; we need to show that [Pre(a)], N
[{a)$aAlly € Bl By the principle of indirect inequality, it is enough to show that

[{a)OaAlly < [Pre(@)]ly N U{[[0a<ﬂ>A]]M | @ap},

which is true (cf. Proposition 2). Finally, the soundness of the rules which do involve
@ remains to be shown. The soundness of the display postulates immediately follows
from Proposition 1. As an example, let us verify the soundness of (g) translating the
structures into formulas, and applying the principle of indirect inequality, it boils down
to verifying that [ @ (A > B)]l; € [[@All; > [ @ Bl for all EAK-formulas A and B.
Since, in Z, @ and @ are respectively interpreted as {(@°) and [@°], this inclusion can
be rewritten as
(@ )([Alz = [Bll2) € [e°1[Allz > <) Bl

where A >— B can be interpreted classically, i.e. as =A A B. The straightforward verifi-
cation that this is an instance of a principle valid in every frame is left to the reader.

5.2 Completeness

For the completeness of D.EAK, it is enough to show that all the axioms of EAK are
derivable in D.EAK. Due to space restrictions, here we only report on the derivations of
(@)OA & Pre(a)A \V{O1(B)A | @ap}. For ease of notation, we assume that the actions
S such that @af3 form the set {8; | 1 < i < n}.

ArA "' ArA
(BIIAF (BA {BulA F (Bn)A
% {B11A + Ca(B1)A e S {BnlA F Ca(Bi)A
Pre(a); a{Bi}A F G2(B1)A Pre(@); %2 {Bu}A F Ga(Bn)A

s-out

Pre(a); {ato, AV (02(8)A)
Pre(a) + Pre(a) {doad + V (0a(BA) r
Pre(a): {ato, A + Pre(@)A \/ (0a(B1)A)
{atouA + Pre(a)a \ (0a(8)A) '

A b @ Pre(@)A V (0a(6)A)

Oalh + @ Pre(@)n \/ (02(B)A)

{@}0ad F Pre(a)A V (0a(i)A)

(@)0aA + Pre(@)AV (0a(81)A)
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ArA o ArA
0 A F OA A F C,A
{atoy A F (@)OlA {a}oy A F(@)O.A
Pre(a) ;{a}o, A+ {(@)QA . Pre(@) ;{a}o, A - (@)O.A .
Pre(@): o lBilAF (@cad " Pre(a); calBaA F(@)0aA
0 {B1}A + Pre(a) > (@)C.A 0 {Bn}A F Pre(a) > (a)0.A
{B1}A F &3(Pre(a) > (@)<CaA) {Bu}A F 3(Pre(a) > (@)CaA)
B1)A b &y (Pre(a) > (@)0aA) (Bu)A F o (Pre(a) > (@)0aA)
02 (B1)A F Pre(a) > (@)0.A 0a{Bu)A F Pre(a) > (@)O.A
OalBpAF Pre(@) > (@0aA o __ QalBu)A + Pre(@) > (@)0aA.
V (0a(8)A) F §(Pre(@) > (@)0,A)
V (0a2(B:)A) + Pre(a) > (a)0aA
Pre(@); V (0a(B)A) F (@)0aA
Pre(@)A V (02(8A)  (@)0aA

5.3 Cut-elimination

In the present subsection, we outline the proof of the cut eliminability of D.EAK fol-
lowing the original strategy devised by Gentzen (cf. [20]). Without loss of generality,
we consider a derivation 7 of the sequent X + Y in D.EAK which contains a unique
application of Cut as the last rule (let us refer to this application as Cut*), and we show
that a derivation of the same sequent exists in which Cut is not applied. We proceed
by induction on the set of tuples (p, 0), ordered lexicographically, where p is the com-
plexity of the cut formula in Cut” (the rank of Cut*), and ¢ is the sum of the maximal
lengths of branches in the subdeductions of the premises of Cut* (the degree of Cut™).
In the base case, Cut* can be directly eliminated by exhibiting a cut-free proof 7’ with
the same conclusion. This is more in general the case when the cut formula is atomic.

The inductive step consists in transforming 7 into a derivation 7’ with the same
conclusion and one or more applications of Cut with lower rank or with same rank
but lower degree. The typical situation in the original Gentzen proof is that, when the
cut formula is not atomic and is not principal'' in at least one of the premises, the
transformation involves one or more Cut-applications of same rank and lower degree
than Cut*, whereas when the cut formula is not atomic and is principal in both premises,
the transformation involves one or more Cut-applications of lower rank than Cut®, as
illustrated, e.g., in the following transformation:

‘7

m Sy (@A r Y

‘m . . R —
XrA @A+ Y XrA Ar aY
()X + (@A (@A + Y X+ @y
(@)X r Y > (@)X r Y

This regularity breaks down when the Cut-formula is principal in both premises and
has been introduced by means of an application of either contextual rules reverse. In

' An occurrence of a formula in a node of a derivation is principal if that occurrence has been
introduced by means of the last rule applied in the subdeduction ending in that node.
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this case, such a simple transformation as the one above is not available, and we need
to consider all the possible ways in which the proxy {a} has been introduced in the
subdeduction of each premise of Cut*. The proxy {a} might have been introduced by
(@), atomg, balance, and ([%) (applied bottom-up) on the left premise, and by [a]g,

{o}
@
cases (each of which can be subdivided into simpler and more complicated instances),

of which we illustrate just two (in their least complicated incarnations), as examples:
the following one produces a Cut application of lower rank:

atomy,, balance, and ( ) (applied bottom-up) on the right premise. This creates 16 sub-

BrA Ar C
B+ C
‘7 {a}B F (a)C
‘m ArC ,
B A (@A + (a)C 7
[@]B + {a}A ) Pre(a);{a}B + Y
) 7 "Pre(a);[alB F Y
R Pre(a);{a}A + Y [@]B + Pre(a)> Y
X+ {a}A Pre(a);[a]A + Y )
X r [2]A [a]A F Pre(@)>Y !
X v Pre(e)>Y ~> X v Pre(e)>Y

the next one produces a Cut application of same rank and lower degree:

-

ArA

A+ {a}A
”T M
X+ {a}A Ar C
X+ [a]A [@]A + {a}C
X F {a}C
X + Pre(a) > {a}C
X + Pre(a) > {(a@)C
5”2 Pre(a); X + (a)C
E’Tl Ar C .
ArA (@A + (@C i
A+ {a)A . Pre(a);(Pre(a);X) + Y
) 7 (Pre(a); Pre(a));X + Y
I”T Pre(a);{ajA + Y Pre(a); Pre(a) + Y <X
X + {a}A Pre(a);[a]A + Y Pre(a) v+ Y <X
X+ [e]A [a]A + Pre(a)>Y Pre(a); X + Y
X v Pre(x)>Y X + Pre(@)>Y

6 Conclusions, conservativity, and further directions

Besides the cut-elimination, the results in the present paper can be summarized by the
following chain of inclusions between consequence relations, where K is the class of
standard Kripke models:

Fk =teak Stpeak CFz -
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D.EAK conservatively extends EAK. Of course, the language of the latter two conse-
quence relations is an expansion of the language of the former two. To be able to claim
that D.EAK adequately captures EAK, we need to show that +p g4k is a conservative
extension of Fgsx. To see this, let A, B be EAK-formulae such that A +p gax B. By the
soundness of D.EAK w.r.t. the final coalgebra semantics, this implies that [A]l; € [B],
which, by Lemma 1, implies that [A]l,, € [B]l), for every Kripke model M, which, by
the completeness of EAK w.r.t. the standard Kripke semantics, implies that A +gax B.

Proof-theoretic semantics for EAK. The rules of EAK enjoy the following require-
ments, which are well known in the literature of proof-theoretic semantics [21,22]: the
fundamental structural rules of D.EAK are ‘eliminable’: i.e., Id can be restricted to
atomic formulas, and Cut can be removed without affecting the set of theorems. The
operational rules enjoy the properties of separation: each of them introduces exactly
one connective, and of symmetry: for each connective, its left-introduction rules and its
right-introduction rules form nonempty and disjoint sets. All of them but the reverse
rules also enjoy explicitness, which can be reformulated as follows: the side structures
occur unrestricted. However, the offending side substructure is limited to the formula
Pre(a), which can always be derived, e.g. via weakening. Hence, we conjecture that this
offense is essentially harmless. An entirely satisfactory motivation that D.EAK provides
proof-theoretic semantics for the connectives of EAK is work in progress.

Intuitionistic coalgebraic semantics. We wish to develop the intuitionistic version of
these results. This requires to work in the setting of the final coalgebra for the Vietoris
functor on discrete Esakia spaces (S4-frames and p-morphisms).

Cut-elimination d la Belnap. Our proof of cut elimination, which is very lengthy
and could only be sketched in the present paper, follows the methodology of Gentzen’s
original proof. A shorter and more insightful route to the same result consists in either
applying Belnap’s meta-theorem for cut elimination [6] for display calculi, or some
suitable extension of it. In the latter case, this strengthening would be essentially anal-
ogous to extension of Belnap’s meta-theorem to linear logic [7, 19], and is the focus of
current investigation.
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