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Abstract. In this fact sheet we give some preliminary research results on the

Bayesian Decision Theory. This theory has been under construction for the

past two years. But what started as an intuitive enough idea, now seems to

have the makings of something far more fundamental.

1. Introduction

Thanks to the endeavors of Knuth and Skilling, it has been shown that the product

and sum rules of both the Bayesian probability and the Bayesian information theories

are derivable by consistency constraints on the lattices of, respectively, statements

and questions, [14, 39, 55]; the implication being that in our plausibility and relevancy

judgments we humans have a preference for consistency, or, equivalently, rationality.

Moreover, Knuth is now researching if the very laws of Nature themselves may be

derived by way of consistency constraints on lattices of events, [41].

What we now perceive to be the laws of physics are nothing more than conjectures.

These conjectures have obtained the status of laws because of, one the hand, their

close correspondence with empirical fact, and, on the the other hand, their power to

predict physical phenomena, other than the ones that guided us to these conjectures

in the first place. Knuth, and his MaxEnt-colleagues1, are now in the process

of deriving the theorems of Nature, from, what then would be, the primary first

principle of Nature itself, that is, consistency.

In light of both these exciting new developments and the fact that these authors,

after two years of continuous research, have reached the point that they have come

to trust their Bayesian decision theory, to almost the same extent as they have

grown to trust the Bayesian probability and information theories2, these authors

have come to entertain the notion that maybe their Bayesian decision theory, which

initially started as an intuitive enough Bayesian alternative for the paradigm of

behaviorist economics, might actually be Bayesian in the strictest sense of the word;

that is, an inescapable consequence of the desideratum of consistency.

1MaxEnt-Bayesians are those Bayesians that trace their statistical lineage from Jaynes, back to

Jeffreys, back to Laplace.
2The former being their field of expertise, and the latter being the subject matter of the first
author’s current thesis work.
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In this fact sheet we will give the eight supporting contacts, in chronological order,

that led us to this daring3 conjecture, together with the lattice theoretical proof of

the Bernoulli law, also known as the Weber-Fechner law of sense perception, which

until now was the only degree of freedom in our decision theoretical algorithm.

2. The Bayesian Decision Theory

The Bayesian decision theory is very simple in structure. Its algorithmic steps

are the following:

(1) Use the product and sum rules of Bayesian probability theory to construct

outcome probability distributions.

(2) If our outcomes are monetary in nature, then by way of the Bernoulli law

we may map utilities4 to the monetary outcomes of our outcome probability

distributions.

(3) Maximize either the lower or upper bounds, depending on the specific

context of the problem of choice we are studying, of the resulting utility

probability distributions.

This, then, is the whole of the Bayesian decision theory.

3. Bernoulli’s Expected Utility Theory

If we compare the Bayesian decision theory with Bernoulli’s initial 1738 expected

utility theory, [6]. Then we find that these theories only differ, in that the for-

mer proposes to maximize the upper and lower bounds of the utility probability

distributions, whereas the latter proposes to maximize their expectation values.

But, expected utility theory, as most economists and economic behaviorists will

probably know, is plagued by the Ellsberg and Allais paradoxes, [3, 4, 11]. These

paradoxes all boil down to the same two paradoxes.

Problems of choice in which the expected utilities under two hypothetical bets

are either the same, implying a lack of preference of one bet over the other, but

for which there, nonetheless, is an observable preference for one the bets; or the

expected utilities under two hypothetical bets are different, implying a of preference

for the bet with the highest expectation value, but where, nonetheless, the bet with

the lower expectation value is to be preferred, both empirically and introspectively.

3For we share Jaynes’ weary and wariness, when he states, [24]: “[W]e have seen enough ambitious

but short-lived efforts with the generic title: ‘A New Foundation For . . . ’ to become a bit weary

of them. And we have seen enough putative ‘foundations’ develop a fluid character unlike real
foundations and themselves to the unyielding practical realities, to become a bit wary of them.”
4Or, as Bernoulli called them, moral values, [6].
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For example, in one particular Allais paradox we may be asked which bet we

would prefer: The bet in which with certainty we will obtain one million euro, or the

bet in which with a probability of 0.5 we will obtain nothing and with a probability

of 0.5 we will obtain two million euro. It is found, that we overwhelmingly will opt

for the first ‘bet’; even though both bets have an expectation value of one million.

If we take the 1-sigma upper and lower bounds, that is,

(µ− σ, µ+ σ) ,

of both outcome distributions under considerations:

CI-bet1 : (1.000.000, 1.000.000) , CI-bet2 : (0, 2.000.000) .

Then we see that the first bet maximizes the lower bound, one million relative to

zero euro; whereas the second bet maximizes the upper bound, two million relative

to one million euro.

So, if our introspection suggests that we ought to take the first bet, then we see

that for this particular problem of choice we opt for a lower bound maximization5.

Moreover, we see that if we take as our criterion of action the maximizations of the

confidence bounds, as opposed to the maximizations of the expectation values, that

the Allais paradox simply vanishes.

But, if the expectation value maximizations are so problematic, and the solution

is so trivial, why did Bernoulli himself not come upon the idea of confidence bound

maximization?

Well, the reason that Bernoulli did not, or better yet, could not, take the higher

order cumulants of the utility probability distributions into account in his decision

theoretical program, was simply because the prerequisite statistical language to

think along the lines of confidence bound maximizations was still lacking at the

time, when he wrote his 1738 essay6.

4. First Supporting Contact: case study I.

We now turn to the rationale of the individual to take out insurance and the

rationale of the insurance company to provide a single insurance contract. The

example given here is a generalization of the insurance example given by Jaynes,

(pages 400-402, [28]). It is a generalization in that we now do not compare the

5Allais constructed this particular example to demonstrate the psychological reality of variance
preferences. People not only try to maximize the expectation value of utility, they also take into

account the variances of the respective utility probability distributions. Hence, the name variance
preferences, that is, preferences between decisions based upon the variance, or, equivalently, the

standard deviations of the utility probability distributions; see Appendix A.
6See Appendix B.



4 H.R.N. VAN ERP, R.O. LINGER, AND P.H.A.J.M. VAN GELDER

means of the utility probability distributions, but, rather, the lower bounds of the

utility distributions7.

In close analogy with Jaynes’ treatment of this decision theoretical problem, we

provide the reader with a series expansions in the cumulants of the bounds of the

premium P . This series expansion allows us to take a look into the inner workings

of the black-box, that is the decision theoretical algorithm.

4.1. The insurance case. Let P be the premium for some proposed insurance

contract between one individual customer and an insurance company. Let Ci for

i = 1, . . . , n enumerate the contingencies covered. The kth contingency has a

probability pk and a cost of Lk if it were to happen. We assume that the insurance

company and potential customer make the same probability and costs assessments,

pi and Li, for the n contingencies Ci.

For both notational simplicity and computational tractability, we will let the

probabilities for the contingencies as well as their associated costs be equal, that is,

p = p1 = · · · = pn, L = L1 = · · · = Ln.

The outcomes can then be defined as

Oi = i contingencies occur in conjunction, (4.1)

for i = 0, 1, . . . , n.

For equal probabilities of the respective contingencies the associated probabilities

of i contingencies in conjunction follow a Binomial distribution

p(Oi|Dj) =

(
n

i

)
pi (1− p)n−i , (4.2)

for decisions j = 1, 2.

Let S be the initial wealth, ∆S be the increment in wealth, and ψ be the minimum

threshold for monetary stimuli8. Then the Bernoulli law for the moral value of the

monetary stimulus ∆S is given as:

u(∆S|S) = q log
S + ∆S

S
, −S + ψ < ∆S <∞, (4.3)

where we note that the Bernoulli law of the moral value of objective monies is the

same as the Fechner-Weber law of psycho-physics9.

7Jaynes’ insurance example has been instrumental in the formulation of the decision theoretical
algorithm, which is given in this fact sheet. As it provided us, at the very start of this research
project, almost two years ago, with a blue-print for the treatment of this first case study.
8The minimum threshold ψ represents the amount of wealth which constitutes financial ruin.
9As an aside, even though psychology traces it roots back to 1789, which is when Kant wrote his

metaphysical works on sensing. It was only as late as 1860 that psychology saw its status elevated,
from being merely a metaphysical past time, to being a legitimate mathematical and experimental

science, [15]. This elevation came about when Fechner applied Bernoulli’s utility function as a
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4.2. The premium lower bound for the insurer. We will now discuss the

construction of the utility probability distributions of the insurance company under

the decisions to insure and not to insure, respectively, D1 and D2. Then we will

discuss the rationale lower bound maximizations for this particular instance. After

which we will give the intuitive premium lower bound for the insurance company.

Let the insurance company have an initial wealth of M . If the customer pays the

insurance premium P and i contingencies occur in conjunction, then the increment

in the amount of money for a given outcome Oi is, (4.1),

∆Mi = P − iL (4.4)

Then by way of (4.3), (4.2) and (4.4), we may obtain the following utility probability

distribution10 for the decision to insure D1,

p(u|P,D1) =

n∑
i=0

δ

(
u− q log

M + P − iL
M

)(
n

i

)
pi (1− p)n−i . (4.5)

where δ is the Dirac delta function:

δ(u− c) du =

1, u = c

0, u 6= c
(4.6)

or, equivalently, ∫
δ(u− c) f(u) du = f(c) , (4.7)

Note that it is property (4.7) of the Dirac-delta function, which enables us to make

a one-on-one mapping, from outcomes to utilities.

If the insurance company decides not to sell the insurance, that is, decision D2,

then for each number i of contingencies occurring within the same time period, we

have that the initial wealth M of the insurance company remains as is.

So, the corresponding utility probability distribution is11,

p(u|D2) = δ(u) , (4.8)

or, equivalently, a probability one of neither loss nor gain.

We now have constructed the utility probability distributions under both decisions

D1, insure, and D2, do not insure; respectively, (4.5) and (4.8). This leaves us with

the choice whether to maximize the lower or upper bounds under the decisions D1

and D2.

model for the way we humans perceive increments in sensory stimuli; our decibel scale, for example,

follows from the Bernoulli law.
10See Appendix C.
11See Appendix C.
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If we maximize the lower bound under the decision D1, to insure, relative to the

decision D2, not to insure, in the premium P , that is,

E(u|P,D1)− std(u|P,D1) > E(u|D2)− std(u|D2) . (4.9)

Then we find the minimum premium P for which the insurer with a high probability12

will be better of under D1, relative to decision D2.

Stated differently, if we solve the premium P under the equality

E(u|P,D1)− std(u|P,D1) = E(u|D2)− std(u|D2) , (4.10)

we find the premium P for which the insurance company is indifferent to both the

providing and not providing of an insurance.

As the left-hand side of (4.10) becomes much larger than its right-hand side, that

is, as the equality (4.10) goes to the inequality, (4.9),

E(u|P,D1)− std(u|P,D1) >> E(u|D2)− std(u|D2) , (4.11)

then the insurance company will feel ever more compelled to actively sell his insurance

policy to the customer. Since the selling of this policy will tend, as (4.9) tends to

(4.11), to a profit net-return in utility, which maps one-to-one to a profit net-return

in monetary outcomes. So, for the insurance company the decision inequality (4.9)

constitutes an instance of risk-averse, that is, defensive, profit-seeking.

Now, were our insurance company a capital investor, then we may have that

the decision inequality involves an investment level, say, I which will be solved to

maximize the upper bound of the utility probability distribution under the decision

to invest. This upper bound then represents the maximum net-return which has

still has a modest probability of occurring13.

Here we note that confidence intervals represent both an interplay between

outcomes and probabilities.

For example, excessive increments in monetary outcomes, having only very small

probabilities of occurring, may be weighted by a confidence interval exactly the

same as more modest increments in monetary outcomes, which have a much larger

likelihood of occurring.

The same also holds for the expectation values, as these values also represent an

interplay between outcomes and probabilities, or, equivalently, risk.

Also note that the constant q in (4.5) is the unknown scaling constant of a

monetary stimulus. As it turns out, all reference to this constant falls away the

12For a normal utility distribution, the region to the right of the lower bound represents a probability

of P (u ≥ µ− σ) = 0.84.
13For a normal utility distribution, the region to the right of the upper bound represents a
probability of P (u ≥ µ+ σ) = 0.16.
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moment we solve inequality (4.9) for the premium P . This holds for all our bound

maximizations. This can be seen as follows.

Let X and Y both be stochastic and q some positive constant. Then the inequality

E(qX)− std(qX) > E(qY )− std(qY ) (4.12)

is equivalent to the inequality, [43],

q [E(X)− std(X)] > q [E(Y )− std(Y )] . (4.13)

Dividing both sides of (4.13) by the constant q, we are left with a further equivalence

E(X)− std(X) > E(Y )− std(Y ) , (4.14)

in which all mention of the unknown scaling constant q has fallen away.

First we assume that the initial wealth of the insurance company M is much

larger than the total damage incurred, should all the contingencies occur in the

same time period, that is, nL. Then the logarithm in (4.5) will become linear in

the neighborhood of increments of the size nL.

We then compute the mean and standard deviations of the utility probability

distributions (4.5) and (4.8), substitute them in (4.9), and solve for the premium P .

This gives the following premium lower bound for the insurance company:

P > npL+
√
np (1− p)L. (4.15)

Seeing that

E(iL) = npL std(iL) =
√
np (1− p)L, (4.16)

we have that (4.15) tells us that the premium must be larger than the 1-sigma

monetary damage upper bound, for the insurance company to offer the insurance

contract:

P > E(iL) + std(iL) . (4.17)

This result is pleasantly intuitive, since in the decision theoretical inequality (4.9) a

1-sigma level security level was specified.

Note that, by solving for the premium P , we have gone from the utility dimension,

on which our inequality (4.22) was defined, again to the monetary outcome dimension,

on which the premium P resides.

4.3. The premium upper bound for the customer. There are two distinct

decisions for the customer

d1 = Buy Insurance, d2 = Do Not Buy Insurance.

Let the customer have an initial amount of money m. If the customer buys the

insurance, D1, then for any number of contingencies Oi the monetary outcome will

always the same. The customer pays the premium P and now has an updated
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amount of wealth m− P , and whatever the number of contingencies, his damages

are always refunded to the level m− P .

Stated differently, if the customer does buy the insurance, then

∆mP = m− P (4.18)

Then by way of (4.3), (4.2) and (4.18), we have:

p(u| d1) = δ

(
u− q log

m− P
m

)
(4.19)

which is equivalent to the statement that

P

(
u = q log

m− P
m

)
= 1.

Now, if the customer decides not to buy insurance, d2, then for a given number

of contingencies Oi the monetary damage is iL. So, under Oi the updated amount

of wealth is

∆mi = m− iL. (4.20)

Then by way of (4.3), (4.2) and (4.20), we have:

p(u| d2) =

n∑
i=0

δ

(
u− q log

m− iL
m

)(
n

i

)
pi (1− p)n−i , (4.21)

which is equivalent to the statement that

P

(
u = q log

m− iL
m

)
=

(
n

i

)
pi (1− p)n−i .

We now have constructed the utility probability distributions under both decisions

d1, take out an insure, and d2, do not take out an insurance; respectively, (4.19)

and (4.21). This leaves us with the choice whether to maximize the lower or upper

bounds under the decisions d1 and d2.

The customer does not wish to take out an insurance in order to make a profit.

Rather, he wishes to mitigate a potential loss. So, we maximize the lower bound

under the decision d1, to take out an insurance, relative to the decision d2, not to

take out an insure, in the premium P , that is,

E(u|P, d1)− std(u|P, d1) > E(u| d2)− std(u| d2) . (4.22)

By doing so, we find the maximum premium P for which the insurer with a high

probability will still be better of under d1, relative to decision d2. Note that the

unknown constant q in (4.19) and (4.21) will fall away in the decision theoretical

(4.9); see (4.12) through (4.14).

Solving (4.22) for the premium P , we obtain the premium upper bound for the

customer:

P < m {1− exp [E(m− iL| d2)− std(m− iL| d2)]} . (4.23)
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For a given insurance problem, the inequality (4.23) can simply be evaluated nu-

merically by computing the mean and standard deviation of (4.21) and substituting

the corresponding values into (4.23).

Alternatively, if we assume a moderately rich customer for who we may use the

log approximation, (4.21),

q log
m− iL
m

= q log

(
1− iL

m

)
≈ q

[
− iL
m
−
(
iL

m

)2
]
, (4.24)

then we may make a series expansion of the right hand side of (4.23) in the cumulants

of the generating binomial probability distribution14.

By doing so, we obtain the following approximation of (4.23):

P < E(iL) + g std(iL) +O
(
m−3/2

)
. (4.25)

where g is the factor which quantifies the effect of the curvature, in neighborhood of

the possible monetary damages, of the Bernoulli law,

g =

√
1 +

E(iL)

m
+ γ

std(iL)

m
+

1

4var(iL)

var[var(iL)]

m2
− E(iL)

m
, (4.26)

It may be checked, or derived, that as the ratio L/m tends to zero, then g will also

tend to one.

Looking at (4.25) and (4.26), we see that the premium upper bound is modulated

upward by the spread in monetary damage, the asymmetry in the distribution of

monetary damage, and a scaled variance of the variance of the monetary damage;

respectively, std(iL), γ, and var[var(iL)] /var(iL).

The latter implies that we are willing to pay a slightly higher premium price if

this removes the uncertainty that var[var(iL)] entails. Our aversion to loss is not

only a function of our uncertainty regarding that loss, but also of the uncertainty

we have regarding that uncertainty, [28].

4.4. Setting a premium on insurances. In order to set a premium on the

insurance contract, we compare the premium constraint of the customer, (4.25),

with that of the insurance company, (4.17). It follows that the premium should be

in the range

E(iL) + std(iL) < P < E(iL) + g std(iL) (4.27)

The margin of profit, MoP , for the insurance company is the premium P minus

the range of probable monetary damage E(iL) + std(iL). Rewriting (4.27), we see

that the MoP for the insurance company lies in the range

0 < MoP < (g − 1) std(iL) (4.28)

14This series expansion resulted in some 140 terms, which then had to be condensed manually into
the cumulant forms of the binomial probability distribution.
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Note that the margin of profit for the insurance company increases as the spread

in risk, that is, the spread in monetary damage, std(iL), increases. This is quite

intuitive.

If std(iL) = 0, then both the insurance company will ask as its minimum premium

the certain damages, say, kL, where 0 ≤ k ≤ n; whereas the customer, on his part,

will not be willing to pay more than these certain damages. This then leaves us

with a margin of profit of

MoP = kL− kL = 0,

as predicted by the Bayesian decision theory.

Looking at (4.25) and (4.26), we see that if the maximum amount of monetary

damage, nL, is much smaller than the initial amount of wealth m, that is, nL/m <<

1, then the term g will tend to 1. Consequently, the upper bound of the margin of

profit, (4.28), will tend to zero, as the customer becomes his own insurer and there

is no profit to be had for the insurance company15.

Furthermore, the insurance company may exact a considerably larger margin of

profit from those that are not moderately rich, that is, for those who have an initial

wealth of, say, m << 1.000.000. As for them there is a very real chance of suffering

financial ruin, were all the contingencies occur at once.

For these cases the approximation (4.25) of (4.23) will break down, as the

curvature factor g, (4.26), increases. The premium inequality (4.27) then will go

the the corresponding inequality, (4.23):

E(iL) + std(iL) < P < m {1− exp [E(m− iL| d2)− std(m− iL| d2)]} , (4.29)

which expresses a higher willingness by the customer to buy an insurance. As a

consequence, (4.28) will go to

0 < MoP < m {1− exp [E(m− iL| d2)− std(m− iL| d2)]} − E(iL)− std(iL) ,

(4.30)

which reflect the subsequent higher margins of profit for the insurance company.

4.5. Setting a premium on insurances on multiple insurance contracts.

Up to now we have only treated the case of a single contract between an insurance

company and just the one solitary customer.

Now, lets assume that the insurance company has N outstanding contracts, each

contract covering n contingencies with probability p and a payout of L for each

contingency. Then a total of Nn separate contingencies are covered each having

probability p. Stated differently, for the insurance company there are now Nn

possible outcomes, as opposed to only n possible outcomes. These Nn outcomes

15This phenomenon would seem to be a fundamental property of insurances; as it is replicated in

our third case study, which also treats an insurance contract of sorts.
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have a mean and variance of, respectively,

µ = Nnp = NE(i) , σ2 = Nnp (1− p) = Nvar(i) . (4.31)

If we assume that the initial wealth M of the insurance company is sufficient to

make its utility for money linear, then it follows that the premium lower bound for

the collective of contracts should be set to, (4.15) and (4.31),

NP > NnpL+
√
Nnp (1− p)L = NE(iL) +

√
Nstd(iL) . (4.32)

The lower bound of the insurance company, typically, does not factor into the

premium upper bound of the customer. So, this upper bound remains unchanged.

It follows that the upper bound of the collective of separate contracts is given by

the sum of the N upper bounds:

NP < Nm {1− exp [E(m− iL| d2)− std(m− iL| d2)]} . (4.33)

By way of (4.25), we may for the moderately rich approximate (4.33) as

NP < NE(iL) +Ng std(iL) , (4.34)

where g ≥ 1, (4.26). Combining (4.32) and (4.34), it follows that the collective

margin of profit for the N contracts is, approximately,

MoPN <
√
N
(√

Ng − 1
)

std(iL) . (4.35)

For example, for customers with an initial wealth m = 1.000.000 of the lower

bound of the premium for solitary insurance contracts which cover n = 10 con-

tingencies, each having probability of p = 10−4 and a maximum payout for each

contingency of L = 50.000 dollars, is, using (4.16) and the exact16 (4.23):

P > 1631. (4.36)

Now, say we have N = 10.000 outstanding contracts, then we have that (4.32):

NP > 500.000 + 158.100 = 658.100, (4.37)

whereas the upper bounds for customer initial wealth m = 1.000.000, (4.36), is

multiplied by a factor N , giving a collective margins of profit of

MoPN < 16.720.000− 658.100 = 16.061.900. (4.38)

So we see that for a sufficiently large initial wealth M , the law of large numbers

combined with the customer’s non-linear utility of money allow the insurance

company to make a hefty profit on its ten thousand insurance contracts.

16Note that the approximation (4.25) will lead to a margin of error of about one and a half dollar,

relative to (4.36).
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5. Second Supporting Contact: case study II.

We now apply our Bayesian framework to a simple scenario in which a province

must decide on how it is willing to invest in a further improvement of its flood

defenses. The two decisions under consideration in our case study are

D1 = keep the status quo,

D2 = improve the flood defenses.

The investments costs associated with the improvement of the flood defences are

designated as

I = investment costs associated with improved flood defenses.

The possible outcomes in our risk scenario remain the same under either decision,

and as such are not dependent upon the particular decision taken. These outcomes

are

O1 = regular river flooding,

O2 = catastrophic river flooding,

O3 = no flooding,

where O2 is the multiple hazard instance in which the synergy of a regular river

flooding in conjunction with a heavy storm conspire to cause a catastrophic flooding.

The decision whether to improve the flood defenses or not is of influence on the

probabilities of the respective outcomes. Under the decision to make no additional

investments in flood defenses and keep the status quo, D1, the probabilities of the

outcomes will be, say,

P (O1|D1) = 10−2,

P (O2|D1) = 10−5, (5.1)

P (O3|D1) = 1− P (O1|D1)− P (O2|D1) .

Under the decision to improve the flood defenses, D2, the probabilities of the flood

outcomes will be decreased, leaving us with hypothetical outcome probabilities, say,

P (O1|D2) = 10−3,

P (O2|D2) = 10−7, (5.2)

P (O3|D2) = 1− P (O1|D2)− P (O2|D2) .

The flood defenses will decrease the chances of a regular river flooding by a factor

of only 10. But, as the proposed flood defenses explicitly take into account the
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failure mechanisms resulting from the simultaneous occurrence of wind storms and

a flooding, the chances of a catastrophic river flooding are reduced by a factor 100.

We now proceed to assign utilities to the outcomes. The hypothetical damages

associated with the outcomes are, respectively,

C1 = 10 million euro,

C2 = 5 billion euro, (5.3)

C3 = 0 euro.

Note that if we were to do an actual analysis, rather than a demonstration of the

here proposed decision theoretical framework, then the cost of money itself, in the

form of a potential loss of interest on the investment I and the outcomes Ci, should

be taken into account also.

Finally, we assume that our province has an initial wealth of M .

Then, by way of the Bernoulli law, (4.3), the utilities for the decision not to

invest in additional flood defenses, D1, are given as:

ui|D1 = q log
M − Ci
M

, i = 1, 2, 3, (5.4)

If additional investments are made to improve the flood defenses, D2, then the

utilities become, (4.3):

ui| I,D2 = q log
M − Ci − I

M
, i = 1, 2, 3. (5.5)

Seeing that the unknown constant q in (5.4) and (5.5) will fall away in the decision

theoretical inequalities, (4.12) through (4.14), we may, without any loss of generality,

set q = 1.

The utility probability distributions under D1 and D2, then can be written out

as17, (5.1), (5.3), (5.9), and (5.4):

p(ui|D1) =


P (O1|D1) , u1 = log M−C1

M

P (O2|D1) , u2 = log M−C2

M

P (O3|D1) , u3 = log M−C3

M = log M
M = 0

and (5.2), (5.3), (5.9), and (5.5)

p(ui| I,D2) =


P (O1|D2) , u1 = log M−C1−I

M

P (O2|D2) , u2 = log M−C2−I
M

P (O3|D2) , u3 = log M−C3−I
M = log M−I

M

17Note that we forgo in this example of the formal Dirac-delta notation. We do this to accentuate

the simplicity of the Bayesian decision theoretical algorithm.
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where we explicitly condition on the investment I, as this is the variable for which

we wish to solve our decision inequalities.

The lower bound of the k-sigma utility confidence interval for the decision to

keep the status quo D1 represents our pre-investment risk exposure. We will only

agree to carry the burden of additional investments if this will tend to improve the

current risk exposure, or, equivalently, if the lower bound of the k-sigma utility

confidence interval under D2 exceeds the lower bound under D1.

So, the inequality of interest is the lower bound maximization. By way of the

identities, [43],

E(X) =
∑
i

P (Xi) Xi, std(X) =

√∑
i

P (Xi) [Xi − E(X)]
2
, (5.6)

we may compute the expectations value and standard deviations of (5.6) and (5.6),

and construct the lower maximization inequality:

E(u| I,D2)− k std(u| I,D2) > E(u|D1)− k std(u|D1) , (5.7)

We then solve for that investment I where decision D2 starts to become more

profitable than D1. This I is then the maximal investment we are willing to make

in order to improve our flood defenses.

Note that the confidence intervals of (5.6) and (5.6), respectively,

[E(u|D1)− k std(u|D1) , E(u|D1) + k std(u|D1)]

and

[E(u| I,D2)− k std(u| I,D2) , E(u| I,D2) + k std(u| I,D2)] ,

are used as proxies for the actual utility probability distributions P (u|Di), for

i = 1, 2; that is, the lower bounds of these confidence bounds in the decision

theoretical inequality (5.7) give us a numerical handle on the left-hand position of

the utility probability distributions (5.6) and (5.6).

By way of Chebyshev’s inequality, [43], we have the following general inequality

for the coverage of the k-sigma confidence interval:

coverage =
k2 − 1

k2
. (5.8)

If we assume our province to be quite wealthy, with an initial wealth of:

M = 10 billion euro.

Then we find, if we numerically solve for I for different sigma levels k, the

following maximal investments for which the implementation of the additional flood

defenses is still profitable. These maximal investments, together with the minimal

coverages of the corresponding k-sigma intervals, (5.8), are given in Table 1:
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sigma level k coverage CI greater than maximal investment I

0 n.a. 0.2× 106

1 0 19.9× 106

2 3/4 39.5× 106

3 8/9 59.1× 106

4 15/16 78.7× 106

5 24/25 98.1× 106

6 35/36 117.6× 106

Table 1. maximal I for different sigma levels: M = 10× 109

If we operate on a 6-sigma level of cautiousness, we will be willing to spend up

117.6 × 106 euros for the additional flood defenses which decrease the chances of

flooding from (5.1) to (5.2). If we are satisfied with a 1-sigma level of cautiousness,

then we are only willing to spend up to 19.9×106 euros on those same flood defenses.

Note that the maximal investment of 0.2×106 euros for k = 0 is the expected utility

theory solution of this investment optimization problem.

Now, in the previous case study we saw that the Bayesian decision theoretical

algorithm has a very intuitive style of reasoning. So, having had our intuition taught

in this regard, we will try to reason like the Bayesian algorithm, and then check if

we have succeeded in our attempt.

We conjecture that the maximal investment we will be willing to make in the

additional flood defenses is the upper bound in the monetary damages under (5.1)

and (5.3) minus the upper bound in monetary damages under (5.2) and (5.3).

The former upper bound represents the still probable upper bound in damages

if we keep the status quo; whereas the latter upper bound represents the still

probable upper bound in damages if we implement additional flood defenses. The

distance between these upper bounds represents the margin of investment, where

the investments are still expedient.

For a 1-sigma level we find that, (5.3), (5.6), (5.6), and (5.6):

E(Ci|D1) + std(Ci|D1)− [E(Ci|D2) + std(Ci|D2)] = 14.4× 106. (5.9)

If we assume a linear utility for monetary outcomes, or, equivalently,an initial wealth

which is

M →∞.
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Then it may be checked that the maximal investment for a 1-sigma level of security

goes to:

I → 14.4× 106,

which is as was predicted in (5.9).

Note that again we have that our decision theoretical probability, which was

couched in the maximization of the utility of an investment, translates to an

investment which is a function of the probabilistic upper bound of the monetary

damages.

6. Third Supporting Contact: case study III.

Before premium-based insurances were well and truly introduced in the Northern

Netherlands, approximately around the mid-sixteenth century, merchants and ship-

owners fell back on different methods for dealing with the financial consequences

of long-distance maritime trade. A well known and often applied construction was

known as bottomry (bodemerij).

With bottomry a loan was taken out, which was only to be repaid if the vessel

or merchandise arrived safely at the port of destination. Therefore, this method

incorporated a financing component and was not a pure insurance contract. The

premium paid for bottomry (known as opgelt) could amount to as much as 30 or

even 70 per cent of the value of the loan, [19].

We will treat the case of bottomry here, using the Bayesian decision theoretic

framework. In what follows, we will set the scaling constants q of the Bernoulli law

(4.3) to q = 1. We may do so, without any loss of generality, since these constants

will cancel out in the decision theoretic inequalities, as is demonstrated in (4.12)

through (4.14).

6.1. The insurance case. We have a merchant with a current wealth of m. The

one contingency he wishes to have covered is the loss of his cargo, which would

incur a monetary damage of L. If his cargo safely reaches the harbor, the merchant

stands to generate a revenue with which he can buy his cargo C times over. Let p

be the probability of ship and cargo being lost at sea.

6.2. The money lender. The insurer, having an initial wealth of M , will provide

the merchant with a bottomry loan of L in exchange for an interest factor c, where

c < C − 1, to be collectable, together with the loan itself, once the cargo safely

reaches the harbor. Under this arrangement, the potential wealth Mpot. of the

insurer, should the merchant take out a bottomry contract, is

Mpot. =

M − L, p

M − L+ (1 + c)L, 1− p
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or, equivalently,

Mpot. =

M − L, p

M + cL, 1− p
(6.1)

By way of (4.3) and (6.1), we may construct the utility probability distribution

under E1, the event that the merchant commits himself to the bottomry contract,

as

p(u|E1) = δ

(
u− log

M − L
M

)
p+ δ

(
u− log

M + cL

M

)
(1− p) . (6.2)

Assuming for the insurer, who is a rich retired merchant, a near linear utility for

money in the neighborhood of L, (6.1) simplifies to:

p(u|E1) = δ

(
u+

L

M

)
p+ δ

(
u− cL

M

)
(1− p) , (6.3)

or, equivalently,

p(u|E1) =

p, u = −L/M

1− p, u = cL/M

The insurer will agree with the contract if the lower bound of the utility is greater

than zero; zero being the utility of not providing a bottomry loan to the merchant,

as no money is lost and no money is gained in that case. This translates to the

inequality:

E(u|E1)− std(u|E1) > 0, (6.4)

where

E(u|E1) = [(1− p) c− p] L
M

(6.5)

and

std(u|E1) = (1 + c)
√
p (1− p) L

M
. (6.6)

Solving inequality (6.4), we find for the insurer the following lower bound for the

interest factor c,

c >
p+

√
p (1− p)

(1− p)−
√
p (1− p)

, (6.7)

where (6.7), is the ‘odds’ of the upper bound probability of a ship sinking and

the lower bound probability of a ship not sinking; since
√
p (1− p) is the standard

deviation of the Bernoulli event of a ship sinking.

One of the central themes of Jaynes’ [28] is that Bayesian probability theory,

being quantified common sense, may teach our intuition. And it would seem that

in (6.7) we have an instance where our intuition is educated by Bayesian decision

theory.
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These authors already knew that odds are associated with bookmaking18, so

the odds form itself was not that much of a surprise19. But the
√
p (1− p) safety

correction was not anticipated.

However, this correction, pointed out to us by the Bayesian decision theory, makes

nothing but sense, as it expresses the fact that in constructing a conservative odds

ratio, that is, a safe bet, one ought to take into account the intrinsic uncertainty

we have regarding the occurrence of the Bernoulli event of a ship either sinking or

not-sinking.

6.3. The merchant. Let m be the amount of money the merchant initially had,

before buying his cargo. If the merchant decides to take out the bottomry loan, D1,

then his potential wealth is

mpot.|D1 =

m− L+ L, p

m− L+ L+ [C − (1 + c)]L, 1− p

or, equivalently,

mpot.|D1 =

m, p

m+ (C − 1− c)L, 1− p
(6.8)

where, if the merchant is to get any compensation for all of his hard work, 1 + c < C,

or, equivalently, c < C − 1. Under the decision not to hedge against the possible

loss of his cargo, D2, the potential wealth of the merchant is

mpot.|D2 =

m− L, p

m− L+ CL, 1− p

or, equivalently,

mpot.|D2 =

m− L, p

m+ (C − 1)L, 1− p
(6.9)

For the decision to take out the bottomry loan, D1, the utility distribution may

be written down as, (4.3) and (6.8),

p(u|D1) = δ
(
u− log

m

m

)
p+ δ

(
u− log

m+ (C − 1− c)L
m

)
(1− p) . (6.10)

18As an aside, the pay-out of a winning bet involving regular odds is the money that was put in

times a factor 1 + p
1−p , or, equivalently, 1

1−p . The insurer, however, demands for his ‘winning bet’

a minimum pay-out of, (6.7): 1 + c = 1

(1−p)−
√
p(1−p)

.

19Though this is the first time that we realize that the odds is a decision theoretical measure;
as it is a pay-out factor we are to receive if we commit ourselves to a bet. However, a quick
literature search on the history of the odds would seem to indicate that odds have traditionally
been perceived to be a probability theoretical measure; see also Appendix D.
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For the decision not to take out the bottomry loan, D2, we have, (4.3) and (6.9),

p(u|D2) = δ

(
u− log

m− L
m

)
p+ δ

(
u− log

m+ (C − 1)L

m

)
(1− p) . (6.11)

The merchant will take out a bottomry loan if the lower bound of the utility

under the decision to take out the loan is greater than the lower bound of the utility

under the decision not to take out the loan:

E(u|D1)− std(u|D1) > E(u|D2)− std(u|D2) , (6.12)

where, (6.10),

E(u|D1) = (1− p) log
m+ (C − 1− c)L

m
, (6.13)

std(u|D1) =
√
p (1− p) log

m+ (C − 1− c)L
m

. (6.14)

for c < C − 1; and, (6.11),

E(u|D2) = p log
m− L
m

+ (1− p) log
m+ (C − 1)L

m
, (6.15)

std(u|D2) =
√
p (1− p)

∣∣∣∣log
m− L
m

− log
m+ (C − 1)L

m

∣∣∣∣
(6.16)

=
√
p (1− p)

(
log

m+ (C − 1)L

m
− log

m− L
m

)
.

Solving inequality (6.12), we find the upper bound of the interest factor c, as

determined by the merchant:

c <
(
C − 1 +

m

L

)1−
(
m− L
m

) p+
√
p(1−p)

(1−p)−
√
p(1−p)

 . (6.17)

Note that in (6.17) we again encounter the adjusted odds (6.7). Moreover, it may

be checked, numerically, that if the merchant himself has an ample fortune, such

that L/m → 0, or, equivalently, his utility for money becomes linear, then (6.17)

tends to (6.7), that is,

(
C − 1 +

m

L

)1−
(
m− L
m

) p+
√
p(1−p)

(1−p)−
√
p(1−p)

→ p+
√
p (1− p)

(1− p)−
√
p (1− p)

. (6.18)

So, as the merchant gets richer, the maximum fraction of profit the merchant is

willing to share in return for an insurance converges to the minimum fraction of

the profit the money lender wishes to receive for that insurance. It follows that the

margin of profit for the insurer will evaporate, as the merchants it services become

rich enough to become their own insurers. A phenomenon which was also observed

in the premium insurance case study.
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6.4. Setting an interest factor on the bottomry loan. In order to set an

interest factor for the bottomry loan, we compare the interest constraint of the

customer, (6.17), with that of the insurer, (6.7). We see that the interest factor c

that is both acceptable to the insurer and the merchant lies in the range

p+
√
p (1− p)

(1− p)−
√
p (1− p)

< c <
(
C − 1 +

m

L

)1−
(
m− L
m

) p+
√
p(1−p)

(1−p)−
√
p(1−p)

 (6.19)

where c < C − 1, see (6.8).

If the merchant has a cargo which represents a L = 200 guilders investment, his

total initial wealth being m = 1.000 guilders, and a promised return factor of C = 2,

then we may obtain the following bounds of the interest factor c as a function of

the probability of a shipwreck p, Figure 1:

Figure 1. Bounds premium factor as function of probability of shipwreck.

From Figure 1, we see that if one in twenty ships gets lost on the high seas, that

is, p = 0.05, then the minimum interest factor which the insurer will demand in

order to cover his risk exposure is c = 0.37. The merchant is willing to pay up about

half of his net profits, that is, an interest factor of c = 0.47, for the bottomry loan

of L guilders, as without this loan he stands a small but still very real chance to

lose a fifth of his fortune in a shipwreck.

The interest factor c, as a function of the return factor C, is linear in C, (6.7).

For p = 0.05, m = 1000, L = 200, we may obtain the following linear equation for

the interest factor c:

c(C) = 0.314 + 0.078 C, (6.20)

and we see that every unit return factor C increases the merchant willingness with

a factor of ∆c = 0.078.



FACT SHEET 21

For example, if the return factor is C = 4, then our merchant will be willing to

pay an interest factor of c = 0.63 for the same bottomry contract20, (6.19), which is

an increase in interest c by a factor of 1.33.

So, the increased prospect of his absolute riches make the merchant more inclined

to share his wealth, in return for the same commodity; that commodity being a

bottomry contract which promises him a riskless profit21.

In closing, it may observed that as the probability of a maritime mishap approaches

p→ 1/2, the lower-bound (6.7) will collapse, warning us that inequality (6.4), or,

equivalently, risk aversive profit making, tends to become an impossibility. In these

cases it might seem that no loans can be had. However, this is not necessarily so.

If the potential profits sufficiently outweigh the potential losses, then risk-seeking

venture capitalist may be sought out who are willing to invest in the high-risk,

high-yield trade routes.

For instance, the Far East trade at the beginning of the 17th century was

both extremely dangerous, with ship loss rates approaching22 100%, as well as

spectacularly profitable, with initial potential return factors23 of C = 50.

In 1601, following the discovery of the spice sea route, there was a rush on

fine spices by Amsterdam merchants. Within the year fourteen expeditions by six

different trading companies, sixty-five ships in total, were send around the Cape

of Good Hope24. But this influx of traders threatened to squeeze the profits right

out of the spice trade. In order to remedy the situation the Dutch government

established in 1602 a single combined monopoly organization to handle all commerce

to the Indies.

20Note that these interest factors are within the historical interest bounds of 30% to 70%, as
reported in [19]. We have tried to distill from [7] and [19] realistic return factors C and probabilities
of a ship loss p. Return factors ranging from C = 2 to C = 4, and a ship-loss frequency of p = 0.05,

would seem to be reasonable estimates for the 16th century Dutch Levant trade, which was both
risky and profitable. But in order to put the decision theoretical model to a more rigorous empirical
test, we would have to find a naval historian to collaborate with; seeing that naval history is not

our field of expertise.
21If so stated, an intuitive enough statement, but it took us a second to arrive at its formulation.

We initially computed c = 0.63 for C = 4, by way of (6.17). This value seemed intuitive enough,

more profit means more willingness to pay. So, we did not pay much heed to it. But when we
realized that c was linear in C and, consequently, had derived (6.20), we were struck by a sense of

initial wonderment.
22Prince Henrique the Navigator devoted himself and his families’ fortune to finding a sea route

around Africa. By the time of Henrique’s death in 1460, Portuguese vessels under his patronage

had reached the waters of equatorial Africa, but still had not gained the southern passage into the
Indian Ocean, [7].
23When the Golden Hind returned to Plymouth in 1580 laden with the riches of the East, its
contents repaid Drake’s backers fifty pounds for every one invested, [7].
24These expeditions had an aggregated ship loss rate of about 33%.
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Investors provided this newly established V.O.C. with 6.5 million guilders in

initial funding to hire men, purchase ships, and acquire silver and trade goods to

exchange for spices, [7].

So, here we have an historical example of a high-risk and high-yield commercial

venture where cheap investment money was easy enough to come by. As both the

risks and the profitability of the trade route increases, the moneylender will make

the transition from risk-aversive money lending to risk-seeking share holding, and,

consequently, the bottomry loan will transition into a capital investment25.

7. The Skewness Confidence Interval

As stated before, we may compare utility probability distributions by way of

their confidence intervals.

By comparing the bounds of the bounds of the confidence intervals of the utility

probability distributions, we generalize upon expected utility theory, in that we not

only compare the utility expectation values E(u|Di) under the decisions Di, but

also the standard deviations std(u|Di).

The standard deviations of the utility probability distributions hold pertinent

information for our decision problems, as is borne out by the observed phenomena

of Source Dependence and Variance Preferences, or, equivalently, the Ellsberg and

Allais paradoxes. So, it would stand to reason that the skewness of the utility

probability distributions, [23],

skew(u|Di) =

∫
[u− E(u|Di)]

3
p(u|Di) du

[std(u|Di)]
3 , (7.1)

which is the scaled third order central moment of a distributions, and a measure of

its asymmetry, may also hold some pertinent information. And as it turns out, it

does. So, we will give here the skewness corrected confidence interval.

If we let, for notational compactness,

µ = E(u|Di) , σ = std(u|Di) , γ = skew(u|Di) . (7.2)

Then the traditional 1-sigma confidence interval may be written down as:

(µ− σ, µ+ σ) (7.3)

If we let the following three simple considerations be our guide:

(1) The corrected confidence interval should for γ = 0, this being the skewness of

the normal distribution, revert back to (7.3); as it is only by such a property

25We conjecture that the Bayesian decision theoretical analyses of capital investments, that is,
risk-seeking profit making, will disclose to us a whole new set of dynamics that govern this type of

profit making. But though the dynamics might change, what remains constant are the over-arching
laws that allow for their expression; those laws being the rules of the Bayesian decision theoretical
algorithm.
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that the new skewness corrected confidence interval may encompass the

standard confidence interval (7.3) as a special limit case.

(2) The corrected confidence interval should take into account the skewness

γ in such a way that for γ > 0 it would compress the lower bound while

elongating the upper bound; as this is the qualitative way in which, relative

to (7.3), positive skewness ought to be corrected.

(3) The corrected confidence interval should have a coverage for skewed proba-

bility distributions that approaches 0.68; as this is the coverage of the sigma

confidence interval (7.3) for the non-skewed normal distribution.

Then corresponding skewness corrected 1-sigma confidence intervals are given as,

for a skewness of γ > 0:

µ− σ

1 +
3
√
γ

1+γ+ 1
1+γ

, µ+

(
1 +

3
√
γ

1 + γ + 1
1+γ

)
σ

 , (7.4)

and for a skewness of γ < 0:

µ−(1−
3
√
γ

1− γ + 1
1−γ

)
σ, µ+

σ

1−
3
√
γ

1−γ+ 1
1−γ

 , (7.5)

where it is understood that the third square root of a negative returns a negative.

7.1. The derivation of the skewness confidence interval. To the best of our

knowledge, no generalization of the time proven interval (7.3), in the form of the

intervals (7.4) and (7.5), is to be found in the statistical literature26. So, we can

sympathize if, at a first glance, these intervals might seem somewhat arbitrary.

26Note that Cornish-Fisher expansions are cumulant corrected confidence bounds for sampling
statistics, which are obtained by way of series expansions in the sample size n. Here we do not

have sampling statistics, samples, or, for that matter, sample sizes; as we ourselves quickly came
to realize, in our initial search for the skewness corrected confidence interval. Furthermore, the

adjusting terms in the Cornish-Fisher expansions, which are summated, are of the form: power of

a cumulant times a polynomial function; which is not the form which we have here, [23].
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In order to take away from this possible sense of arbitrariness, we shall now share

here the reasoning process that led us to our discovery of the skewness corrected

confidence intervals.

The search of (7.4) started with two simple considerations. Firstly, we were

looking for a skewness corrected confidence interval which for γ = 0, this being the

skewness of the normal distribution, would revert back to (7.3); as it is only by such

a property that the new skewness corrected confidence interval may encompass the

standard confidence interval (7.3) as a special limit case. Secondly, we desired from

our corrected confidence interval that it should take into account the skewness γ

in such a way that for γ > 0 it should compress the lower bound while elongating

the upper bound; as this is the qualitative way in which, relative to (7.3), positive

skewness ought to be corrected.

These considerations led us, for positive skewness, to the initial proposal:(
µ− σ

1 + γ
, µ+ (1 + γ)σ

)
. (7.6)

But it was found that with this proposal the corrected confidence interval of the

Bernoulli distributions, for p ≥ 0.5 and outcomes C1 and C2, where C1 < C2, was

approximately constant:(
µ− σ

1 + γ
, µ+ (1 + γ)σ

)
≈ (C1, C2) , (7.7)

with equality holding in the limits p→ 0.5 and p→ 1.

It was also found that for the binomial distributions, having outcomes i =

0, 1, . . . , n, the interval (7.6) converged to the interval (0, 1), as p, the probability of

a success, tended to zero.

This meant that our proposal would not do, for it followed that (7.6) as a

confidence interval would lead to a loss of the probabilistic element in our decision

theoretical analyses.

Nonetheless, on the up-side, for the exponential distribution,

p(x|λ) = λ exp (−λx) , 0 ≤ x <∞ (7.8)

which has a mean, standard deviation, and skewness of, respectively,

µ =
1

λ
, σ =

1

λ
, γ = 2, (7.9)

there were some encouraging results to report.

The traditional confidence interval of the exponential distribution, as found by

way of (7.9) and the unadjusted (7.3), is
(
0, 2

λ

)
and has a coverage of:∫ 2

λ

0

λ exp (−λx) dx = 0.86. (7.10)
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It was found that (7.6), by way of (7.9), translated to the interval
(

2
3λ ,

4
λ

)
. This

interval had a coverage of: ∫ 4
λ

2
3λ

λ exp (−λx) dx = 0.50. (7.11)

Now, if we compare the coverages (7.11) and (7.10) with the coverage of the

standard sigma interval (µ− σ, µ+ σ) for the normal distribution:∫ µ+σ

µ−σ

1√
2πσ

exp

[
− 1

2σ2
(x− µ)

2

]
dx = 0.68, (7.12)

then it would seem that the adjusted (7.11) was no worse than the traditional (7.10).

Moreover, the lower bound of the adjusted interval was no longer the trivial zero,

while the upper bound had been elongated by, what would seem to be a reasonable

factor.

These modest successes for the confidence interval of the continuous exponential

distribution, in terms of qualitative behavior and actual coverage, managed to give

us a sense of being on the right track somehow.

We then contemplated that the standard deviation σ is the square root of

the second order central moment; the square root being the operation by which

we translate the second-order information about the spread in our probability

distribution to the first-order dimension, which is the dimension in which our

propositions of interest reside.

So maybe we had to take the third central moment m(3), (7.1) and (7.2):

m(3) =

∫
(x− µ)

3
p(x| {θ}) dx = γ σ3, (7.13)

take its third square root, and then replace the γ’s in (7.6) with that root.

This led us to our second proposal(
µ− (1 + 3

√
γ σ)σ, µ+

σ

1 + 3
√
γ σ

)
, (7.14)

But it was found that with this second proposal the corrected confidence interval

of the Bernoulli distributions, for p ≥ 0.5 and outcomes C1 and C2, where C1 < C2,

resulted in an unwanted factor C2 − C1 in the σ’s following 3
√
γ.

Without this factor (7.14) seemed to work quite well for the Bernoulli distributions,

with corrected confidence intervals that were probabilistic; that is, intervals whose

bounds converged to the expectation values as we approached certainty. So, the

question then became: How to loose this factor C2 −C1 in a non-arbitrary manner?

If we could express the factor C2 − C1 as a function of the cumulants of the

Bernoulli distribution, then we could, on the one hand, divide this disruptive factor
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out and, on the other hand, obtain the, apparently, necessary cumulant correction

for our skewness confidence interval.

We then remembered that our initial proposal (7.6), when applied to Bernoulli

distributions, resulted in the non-probabilistic interval (C1, C2), which has a range

of C2 − C1. This range being equal the factor that we wished to see eliminated.

Rewriting the interval (7.6) as a range, we arrived at the ‘support’:

µ+ (1 + γ)σ −
(
µ− σ

1 + γ

)
= (1 + γ)σ +

σ

1 + γ
. (7.15)

Substituting (7.15) into (7.14), in such a way that the factor C2 − C1 was lost, we

then obtained our final proposal (7.4):µ− σ

1 +
3
√
γ

1+γ+ 1
1+γ

, µ+

(
1 +

3
√
γ

1 + γ + 1
1+γ

)
σ

 .
Having found (7.4), it was then easy enough to find, by way of symmetry

arguments, the skewness corrected interval (7.5) for γ < 0.

7.2. Supporting contacts for the skewness confidence interval. The interval

(7.4), together with (7.9), translates for the exponential distribution, (7.8),

p(x|λ) = λ exp (−λx) , 0 ≤ x <∞

which has a mean, standard deviation, and skewness of, respectively, (7.9),

µ =
1

λ
, σ =

1

λ
, γ = 2,

to the skewness corrected interval(
3 3
√

2(
10 + 3 3

√
2
)
λ
,

20 + 3 3
√

2

10λ

)
. (7.16)

This interval has a coverage of:∫ 20+ 3√2
10

1
λ

3 3√2

10+3 3√2

1
λ

λ exp (−λx) dx = 0.67. (7.17)

which is very close to the benchmark coverage value of 0.68 of the 1-sigma confidence

interval of the normal distribution, (7.12),∫ µ+σ

µ−σ

1√
2πσ

exp

[
− 1

2σ2
(x− µ)

2

]
dx = 0.68.

We conjecture that the missing 0.01 probability density coverage in (7.17), relative

to (7.12), is a function of the kurtosis and the other higher order cumulants of
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the exponential distribution27; seeing that any probability distribution is wholly

determined by its moments.

In contrast, the traditional confidence interval of the exponential distribution, as

found by way of (7.9) and the unadjusted (7.3), is(
0,

2

λ

)
(7.18)

and has a coverage of, (7.10),∫ 2
λ

0

λ exp (−λx) dx = 0.86.

So, it would seem that the adjusted (7.16) is much closer to the mark than the

traditional (7.18).

The beta distribution is defined as:

p(θ| r, n) =
(n− 1)!

(r − 1)! (n− r − 1)!
θr−1 (1− θ)n−r−1 , 0 ≤ θ ≤ 1 (7.19)

For r = 5 and n = 10, where we have a symmetrical beta distribution with γ = 0,

and an expectation value of

E(θ) = µ =
r

n
= 0.5, (7.20)

we have that (7.4) collapses, by construction, to (7.3), giving a shared confidence

interval of

(0.35, 0.65) ,

which corresponds with a coverage of∫ 0.65

0.35

(n− 1)!

(r − 1)! (n− r − 1)!
θr−1 (1− θ)n−r−1 dθ = 0.66. (7.21)

A coverage which, for r = n/2, will converge to the benchmark coverage (7.12), as

n goes to infinity.

For the more severe case of r = 1 and n = 10, where we have a skewed beta

distribution, γ = 1.47, and an expectation value

E(θ) = µ =
r

n
= 0.1,

we find that (7.4) will give the corrected confidence interval

(0.04, 0.23) ,

27We also conjecture that the kurtosis correcting term will be exponentially larger than the
skewness correcting term; seeing the progression from the standard deviation ‘correcting’ term, to

the skewness correcting term:

σ to 1 +
3
√
|γ|

1 + |γ|+ 1
1+|γ|

.



28 H.R.N. VAN ERP, R.O. LINGER, AND P.H.A.J.M. VAN GELDER

which corresponds with a coverage of∫ 0.23

0.04

(n− 1)!

(r − 1)! (n− r − 1)!
θr−1 (1− θ)n−r−1 dθ = 0.63, (7.22)

which is still very close to the benchmark (7.12).

For comparison, for r = 1 and n = 10 the uncorrected (7.3) will give a confidence

interval,

(0.01, 0.19) ,

whose lower bound is four times closer to the trivial zero, and as a consequence, as

the bulk of the probability density of a positively skewed distribution lies to the

left, will give an inflated coverage of∫ 0.19

0.01

(n− 1)!

(r − 1)! (n− r − 1)!
θr−1 (1− θ)n−r−1 dθ = 0.77. (7.23)

Furthermore, for r = 1 and n → ∞, the skewness of the beta distribution

converges to

γ → 2.

As a consequence, the coverage of unadjusted interval (7.3) diverges from the

benchmark coverage (7.12), with a ‘limit’ of 0.86, for n = 106. In contrast, the

coverage of (7.4) converges to the coverage (7.17), with a ‘limit’ of 0.67, for n = 106;

where we note that the exponential distribution (7.8) has a skewness of γ = 2., (7.9),

and a convergence, for the sigma interval of (7.10).

So, we find that the skewness corrected confidence intervals, for both exponential

and beta distributions, give us excellent coverages which are extremely close to the

benchmark coverage of the normal distribution, or tend to do so, in some well-defined

limit.

8. Fourth Supporting Contact: A Severe Test

With the skewness adjusted intervals (7.4) and (7.5), we have extended the scope

of our theory, in that we now not only take into account the means and standard

deviations of the utility probability distributions, but also their skewnesses.

As the distributions in our previous case studies were all highly skewed, we will

take a quick look at the practical implications that the skewness adjusted intervals

hold for the worked out bottomry contract example.

We do this by giving some summary results of the re-analyzed example where,

instead of using (7.3),

(µ− σ, µ+ σ) , (8.1)
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we will now use, depending the sign of the skewness γ, either (7.4),

µ− σ

1 +
3
√
γ

1+γ+ 1
1+γ

, µ+

(
1 +

3
√
γ

1 + γ + 1
1+γ

)
σ

 , γ > 0, (8.2)

or, (7.5),

µ−(1−
3
√
γ

1− γ + 1
1−γ

)
σ, µ+

σ

1−
3
√
γ

1−γ+ 1
1−γ

 , γ < 0. (8.3)

8.1. A re-analysis of case study III. Let p be the probability of ship and cargo

being lost at sea. With a bottomry contract, a loan was taken out, which was only

to be repaid if the vessel or merchandise arrived safely at the port of destination.

The premium paid for bottomry could amount to as much as 30 or even 70 per cent

of the value of the loan, [19].

On the one hand we have a merchant with a current wealth of m. The one

contingency this merchant wishes to have covered is the loss of his cargo, which

would incur a monetary damage of L. If his cargo safely reaches the harbor, the

merchant stands to generate a revenue with which he can buy his cargo C times

over.

On the other hand we have an insurer, having an initial wealth of M , who will

provide the merchant with a bottomry loan of L in exchange for an interest factor

c, where c < C − 1, to be collectable, together with the loan itself, once the cargo

safely reaches the harbor.

Because of the way we have set up our problem, that is, labeled our outcome

labels, both the insurer and the merchant have negative skewnesses. So, we have to

use (8.3) for the construction of the skewness corrected lower confidence bounds of

the utility probability distributions.

If, for the insurer, we substitute the skewness corrected lower bounds of the utility

probability distributions of the decisions E1, provide a bottomry loan, and E2, do

not provide a bottomry loan, into the decision inequality (6.4), and solve for the

interest factor c, we obtain as the lower bound of the interest factor, as determined



30 H.R.N. VAN ERP, R.O. LINGER, AND P.H.A.J.M. VAN GELDER

by the insurer:

c >

p+

1 +
3

√
1−2p√
p(1−p)

1+ 1−2p√
p(1−p)

+ 1

1+
1−2p√
p(1−p)

√p (1− p)

(1− p)−

1 +
3

√
1−2p√
p(1−p)

1+ 1−2p√
p(1−p)

+ 1

1+
1−2p√
p(1−p)

√p (1− p)

, (8.4)

where we, for now, have propagated the minus sign in the skewness of the utility

probability distribution under decision E1, that is,

γ = − 1− 2p√
p (1− p)

, (8.5)

through the lower bound of (8.3).

In the case of a Bernoulli probability distribution having an event probability p

and outcomes 0 and 1, we have that the first three cumulants are given as:

µ = p, σ =
√
p (1− p), γ =

1− 2p√
p (1− p)

. (8.6)

Since we have that for this Bernoulli probability distribution the skewness is positive

for p < 0.5, we may readily check that the numerator in (8.4) corresponds with the

skewness corrected upper bound probability of a Bernoulli probability distribution

having probability p, (8.2) and (8.6).

In the case of a Bernoulli probability distribution having an event probability

1− p and outcomes 0 and 1, we have that the first three cumulants are given as:

µ = 1− p, σ =
√
p (1− p), γ = − 1− 2p√

p (1− p)
. (8.7)

As for this Bernoulli probability distribution the skewness is negative for p < 0.5, we

will, for demonstrative purposes, allocate the minus signs again to their corresponding

skewness, and so restore the initial minuses.

If we do so, we get

c >

p+

1 +
3

√
1−2p√
p(1−p)

1+ 1−2p√
p(1−p)

+ 1

1+
1−2p√
p(1−p)

√p (1− p)

(1− p)−

1−
3

√
− 1−2p√

p(1−p)

1−
(
− 1−2p√

p(1−p)

)
+ 1

1−
(
− 1−2p√

p(1−p)

)

√p (1− p)

. (8.8)
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from which it may now be readily checked, as (8.8) and (8.4) are equivalent, differing

only in a retraction of the minus signs, that the the denominator in (8.4) corresponded

with the skewness corrected lower bound probability of of a Bernoulli probability

distribution having probability 1− p, (8.3) and (8.7).

It follows that our initial interpretation of the lower bound of the interest factor

c being an adjusted odds for a Bernoulli event occurring, remains in (8.4), or,

equivalently, (8.8), just as valid as it was in (6.7); though, with all the nested

skewnesses, we may loose the immediacy of this recognition.

Moreover, we see that the Bayesian decision theory automatically does the right

thing, two steps ahead of own faltering intuition. As we ourselves experienced, when

first constructing the skewness adjusted odds.

Initially we subtracted the term (1− p) in (6.7) minus the skewness corrected

standard deviation of the lower bound of (8.2), which belongs to p. But the Bayesian

decision theory then reminded us, by collapsing the model, that this was misguided.

In our initial problem formulation, in terms of utilities, the skewness was negative,

leading to the adjusted lower bound as given in (8.3).

The Bayesian decision algorithm, then, in the finding of (8.8), reformulates the

problem as the computing of an adjusted odds ratio, where two distinct Bernoulli

probability distributions deliver us the probabilities of the events of a ship sinking

and a ship not-sinking.

The Bernoulli event of a ship sinking, for p < 0.5, has a positive skewness, (8.6),

which gives an upper bound adjustment, (8.2), which is equivalent to the lower

bound adjustment of the initial problem formulation, which had a negative skewness,

(8.3).

Whereas, the Bernoulli event of a ship not-sinking, for p < 0.5, has a negative

skewness, (8.7), which gives an lower bound adjustment, (8.3), which is equivalent

to the lower bound adjustment of the initial problem formulation, which had a

negative skewness, (8.3).

For the merchant we substitute the skewness corrected lower bounds of the utility

probability distributions of the decisions D1, take out a bottomry loan, and D2,

do not take out a bottomry loan, into the decision inequality (6.12). If we then

solve for the interest factor c, we obtain the upper bound of the interest factor, as

determined by the merchant:

c <
(
C − 1 +

m

L

)[
1−

(
m− L
m

)f(p)]
, (8.9)



32 H.R.N. VAN ERP, R.O. LINGER, AND P.H.A.J.M. VAN GELDER

where

f(p) =

p+

1 +
3

√
1−2p√
p(1−p)

1+ 1−2p√
p(1−p)

+ 1

1+
1−2p√
p(1−p)

√p (1− p)

(1− p)−

1−
3

√
− 1−2p√

p(1−p)

1−
(
− 1−2p√

p(1−p)

)
+ 1

1−
(
− 1−2p√

p(1−p)

)

√p (1− p)

.

In Figure 2, we give for the bounds of the interest factor c as a function of the

probability of a shipwreck p. This is done for the case where the merchant has

a cargo which represents a L = 200 guilders investment, a total initial wealth of

m = 1.000 guilders, and an expected return factor of C = 2.

Figure 2. Skewness corrected bounds premium factor as function
of probability of shipwreck.

From Figure 2, we see that if one in twenty ships gets lost on the high seas, that

is, p = 0.05, then the minimum interest factor which the insurer will demand in

order to cover his risk exposure is c = 0.50. So, for p = 0.05, the skewness correction

has led to an increase of the lower bound of the interest factor c with a factor of

1.35.

The merchant is now willing to pay an interest factor of c = 0.63. So, for p = 0.05,

the skewness correction has led to an increase of the upper bound of the interest

factor c with a factor of 1.34.

So, for the insurer more money is to be made, as the merchant now takes the

skewness of the Bernoulli distribution into account and, consequently, is willing to
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pay more interest on his bottomry loan. But at the same time the insurer is also

more cognizant of the risk he is taking by providing a bottomry loan, as he himself

now also takes the skewness of the Bernoulli distribution into account.

Furthermore, for p = 0.05, m = 1000, L = 200, we may obtain the following

skewness corrected linear equation for the interest factor c:

c(C) = 0.423 + 0.106 C, (8.10)

and we see that every unit return factor C increases the merchant willingness with

a factor of ∆c = 0.106.

The linear equation (8.10) constitutes, relative to the uncorrected case (6.20), a

difference of 0.109 on the intercept and a difference of 0.027 on the slope.

So, we again see that the merchant has become more aware of the risks involved,

in terms of the possibility of losing a fifth of his fortune, as his willingness to pay a

higher interest factor has generally increased.

9. Fifth Supporting Contact: The Psychological Certainty Effect,

Part I

Risk seeking refers to a specific pattern in betting behavior. Uncertain larger

gains are preferred over sure smaller gains and uncertain larger losses are preferred

over sure smaller losses. The psychologists Kahneman and Tversky state that risk

seeking constitutes one of the minimal challenges that must be met by any adequate

descriptive theory of choice, [60].

The observation that large gains are preferred over sure much smaller gains is

commensurate with the fact that we may prefer high-risk, high-yield investment

opportunities over low-risk, low-yield ones. Likewise, the observation that uncertain

larger losses are preferred over sure smaller, though still substantial, losses is in

accordance with those instances in the past where traders incurred hundreds of

millions in losses, in their attempts to make good on their previous losses28.

If the signs of the outcomes in the risk seeking betting scenarios are reversed, then

the preferences between the bets will also reverse. This is called the reflection effect,

[33]. So, risk seeking in the positive domain is accompanied by risk aversion in the

negative domain. Conversely, risk seeking in the negative domain is accompanied

by risk aversion in the positive domain.

28As, for example, happened to Nicholas William Leeson, a trader for the Barrings Bank in the

nineties. Though we believe that Leeson would have acted less recklessly had he been investing his
own money, instead that of the deposit holders. That is, we expect that his Weber constant for his

own money, say, q, was markedly larger than his Weber constant for the deposit holders money,
say, q0, where 0 ≤ q0 << q.
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We will see that risk seeking corresponds with a predominant tendency to

maximize the upper bounds of our utility probability distributions, whereas risk

aversion corresponds with a predominant tendency to maximize the lower bounds29.

9.1. Risk Seeking I. We first give an example of risk seeking in the case of a small

probability of winning a large prize, that is, risk seeking in the positive domain. This

case of risk seeking represents our tendency to profit maximization and demonstrates

that we will be willing to invest in a long shot if the pay-out is high enough.

The outcome probability distributions for the respective bets in our risk seeking

example are

p(O|D1) =

0.001, O = 5000

0.999, O = 0
(9.1)

and

p(O|D2) =
{

1.0, O = 5 (9.2)

It is found that 72% of N = 72 subjects prefer decision D1 over D2, [33]. Even

though both bets have the same expectation value of

E (O|D1) = 0.001× 5000 = 5 = 1.0× 5 = E (O|D2) .

We now interpret this finding in terms of the Bayesian decision theoretic framework.

Kahneman and Tversky state that the median net monthly income for a family

is about 3000 Israeli pounds, [33], being that the subjects were all students we will

assume an initial amount of money of m = 1000 Israeli pounds. This gives us the

following utility probability distributions:

p(u|D1) =

0.001, u = q log 6000
1000

0.999, u = 0
(9.3)

and

p(u|D2) =
{

1.0, u = q log 1005
1000

(9.4)

Using the identities, [43]:

E(X) =
∑
i

XiPi, std(X) =

√∑
i

[Xi − E(X)]
2
Pi, (9.5)

and [23]:

skew(X) =

√∑
i [Xi − E(X)]

3
Pi

[std(X)]
3 , (9.6)

29Note that risk aversion is the mechanism which provides the rationale for both the investing in

flood defenses and the taking out of an insurance. To be more precise, in the investment example
the operating mechanism is risk aversion in the negative domain; whereas in the insurance examples,

we have customers who operate on the basis of risk aversion in the negative domain, and insurers

who operate on the basis of risk aversion in the positive domain (e.g., defensive profit making).
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and, depending on the sign of (9.6), either the skewness confidence interval (7.4) or

(7.5), we may construct the skewness corrected intervals:

[LB(u| p1, D1) , UB(u| p1, D1)] , (9.7)

and

[LB(u| p2, D2) , UB(u| p2, D2)] . (9.8)

Letting D2 be the decision to choose for the certain gain or loss, that is, p2 = 1,

and relabeling p1 = p, we may construct the general decision theoretical equality,

(9.7) and (9.8):

[LB(u| 1, D2)− LB(u| p,D1) = UB(u| p,D1)− UB(u| 1, D2)] . (9.9)

If we solve this equality for p, then we find the probability p of the uncertainty

bet D1, for which the bets D1 and D2 are undecided; that is, that probability p

for which D1 and D2 are in fair, in that a larger lower loss bound under D1 is

compensated with a commensurate larger upper gain bound.

If we solve for the probability p, we find the fair probability under bet D1:

p = 0.0000288

So, if the probability of the uncertain events exceeds the lower bound

p > 0.0000288,

then we will accept the uncertain bet D1. As the gain in the utility upper bound

under D1 will dominate the loss in the utility lower bound under D2.

It is found that 72% of N = 72 subjects prefer decision D1 over D2, [33], even

though both bets have the same outcome expectation values. The phenomenon

of utility upper bound dominance for gains constitutes risk seeking in the positive

domain.

We may plot the fair probability p for a certainty bet as a function of the initial

wealth m, where we let 200 < m < 10.000, Figure 3:

As the initial wealth m→∞, the utility of an increment in wealth in the range

of 5 < ∆m < 5000 will both become linear and tend to zero, and the fair probability

will converge to

p→ 0.0000039. (9.10)

Note that if we commit ourselves to a value of the constant q, this constant being

the appropriate utility scaling factor for monetary outcomes30, we may construct

attraction maps, with increments, both positive and negative, of, say, ten utilities,

relative to the probability fairness baseline in Figure 3.

30One may obtain a value for q by either personal introspection, or by psychological experimentation,
where subjects are asked to report their introspection.



36 H.R.N. VAN ERP, R.O. LINGER, AND P.H.A.J.M. VAN GELDER

Figure 3. Fair probability as function of initial wealth.

9.2. Risk Aversion I. The above analysis may also be performed for the case

when there is a small probability of loosing a large sum of money. We then will

see a reversal in the preference for bet D1 over bet D2 to a preference for bet D2

over bet D1. Risk aversion in the negative domain represents our tendency to hedge

against large and catastrophic losses.

The outcome probability distributions for the respective bets are31:

p(O|D1) =

0.001, O = −5000

0.999, O = 0
(9.11)

and

p(O|D2) =
{

1.0, O = −5 (9.12)

It is found that 83% of N = 72 subjects preferred the bet D2 over D1, [33].

We now will imagine that the students of the Kahneman and Tversky experiments,

who were asked to perform imaginary bets, have an imaginary initial amount of

money of m = 6000 Israeli pounds32. Assuming the utility function (4.3), we get

the following utility probability distributions:

p(u|D1) =

0.001, u = q log 1000
6000

0.999, u = 0
(9.13)

and

p(u|D2) =
{

1.0, u = q log 5995
6000

(9.14)

If we solve (9.9) for p, then we find the probability p of the uncertainty bet D1,

for which the bets D1 and D2 are undecided:

p = 0.0000008.

31Compare with (9.1) and (9.2).
32Kahneman and Tversky do not take the initial wealth m into account in their discussion of their
experimental results; see Appendix E.
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So, if the probability of the uncertain events exceeds the lower bound

p > 0.0000008,

then we will accept the certain bet D2. As the gain in the utility lower bound under

D2 will dominate the loss in the utility upper bound under D1.

It is found that 83% of N = 72 subjects prefer decision D1 over D2, [33], even

though both bets have the same outcome expectation values. The phenomenon of

utility lower bound dominance for losses constitutes risk aversion in the negative

domain.

We may plot the fair probability p for a certainty bet as a function of the initial

wealth m, where we let 5200 < m < 10.000, Figure 4:

Figure 4. Fair probability as function of initial wealth.

As the initial wealth m→∞, the utility of an increment in wealth in the range

of −5000 < ∆m < −5 will both become linear and tend to zero, and the fair

probability will converge to the convergance of the symmetrical case, where the

outcomes are positive, (9.10),

p→ 0.0000039.

9.3. Risk Seeking II. We now give an example of risk seeking when people must

choose between a sure loss and a substantial probability of a larger loss, that is, risk

seeking in the negative domain. This case of risk seeking represents our tendency to

try to evade large and catastrophic losses.

The outcome probability distributions for the respective bets in our risk seeking

example are

p(O|D1) =

0.5, O = −1000

0.5, O = 0
(9.15)

and

p(O|D2) =
{

1.0, O = −500 (9.16)



38 H.R.N. VAN ERP, R.O. LINGER, AND P.H.A.J.M. VAN GELDER

It is found that 69% of N = 68 subjects preferred the bet D2 over D1, [33].

We now imagine an initial amount of money of m = 1500 Israeli pounds. Assuming

the utility function (4.3), we get the utility probability distributions:

p(u|D1) =

0.5, u = q log 500
1500

0.5, u = 0
(9.17)

and

p(u|D2) =
{

1.0, u = q log 1000
1500

(9.18)

If we solve (9.9) for p, then we find the probability p of the uncertainty bet D1,

for which the bets D1 and D2 are undecided:

p = 0.191.

We may plot the fair probability p for a certainty bet as a function of the initial

wealth m, where we let 1500 < m < 10.000, Figure 5:

Figure 5. Fair probability as function of initial wealth.

As the initial wealth m→∞, and Bernoulli law converges to

q log

(
m−O
m

)
→ q

O

m
, (9.19)

the utility of an increment in wealth in the range of −1000 < ∆m < −500 will both

become linear and tend to zero, and the fair probability will converge, because of

the skewness correction, to an interval of fair values,

p→ (0.342, 0.658) . (9.20)

The range (9.20) represents the probability interval for which the outcome interval

of the uncertainty bet, for all intents and purposes, is

(0, 1000) , (9.21)
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with equality holding at the probabilities

p = 0.342, p = 0.500, p = 0.658.

As the probability p approaches p = 0.5 from p = 0.342, where (9.21) holds, the

skewness interval, in the absence of a kurtosis correction, under shoots the outcome

upper bound, with a factor 0.04 of the outcome upper bound33.

As p crosses the p = 0.5 point, the skewness correction transitions from (7.5) to

(7.4), and p = 0.5, where the skewness is zero, (9.21) holds again.

As p approaches p = 0.658, where (9.21) holds, the skewness interval, in the

absence of a kurtosis correction, slightly under shoots the outcome lower bound,

with a factor 0.04 of the outcome upper bound.

But if we forgo of the skewness interval, and use the sigma interval, and solve the

corresponding (9.9) for p. Then, as the initial wealth m→∞, the fair probability

will converge to just the one value,

p→ 0.5.

So, if it is found that 69% of N = 68 subjects prefer decision D1 over D2, [33],

even though both bets have the same outcome expectation values, then this is

because people tend to want to mitigate their losses.

Note that the decision theoretical phenomenon of loss aversion is generally

understood to point to the concave down curvature of the Bernoulli law, (4.3). But

we have here loss aversion on a meta-level, where, all things being equal, in terms of

utility upper and lower bounds, people tend to prefer a possible mitigation of a sure

loss.

If we have a certain loss of −250 and an uncertain loss of −1000, then we will be

willing to take the uncertain bet, for an initial wealth of m = 1500, if the probability

of the uncertain event is smaller than

p = 0.050.

For an initial wealth of m→∞, this probability converges to

p = 0.098. (9.22)

If we take such an uncertainty bet, then we adhere to an utility upper bound

dominance for losses, which constitutes risk seeking in the negative domain.

9.4. Risk Aversion II. The previous analysis may also be performed for the

opposite case of a sure gain and a substantial probability of a larger gain. We then

33Note that there will also be a commensurate overshoot of the outcome lower bound. But as we

know this lower bound to be zero, we already have correct for this overshoot in the confidence
bound construction phase.
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will see a reversal in the preference for bet D1 over bet D2 to a preference for bet

D2 over bet D1. Risk aversion in the positive domain represents our tendency to

secure our profits.

The outcome probability distributions for this problem of choice are34:

p(O|D1) =

0.5, O = 1000

0.5, O = 0
(9.23)

and

p(O|D2) =
{

1.0, O = 500 (9.24)

Seeing that this is just another incarnation of Allais’ paradox35, we know that people

will tend to prefer bet D2 over D1, [4]; and indeed, 80% of N = 95 subjects preferred

bet D2 over D1, [33].

Assuming an initial wealth of m = 1000 and by way of (4.3), we find corresponding

utility probability distributions:

p(u|D1) =

0.5, u = q log 2000
1000

0.5, u = 0
(9.25)

and

p(u|D2) =
{

1.0, u = q log 1500
1000

(9.26)

If we solve (9.9) for p, then we find the probability p of the uncertainty bet D1,

for which the bets D1 and D2 are undecided:

p = 0.764

We may plot the fair probability p for a certainty bet as a function of the initial

wealth m, where we let 200 < m < 10.000, Figure 6:

Figure 6. Fair probability as function of initial wealth.

34Compare with (9.15) and (9.16).
35See Appendix A.
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As the initial wealth m→∞, the utility of an increment in wealth in the range

of −1000 < ∆m < −500 will both become linear and tend to zero, and the fair

probability will converge, because of the skewness correction, to an interval of fair

values,

p→ (0.342, 0.658) , (9.27)

which is the same interval as (9.20).

So, if it is found that 84% of N = 70 subjects prefer decision D2 over D1, [33],

even though both bets have the same outcome expectation values, then this is

because people tend to want to secure their gains.

If we have a certain gain of 250 and an uncertain gain of 1000, then we will

beprefer the certain bet, for an initial wealth of m = 1000, if the probability of the

uncertain event is smaller than

p = 0.151.

For an initial wealth of m→∞, this probability converges to, (9.22),

p = 0.098.

If we take such a certainty bet, then we adhere to an utility lower bound dominance

for gains, which constitutes risk aversion in the positive domain.

10. Sixth Supporting Contact: The Psychological Certainty Effect,

Part II

In the previous section we defined, for certainty bets, fairness as the decision

theoretical equality, (9.9):

[LB(u| 1, D2)− LB(u| p,D1) = UB(u| p,D1)− UB(u| 1, D2)] , (10.1)

where D1 and D2 correspond, respectively, with the uncertainty and certainty bets.

Let Oc and Ou, respectively, be the certainty and the uncertainty outcomes,

where Oc < Ou. If, for a certainty bet having positive outcomes, we solve (10.1)

for the fair probability p, assuming a linear utility for money, we find that the fair

probability p maps to the outcome interals

(0, 2Oc) , Oc ≤
Ou
2
, (10.2)

which is intuitively fair for the takers of decision D1, relative to the certainty offer

of Oc, and [
2

(
Oc −

Ou
2

)
, Ou

]
, Oc >

Ou
2
, (10.3)

which is intuitively fair for the providers of decision D1, relative to the certainty

offer of Oc.
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If for an uncertainty pay out of either 0 or Ou = 5000, we plot the solution of

(10.1) for the fairness probability p, assuming a linear utility for monetary outcomes,

as a function of the certainty outcome Oc, we obtain Figure 7:

Figure 7. Fair probability as function of certain outcome

If we again, but now neglecting the skewness correction, we solve (10.1) for the

fairness probability p, assuming a linear utility for monetary outcomes, as a function

of the certainty outcome Oc, and add this curve to Figure 7, we obtain Figure 8:

Figure 8. Fair probability for sigma and skewness intervals

We may construct, again assuming a linear utility for monetary outcomes, the

same graph for the fair probability p of certainty bets involving negative outcomes,

where Oc > Ou, Figure 9:
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Figure 9. Fair probability, sigma and skewness intervals, negative outcomes

If we rescale the x-axes of Figures 8 and 9 as the ratio Oc/Ou, where |Oc| ≤ |Ou|,
and reverse the axes, we obtain the alternative Figure 10:

Figure 10. Rescaled and rotated figure for sigma and skewness intervals

Now, for those of the readers who are familiar with the cumulative prospect

theory, may recognize in Figure 10, Kahneman and Tversky’s Figures 1, 2, and 3 of

their [60]. Kahneman and Tversky obtained their figures, not from first principles,

as we have, but through experimentation, in which subjects where asked to decide

on certainty bets of the type we discussed in the previous section.

So, it would seem that Kahneman and Tversky, inadvertently, for they are

outspoken anti-Bayesian36, have provided the Bayesian decision theory with a very

strong supporting contact.

Kahneman and Tversky see in the empirical observation of the typical S-curve of

Figure 10 a justification for their probability weighing functions,

w+(p) =
pγ

pγ + (1− p)
1
γ

, (10.4)

36See Appendix F.
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and

w−(p) =
pδ

pδ + (1− p)
1
δ

, (10.5)

which over weighs small probabilities and under weighs large probabilities. Moreover,

Kahneman and Tversky offer up the implied under weighing of small probabilities,

in order to explain the general popularity of lotteries and insurances.

We, on the other hand, see in the empirical observation of the typical S-curve of

Figure 10 a confirmation of the intuitive relevancy of the skewness intervals, (7.4)

and (7.5).

As we progressed in our research on the Bayesian decision theory, it became

obvious to us that the sigma interval, (7.3), though still superior to the ‘interval’ of

expected utility theory, (µ, µ), left out pertinent symmetry information.

All our case studies involved extreme outcomes having small probabilities of

occurring, which leaves our probability distributions highly skewed. The presence of

skewness leads for sigma intervals to confidence interval coverages which are sub-par,

as it will lead to both an under and over shooting of the actual confidence bounds.

This is why we felt compelled to search for the skewness interval, (7.4) and (7.5); as

this interval promised us more realistic, that is, better informed, criterions of action.

If we drop the assumption of a linear utility of monetary outcomes in the

neighborhood of −5000 < ∆m < 5000, and for initial wealths of m = 1000 and

m = 6000 for certainty bets involving, respectively, positive and negative outcomes.

Then we may assign, by way of the Bernoulli law, (4.3), utilities to the monetary

outcomes. By doing so, we obtain the following fairness ratio outcomes for a given

probability probability p of the uncertain proposition, Figures 11 and 12:

Figure 11. Rescaled and rotated figure for positive outcomes

and



FACT SHEET 45

Figure 12. Rescaled and rotated figure for negative outcomes

Comparing Figures 11 and 10, we see that by taking into account the initial wealth

m, through the Bernoulli law, (4.3), for low outcome ratios, the fair probabilities

p for positive outcomes are adjusted downward, relative to Figure 10. The same

holds for large outcome ratios. Furthermore, the fairness symmetry point p = 0.5

has been adjusted downward in Figure 11.

Comparing Figures 12 and 10, we see that by taking into account the initial wealth

m, through the Bernoulli law, (4.3), for low outcome ratios, the fair probabilities p

for negative outcomes are adjusted upward, relative to Figure 10. The same holds

for large outcome ratios. Furthermore, the fairness symmetry point p = 0.5 has

been adjusted upward in Figure 12.

These adjustments make nothing but sense. If we have a small initial wealth,

and we stand to gain more than we initially would have gained. Then, for given

outcome ratios, we will be more inclined to accept the possibility of gaining nothing,

relative to the case where we have a large initial wealth, as the pay-out, in terms of

subjective consequences, is relatively larger.

But if we have a small initial wealth, and we stand to lose more than we initially

would have lost. Then, for given outcome ratios, we will be less inclined to accept

the possibility of losing even more, relative to the case where we have a large initial

wealth, as the penalty, in terms of subjective consequences, is relatively larger.

As our initial wealth tends to infinity, and our utility for money becomes linear,

we will perceive both problems to be symmetric, as monetary losses are weighed the

same as monetary gains, Figure 10.

Furthermore, the differences in the Figures 11 and 12 are commensurate with

the fact that Kahneman and Tversky found that their weighing functions for

probabilities, (10.4) and (10.5), differed for certainty bets involving positive and

negative outcomes.
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11. Seventh Supporting Contact: The Ubiquitous Bernoulli Law

We now will give the derivations of the Bernoulli, the Weber-Fechner, and Steven’s

power laws. It will be seen all that these three laws are equivalent.

11.1. The Bernoulli Law. The utility of a given outcome is the perceived worth

of that outcome. If we take the utilities that monetary outcomes hold for us to be

an incentive for our decisions, then we may perceive money to be a stimulus.

For the rich man ten dollars is an insignificant amount of money. So, the prospect

of gaining or losing 10 dollars will fail to move the rich man, that is, an increment

of ten dollars for him has an utility which tends to zero.

For the poor man ten dollars is two days worth of groceries and, thus, a significant

amount of money. So, the prospect of gaining or losing ten dollars will most likely

move the poor man to action. It follows that an increment of ten dollars for him

has an utility significantly greater than zero.

Consider persons A and a, with A having a fortune of 100.000 full-ducats, and

with a a fortune of 100.000 semi-ducats, a semi-ducat being the half of a full-ducat.

Let fA and fa be the moral value functions, defined on, respectively, the monetary

full-ducat axis x and the semi-ducat axis x̃. Let xA and x̃a stand for the initial

wealths of A and a, respectively; where xA and x̃a are points on the monetary axes

x and x̃, respectively.

Bernoulli derived his law by way of three simple symmetry considerations for the

moral functions fA and fa, [6, 52]:

(1) For an arbitrary increment c in wealth, the moral movement of this increment

will be less for the rich man, than for the poor man; that is, if we make for

fa the appropriate change of variable, from x̃ to x, then we have that

d

dx
fA (x)

∣∣∣∣
c

<
d

dx
fa (x)

∣∣∣∣
c

.

From which it follows that effect of c on a given f decreases as the initial

wealth increases.

(2) It is proposed that the movement in a general moral value function f , for a

given positive increment dx, is proportional to the value of this increment;

that is,
d

du
f (u)

∣∣∣∣
c=dx

∝ dx,

as this is the simplest function for which f increases as a function of an

increment in x.
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(3) Furthermore, it is proposed that this movement in f is inversely proportional

to the value of the initial wealth x; that is,

d

du
f (u)

∣∣∣∣
c=dx

∝ 1

x
.

where ‘∝’ is the proportionality sign.

Bernoulli arrived at his third consideration, using the following reasoning. The

change in moral value of c full-ducats for A will be half the change in moral value of

c full-ducats for a. Only if either a sees his fortune increased to 100.000 semi-ducats,

or, equivalently, 100.000 full-ducats, or if A sees his fortune reduced to 50.000

full-ducats, or, equivalently, 100.000 semi-ducats, only then will a have the same

change in moral value as A for c full-ducats.

We then have that, if we make for fa the appropriate change of variable from x̃

to x,
d
dxfA (x)

∣∣
c

d
dxfa (x)

∣∣
c

=
xa
xA

, (11.1)

where xa is the initial fortune of a, translated from the semi-ducat x̃-axis to the

full-ducat x-axis.

It follows from (11.1) that we have, in general, that the change in moral value is

inversely proportional to the initial we hold, that is,

d

dx
f (x)

∣∣∣∣
c

∝ 1

x
, (11.2)

which is Bernoulli’s third consideration.

If we combine the second and the third consideration, we obtain the differential

equation

f ′ (x) = q
dx

x
, (11.3)

which, if solved for the boundary condition that for a given person with an initial

wealth of x0 an increment of zero holds no utility, either negative or positive, gives

f (x) = q log
x

x0
, (11.4)

which may be rewritten as

f (∆x|x0) = q log
x0 + ∆x

x0
. (11.5)

11.2. The Weber-Fechner Law. Let S signify stimuli intensity and let Q signify

sensation strength. Weber’s law states that the increment ∆S needed to elicit a

judgment that S + ∆S is just noticeably different from S is proportional to S:

∆S = wS, (11.6)



48 H.R.N. VAN ERP, R.O. LINGER, AND P.H.A.J.M. VAN GELDER

where w is a positive constant dependent upon the specific type of sensory stimulus

offered and ∆S is understood to be the stimulus increment corresponding with a

just noticeable difference.

Fechner generalized the experimental Weber law by stating that all differences in

sensational strength, and not only the ones that are just noticeable, are proportional

to the relative change ∆S/S, that is,

∆Q = q
∆S

S
. (11.7)

where k is a positive constant dependent upon the specific type of sensory stimulus

offered and ∆S is now understood to be the stimulus increment corresponding with

the increment in sensation strength ∆Q.

Dividing both sides of (11.7) by ∆S gives

∆Q

∆S
= q

1

S
. (11.8)

Fechner then makes the assumption that, just as a physically small quantity ∆S

can be reduced without limit to the differential dS, so a small quantity of sensation

can be reduced without limit to the differential dQ. By way of this assumption, we

may let (11.8) tend to the differential equation

dQ

dS
= q

1

S
. (11.9)

The general solution of this differential equation is

Q = q logS + c, (11.10)

where c is some constant of integration.

Introducing an initial value condition for (11.9) that says that at stimulus value S0

there is no sensation strength, that is, Q (S0) = 0, leaves us with the Weber-Fechner

law

Q (S|S0) = q log
S

S0
, (11.11)

or, equivalently,

Q (∆S|S0) = q log
S0 + ∆S

S0
. (11.12)

The Weber-Fechner law, (11.12), is identical to the utility function which had

been proposed a century earlier by Bernoulli, (11.5).

Fechner himself was aware of this equivalence. Nonetheless, he believed his

derivation to be the more general. Fechner argued that Bernoulli’s derivation only

applied to the special case of utility, whereas his law, though identical, applied to

all sensations, as it invokes Weber’s law.

However, as pointed out in [52], Fechner failed to provide any compelling reason

why the principles employed in Bernoulli’s derivation of the subjective value of
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objective monies should not be extendible to sensations in general. Nontheless, we

do believe that Fechner was of good faith, in denying Bernoulli scientific primacy.

First of all, Fechner called the Weber-Fechner law, when he first published it,

the Weber law. Second of all, Fechner had a deep spiritual need for some kind of

harmony between the physical and mental universes, and the Weber-Fechner law

provided him with this harmony, for this law spoke of the basic oneness of the

physical and mental universes

The Weber-Fechner law demonstrated that both universes adhered to seemingly

mechanistic laws. It then followed that the freedom of the latter universe, in terms

of free will and volition, implied, by way of analogy, a commensurate freedom of the

former; thus, opening the way for the possibility of a besouled physical universe.

Which had become Fechner’s only hope for spiritual salvation, [15].

We can imagine that Fechner might have felt that a law that assigned subjective

values to objective monies was too arbitrary and sordid a foundation for the lofty

purpose he wished it to serve. In contrast, the initial Weber law allowed Fechner to

forgo of the money argument and derive a law, which though in form identical to

Bernoulli’s, differed in that it applied to all human sensations.

11.3. Steven’s Power Law. Steven’s power law is based on the observation, that

it is the ratio ∆Q/Q, rather than the difference ∆Q, that is proportional to ∆S/S,

[57]. This observation leads to the equality

∆Q

Q
= q

∆S

S
. (11.13)

Letting the differences in Q and S go to differentials, we may rewrite (11.13) as

dQ

Q
= q

dS

S
. (11.14)

This equation has its general solution

logQ = q logS + c′. (11.15)

Taking the exponent of both sides of (11.15), we get the power law for stimulus

perception

Q = cSq, (11.16)

where c = exp (c′).

Stevens found the power law to hold for several sensations; binaural and monaural

loudness, brightness, lightness, smell, taste, temperature, vibration duration, repeti-

tion rate, finger span, pressure on palm, heaviness, force of hand grip, autophonic

response, and electric shock, [57].
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The power law is applied by letting subjects compare the sensation ratio of Q1

to Q0 for corresponding stimuli strengths S1 and S0:

Q1

Q0
=

(
S1

S0

)q
. (11.17)

Let S1 = S0 + ∆S, where ∆S is some increment, then we may rewrite (11.17) as

Q1

Q0
=

(
S0 + ∆S

S0

)q
. (11.18)

For an increment of ∆S = 0, the ratio of perception stimuli will be Q1/Q0 = 1.

Taking the log of the ratio (11.18) we may map the ratio of perceived stimuli to

a corresponding utility scale where a zero increment ∆S corresponds with a zero

utility:

Q′ (∆S|S0) = log
Q1

Q0
= q log

S0 + ∆S

S0
(11.19)

But this is just the Weber-Fechner law, (11.13).

11.4. Summary. The Weber-Fechner law gives us just noticeable differences on

a log scale, (11.13). The power law gives us ratios of sensation strengths, (11.18).

Taking the log of the ratio of sensation strengths, we may obtain the just noticeable

differences again, (11.19). But the Weber-Fechner for just noticeable differences is

just the Bernoulli law for utilities, (11.5).

We refer the reader to [52], for a discussion of Thurnstone’s derivation of the

satisfaction law. This law, which takes as its input the increment in the number of

items of commodity, is also of the form of Bernoulli’s law.

12. Eight Supporting Contact: The Negative Bernoulli Law

In this section we present the negative Bernoulli law for debts, which is a corollary

of the Bernoulli law for income.

The negative Bernoulli law predicts that for the very poor, having a small initial

wealth and large initial debts, a large loss of direct income will be more devastating,

than an increase of, say, twice that loss in their long-term debt. This law also

explains why, for these poor, having a small initial wealth and large initial debts,

the temptation to take out loans, if offered the opportunity, will be quite great, [30].

In this section we will discuss the Bernoulli law and its scaling constant q in a

psycho-physical setting, which is why we sometimes will refer to them as, respectively,

the Weber-Fechner law and the Weber constant.

12.1. The positive Bernoulli law. The translation of monetary stimuli to utilities

is analogous to the case where we are asked to translate loudness to a numerical

value. According to Weber-Fechner law, postulated in the 19th century37 by the

37Which is just Bernoulli’s law, which he postulated in the 18th century.
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experimental psychologist Fechner, intuitive human sensations tend to be logarithmic

functions of the difference in stimulus, [16]. So, we do not perceive stimuli in isolation,

rather we perceive the relative change in stimuli, case in point being the decibel

scale of sound.

Let S1 and S2 be two stimuli which are to be compared. Then the Weber-Fechner

law tells us that the Relative Change (RC) is the difference of the logarithms of the

stimuli:

RC = c logd S2 − c logd S1 = c logd
S2

S1
, (12.1)

where c is some scaling factor and d some base of the logarithm. From (12.1), we

have that if stimuli S1 and S2 are indistinguishable, that is, of the same strength,

then their RC is 0. If S2 increases relative to S1, then RC > 0. If S2 decreases

relative to S1, then RC < 0.

The Weber-Fechner law allows for one degree of freedom. This can be seen as

follows. Since

logd x =
log x

log d
,

we can rewrite (12.1) as

RC = q log
S2

S1
, (12.2)

where

q =
c

log d
. (12.3)

Let ∆S be an increment, either positive or negative, in a monetary stimulus S.

Then we may define the utility of a monetary increment ∆S to be the perceived

relative change in the initial wealth S due to that increment ∆S, (12.2):

u(∆S|S) = q log
S + ∆S

S
, −S < ∆S <∞. (12.4)

If ∆S = −S, then (12.4) tells us that a loss of all one’s initial wealth S would

have a utility of minus infinity. This is clearly not realistic. So, in order to model

such a loss, we must introduce the threshold of income which is still significant γ,

[28], where γ > 0. The threshold of income has the following interpretation. .

Even for a beggar there is some minimum amount of money that is still significant.

This may be one dollar for a bag of potato chips, or three dollars for a packet of

cigarettes. If the loss of money breaks through the limit of the minimum significant

amount γ, the beggar is left with an amount of money which, for all intents and

purposes, is worthless.

Using the concept of the threshold of income, we may modify (12.4) as

u(∆S|S) = q log
S + ∆S

S
, −S + γ < ∆S <∞. (12.5)
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If we want to give a graphical representation of (12.5), then the scaling constant

q, also known as the Weber constant, must be set to some numerical value.

Say, we have a monthly expendable income of a thousand dollars, for groceries

and the like, then introspection38 would suggest that a loss or gain of an amount

less than ten dollars would not move us that much.

So, ∆S = 10 constitutes a just noticeable difference, or, equivalently, 1 utile, for

an initial wealth of S = 1000, (12.5):

1 utile = q log
1000 + 10

1000
. (12.6)

If we then solve for the unknown Weber constant q, we find

q =
1

log 1010− log 1000
≈ 100. (12.7)

Note that utiles represent the utility of the monetary outcomes, much like decibels

represent the perceived intensity of sound39.

Suppose we have a student who has three hundred dollars per month to spend on

groceries and the like and who stands to lose or to gain up to two hundred dollars.

Then, by way of (12.5) and (12.7), we obtain the following mapping of monetary

outcomes to utilities, Figure 13:

Figure 13. Utility plot for initial wealth 300 dollars

For the case of the rich man who has one million dollars to spend on groceries and

the like and who stands stands to lose or to gain up to a hundred thousand dollars,

we obtain the alternative mapping, Figure 14:

38Introspection being the starting point of all psychological experimentation.
39Note that for the decibel scale the Weber constant has been determined to be q = 10/ log 10 =

4.34.
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Figure 14. Utility plot for initial wealth 1.000.000 dollars

Loss aversion is the phenomenon that losses may loom larger than gains, [60].

Comparing Figures 13 and 14, we see that the Weber-Fechner law of experimental

psychology captures both the loss aversion of the poor student, that is, asymmetry

in gains and losses, as well as the linearity of the utility of relatively small gains

and losses for the rich man.

12.2. The negative Bernoulli law. Until now we have treated only the case were

the maximal loss did not exceed the initial wealth m. However, in real life we may

lose more than we actually have, by way of debt. So, we now proceed to assign

utilities to increments in debt.

According to the Weber-Fechner law we cannot lose more money than we initially

had. Otherwise we may have that the ratio in the logarithm in the Weber-Fechner-

Law, (12.4),

u(∆S|S) = q log
S + ∆S

S
, (12.8)

may become negative, leading to a breakdown of the logarithm.

However, whenever we incur a debt we lose more money than we have. Further-

more, we can have a debt and an income, both at same time. So, we propose that

there are two different monetary stimuli dimensions in play; the first dimension

being an actual income dimension and the second dimension being a debt dimension.

We propose to model the debt utilities by way of the negative Weber-Fechner

law:

u(∆D|D) = −b log
D + ∆D

D
, (12.9)

where we let D be the initial debt, ∆D the increment in debt, and b the the Weber

constant of a monetary debt.
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The rationale behind (12.9) is as follows. If we view a debt increment as a

stimulus, then it follows that we may use the psycho-physical Weber-Fechner law in

the determination of the moral value of a given debt increment.

For positive increments ∆D, there is an increase in current debt, whereas for

negative increments ∆D, there is a decrease in current debt. In order to assign both

a negative utility to an increase in current debt and positive utility to a decrease in

debt, we need to multiply the Weber-Fechner law times minus one, (12.9).

If we have no initial debt, that is, D = 0, then (12.9) tells us that any positive

increment in debt ∆D would have a utility of minus infinity. This is clearly not

realistic. So, in order to model an increment in debt for those who are without

debt, we must introduce a minimum significant amount of debt which is equal to

minimum significant amount of income, γ.

The threshold amount of debt, γ, may also be used in the case of ∆D = −D, in

order to prevent an infinite utility being assigned to a full repaying of one’s debts.

Using the concept of the minimum significant amount of debt stimulus, we may

modify (12.9) as

u(∆D|D) = −b log
D + ∆D

D
, −D + γ < ∆D <∞, (12.10)

If we want to give a graphical representation of (12.10), then the Weber constant

b, must be set to some numerical value.

Say, we have a total debt of forty thousand dollars, in the form of a student loan,

which we eventually will have to pay back, but not right now. Then introspection

would suggest that a increment or decrement of an amount less than a thousand

dollars would not move us that much.

So, ∆D = 1000 constitutes one utile, or, equivalently, a just noticeable difference

in debt for an initial debt of D = 40.000, that is, (12.5):

1 utile = −b log
40.000− 1000

40.000
. (12.11)

If we then solve for the unknown Weber constant b of debt stimuli,

b = − 1

log 390000− log 40000
≈ 40, (12.12)

we find this Weber constant to be smaller by a factor of 2.5 than the Weber constant

q of income stimuli, (12.7).

It is well possible that this difference in Weber constants can be attributed to

the difference in abstractness of the concepts. The losing of actual monies is quite

concrete, whereas the accrueing of a debt, repayable somewhere in a distant future,

is somewhat more abstract.
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But there is always a chance that these authors were off in their introspection40,

and that both Weber constants should be approximately equal. We leave this issue,

together with the psychological reality of the phenomenon of debt relief, given below,

for future psychological experimentation, as we proceed with our discussion of the

debt utilities.

Suppose that a student has a student loan which has accumulated to forty

thousand dollars. Then, by way of (12.9) and (12.12), we obtain the following

mapping of increments in debt to utilities, Figure 15.

Figure 15. Utility plot for initial debt 40.000 dollars

As stated previously, loss aversion is the phenomenon that losses may loom

larger than gains. In Figure 15 we see the phenomenon that debt reduction may

loom larger than debt increase. We will call this corollary of the psycho-physical

Weber-Fechner law: ‘debt relief’, the relief of loosing one’s debts.

Now, does the phenomenon of debt relief correspond with a real psychological

phenomenon? We belief that it actually does.

Say, we have a debt of a a thousand dollars. Then we can imagine ourselves

feeling greatly reliefed, were we to be released of our debt. Now, were our debt,

instead, to be doubled to two thousand dollars, then we can also imagine ourselves

feeling unhappy about this. But this feeling of unhappiness about the doubling of

our debt would be of a lesser intensity than the corresponding relief of having our

debt acquitted.

40Note that actual value of the Weber constants q and b of, respectively, income and debt stimuli
have no direct bearing on any of the results given in this fact sheet; save the handful of examples

which are given in this section, in order to demonstrate the qualitative behavior of the negative

Weber-Fechner law, or, equivalently, the negative Weber-Fechner law.



56 H.R.N. VAN ERP, R.O. LINGER, AND P.H.A.J.M. VAN GELDER

We will now look at the practical implications of the negative Bernoulli law,

(12.9), and its Weber constant b, (12.12).

A student loan initially represents a gain in debt stimulus. This debt makes

itself felt, in terms of actual loss of income, only after graduation, the moment the

monthly payments have to be paid and take a considerable chunk out of one’s actual

income.

Say, that the student of Figure 15, having become a PhD, and having a net

income of fifteen hundred dollars, is called upon to make good on his loan, by way

of monthly payments of five hundred dollars. Then these payments represent both

a loss in income, having a negative utility of, (12.8) and (12.7):

u(income-loss) = 100 log
1500− 500

1500
= −41.5, (12.13)

as well as a decrements in debt, having a positive utility of, (12.9) and (12.12):

u(debt-decrease) = −40 log
40000− 500

40000
= 0.5, (12.14)

It follows that our PhD can find little to no comfort in the fact that he is paying of

his debt, as he acutely feels the sting of loss of income. This is, together with the

difference in Weber constants41, (12.7) and (12.12), reflective of the fact that his

utility function for income is highly non-linear in the neighborhood of the increment,

whereas his utility function for debt is highly linear in that region.

Now, say that we have another PhD, who during his student days lived a more

frugal life style and, consequently, only has a debt of two thousand dollars. For this

PhD student, when called upon to make good on the loan, the loss of income will

be felt just as keenly, with a negative utility of u = −40.5, (12.13). However, he will

find more satisfaction in the fact that he is paying of his debts, (12.9) and (12.12):

u(debt-decrease) = −40 log
2000− 500

2000
= 11.5, (12.15)

seeing that he has a more curved utility function for debt than our previous PhD

student.

Nontheless, the first PhD student may feel, after a couple of years of monthly

repayments, when his loan has been reduced to twenty thousand dollars, for the first

time, as if he has an actual stake in the repayment of his debt, (12.9) and (12.12):

u(debt-decrease) = −40 log
20000− 500

20000
= 1.0, (12.16)

as his debt repayment utility crosses the threshold of the just noticeable difference.

The negative Bernoulli law also gives an explanation why for the very poor,

having a minimum monthly wage of seven hundred euros, and already having a

41A difference which accounts only for a factor of 2.5 in the observed differences of the utilities
(12.13) and (12.14).



FACT SHEET 57

large debt of, say, twenty thousand euros, a loss of income of, say, five hundred

euros, is perceived to be so much more devastating than an increase in debt of, say,

a thousand euros.

For this poor person, the loss of actual income has a negative utility of −125

utiles and the gain of an increase of has a negative utility of only −2 utiles42.

Likewise, the temptation for the very poor, if offered the opportunity, to take

out a loan of a thousand euros will be quite great.

As for this poor person, the immediate gain of a direct increase of a thousand

euros in income will have a positive utility of +89 utiles, whereas the negative utility

of an increase in debt of a thousand dollars will have a negative utility of only −2

utiles43, [30].

13. A Consistency Proof of the Bernoulli Law

In the Bayesian decision theory, we start by constructing our outcome probability

distributions, by way of the product, sum, and generalized rules of the Bayesian

probability theory44. We then proceed to assign utilities to the outcomes of these

probability distributions, by way of the Bernoulli law, in order to construct our

utility probability distributions. Finally, we compare the location of these utility

probability distributions by way of some function of the cumulants of the utility

probability distributions.

The product, sum, and generalized rules of the Bayesian probability theory are the

only consistent operators on probabilities, [8, 28, 39]. So, consistency wise, we have

no choice but to use these rules to construct our outcome probability distributions.

The cumulant function initially proposed by Bernoulli was the identity function

for the first cumulant, that is, the expectation value of the utility probability

distribution. But this proposal, though sufficient enough in many cases, may,

nonetheless, lead to Ellsberg and Allais ‘paradoxes’, which is an indication that the

information of the higher order cumulants should also be taken into account45.

If we take as our function of the cumulants of the utility probability distribution

the skewness intervals, (7.4) and (7.4), then we find that all these paradoxes fall

away and, moreover, leave us with a decision theoretical algorithm, which is both

surprisingly rich in structure and eminently intuitive.

In order to map monetary outcomes of the outcome probability distributions to

their corresponding utilities, and so construct the utility probability distributions,

we make use the Bernoulli law.

42Even if b = 100, (12.12), this negative utility will only be −5 utiles.
43Idem.
44See Appendix E.
45See Appendix A.
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This law is the one remaining degree in the Bayesian decision theory. In this

section we will give the derivation of the Bernoulli law, by way of consistency

constraints on the lattice of ordering.

13.1. Lattice Theory and Quantification. Two elements of a set are ordered

by comparing them according to a binary ordering relation, that is, by way of ‘≤’,

which may be read as ‘is included by’. Elements may be comparable, in which

case they form a chain, or they may be incomparable, in which case they form a

antichain. A set consisting of both inclusion and incomparability are called partially

ordered sets, or posets for short, [36].

Given a set of elements in a poset, their upper bound is the set of elements that

contain them. Given a pair of elements x and y, the least element of the upper

bound is called the join, denoted46 x ∨ y. The lower bound of a pair of elements is

defined dually by considering all the elements that the pair of elements share. The

greatest elements of the lower bound is called the meet, denoted x ∧ y.

A lattice is a partially ordered set where each pair of elements has a unique

meet and unique join. There often exist elements that are not formed from the

join of any pair of elements. These elements are called join-irreducible elements.

Meet-irreducible elements are defined similarly. We can choose to view and join and

meet as algebraic operations that take any two lattices elements to a unique third

lattice element. From this perspective, the lattice is an algebra.

An algebra can be extended to a calculus by defining functions that take lattice

elements to real numbers. This enables one to quantify the relationships between

the lattice elements.

A valuation v is a function that takes a single lattice element x to a real number

v(x) in a way that respects the partial order, so that, depending on the type of

algebra, either v(x) ≤ v(y) or v(y) ≤ v(x), if in the poset we have that x ≤ y. This

means that the lattice structure imposes constraints on the valuation assignments,

which can be expressed as a set of constraint equations, [38].

The Ordering Space. The set of all possible orderings is called the ordering space.

The lattice of ordering is generated by taking the power set, which is the set

of all possible subsets of the set of all order elements, say, x, y, z, etc..., where

x < y < z < etc..., and ordering them according to Polya’s min-max rule, [37],

where the meet ∧ is defined as

x ∧ y = minx, y = x, (13.1)

46Note that we over-load the symbol ‘∨’ here, which still stands for disjunction, though now in the

general context of lattice theory.
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and the join is defined as

x ∨ y = maxx, y = x. (13.2)

The ordering relation of the min-max rule naturally encodes ordering, such that

an ordering element higher up on the lattice is always greater or equal than all the

connecting elements below it. Likewise, an ordering element further down on the

lattice is always smaller or equal than all the connecting elements below it

For example, y is greater than the lower lattice element x∨ y, x∨ y ∨ z, to which

it is directly connected, by way of x ∨ y and y ∨ z. Likewise, y is greater than the

higher lattice element x ∧ y, x ∧ y ∨ z, to which it is directly connected, by way of

x ∧ y and y ∧ z. In this sense the lattice of ordering is an algebra.

In what follows we derive a measure, called the Bernoulli law, that quantifies the

degree of ordering.

13.2. The general sum rule. We begin by considering a special case of elements

x and y with join x ∨ y. In Figure 16 we give the graphical representation of this

simple lattice.

Figure 16. Lattice of x ∨ y

The value we assign to the join x ∨ y, written v(x ∨ y), must be a function

of the values we assign to both x and y, v(x) and v(y). Since, if there did not

exist any functional relationship, then the valuation could not possibly reflect the

underlying lattice structure; that is, valuation must maintain ordering, in the sense

that x ≤ x ∨ y implies either v(x) ≤ v(x ∨ y) or v(x) ≥ v(x ∨ y).

So, we write this functional relationship in Figure 16 in terms of an unknown

binary operator ⊕:

v(x ∨ y) = v(x)⊕ v (y) . (13.3)

We now consider another case where we have three elements x, y, and z, Figure 17.

Because of the associativity of the join, we have that the least upper bound of

these three elements, x ∨ y ∨ z, can be obtained in these two different ways:

x ∨ (y ∨ z) and (x ∨ y) ∨ z. (13.4)
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Figure 17. Lattice of x ∨ y ∨ z

By applying (13.3) to (13.4), the value we assign to this join can also be obtained

in two different ways:

v (x)⊕ [v (y)⊕ v (z)] and [v (x)⊕ v (y)]⊕ v (z) . (13.5)

Consistency then demands that the equivalent assignments (13.5) have the same

value:

v (x)⊕ [v (y)⊕ v (z)] = [v (x)⊕ v (y)]⊕ v (z) . (13.6)

This the functional equation for the operator ⊕, for which the general solution is

given by, [1]:

f [v (x ∨ y)] = f [v (x)] + f [v (y)] , (13.7)

where f is an arbitrary invertible function, so that many valuations are possible.

We define the valuation u as

u (x) ≡ f [v (x)] ,

and rewrite (13.7) as

u (x ∨ y) = u (x) + u (y) . (13.8)

Now that we have a constraint on the valuation for our simple example, we seek

the general solution for the entire lattice. To derive the general case, we consider

the lattice in Figure 18.
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Figure 18. Extended lattice of x ∨ y

If we apply (13.8) to both the elements y and x ∨ y, we get

u (y) = u (x ∧ y) + u (z) , (13.9)

and, since y is just the join of the part it shares with x joined with z, where, for the

lattice of ordering, z is understood to be the meet, (13.1), with y and some other

ordering element to the right,

u (x ∨ y) = u (x) + u (z) . (13.10)

Substituting for u (z) in (13.9) and in (13.10), we get the general sum rule:

u (x ∨ y) = u (x) + u (y)− u (x ∧ y) (13.11)

In general, for bi-valuations we have

w (x ∨ y| t) = w (x| t) + w (y| t)− w (x ∧ y| t) , (13.12)

for any context t, [39].

Note that the sum rule is not focused solely on joins since it is symmetric with

respect to interchange of joins and meets.

At this point we have derived additivity of the measure, which is considered to

be an axiom of measure theory. This is significant in that associativity constrains

us to have additive measures - there is no other option, [39].

If we apply (13.1) and (13.2), which are the operators of this particular lattice,

to (13.12), we are left with the platitude

w (y| t) = w (x| t) + w (y| t)− w (x| t) = w (y| t) , (13.13)

which, nonetheless, is very consistent.
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So, we find that on the lattice of ordering the general sum rule provides no other

constraint than that the quantification w should assign the same value to the same

argument, which we intended to do anyway.

Now, for both the lattice of statements and questions, which quantify, respectively,

to the Bayesian probability and information theories, we have that the general sum

rule (13.12) is a highly non-trivial operator, as it gives rise to the general sum rule

of the measures of probability and relevancy, respectively.

Chain Rule. We now focus on bi-valuations and explore changes in context [38].

We begin with a special case and consider four ordered elements x ≤ y ≤ z ≤ t.
The relationship x ≤ z can be divided into the two relations x ≤ y and y ≤ z. In

the event that z is considered to be the context, this sub-division implies that the

context can be considered in parts. The bi-valuation we assign to x with respect to

the context z, that is, w (x| z), must be related to both the bi-valuation we assign

to x with respect to the context y, that is, w (x| y), and the bi-valuation we assign

to y with respect to the context z, that is, w (y| z).
So, there exists a binary operator ⊗ that relates the bi-valuations assigned to

the two steps to the bi-valuation assigned to the one step:

w (x| z) = w (x| y)⊗ w (y| z) . (13.14)

By extending (13.14) to three steps, and considering the bi-valuation w (x| t),
relating x and t, via intermediate contexts y and z, we get Figure 19.

Figure 19. Context lattice of t

This figure leads to the associativity relationship:

[w (x| y)⊗ w (y| z)]⊗ w (z| t) = w (x| y)⊗ [w (y| z)⊗ w (z| t)] . (13.15)
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By way the associativity theorem, [39], we have that any operator, be it ⊕, ⊗,

or �, has a scale on which associativity relations (13.6) and (13.15) are additive,

which would seem to solve our (13.15) trivially.

However, once we have fixed the behavior of w to be additive with respect to

either the arguments before the solidus or the arguments behind the solidus, we can

not regrade to that scale anymore. We then will have to infer additivity on some

other grade, say, Θ (w), [39].

For example, in the quantification of the lattice of statements we are forced to

infer additivity on the alternative grade Θ; seeing that we have lost the degree of

freedom of addition on the grade w when we find a non-trivial generalized sum rule

(13.15), [39].

So, for the lattice of statements, we have that the chain rule for context change

forces us to use addition on the alternative grade Θ, which leaves us with the

equality:

Θ [w (x| z)] = Θ [w (x| y)] + Θ [w (x| y)] , (13.16)

If we solve (13.16), it is found that Θ is the logarithmic function times some constant

q, which we may set to one, if we so like, [39].

Since we have that the inverse of the logarithmic function is the exponential

function, we may label this inverse as, say, Ψ. We then return to our original grade

w, on which we have derived the general sum rule, by way of inversion:

w (x| z) = Ψ {Θ [w (x| y)] + Θ [w (x| y)]}

= elog[w(x|y)w(x|y)] (13.17)

= w (x| y)w (x| y)

which is the product rule of Bayesian probability theory.

Now, seeing that for the Bernoulli law addition on the w grade is still allowed,

(13.13), we have that by way of the associativity theorem, (13.15) results in a

constraint equation for non-negative bi-valuations involving changes in context [39]:

w (x| z) = w (x| y) + w (y| z) , (13.18)

where the grade w in (13.18) is the same as the grade Θ (w) in (13.16).

It then follows, by way of [39], that w (x) is of the form q log (x), which leaves

with the change of context rule of decreasing orderings

qd log (x| z) = qd log (x| y) + qd log (y| z) . (13.19)

where qd is the chain rule constant for decreasing orderings.
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Alternatively, if x is considered to be the context, rather then z, then the sub-

division of x ≤ z in relations x ≤ y and y ≤ z also implies that the context can be

considered in parts.

The bi-valuation we assign to z with respect to the context x, that is, w (z|x),

must be related to both the bi-valuation we assign to z with respect to the context

y, that is, w (z| y), and the bi-valuation we assign to y with respect to the context

x, that is, w (y|x).

So, there again exists a binary operator ⊗ that relates the bi-valuations assigned

to the two steps to the bi-valuation assigned to the one step

w (z|x) = w (z| y)⊗ w (y|x) . (13.20)

By extending (13.20) to three steps, and considering the bi-valuation w ( t|x), relating

t and x, via intermediate contexts z and y, we get Figure 20.

Figure 20. Context lattice of t

This figure leads to the associativity relationship:

w ( t| z)⊗ [w (z| y)⊗ w (y|x)] = [w ( t| z)⊗ w (z| y)]⊗ w (y|x) . (13.21)

This relationship then leads us, by way of (13.16), (13.17), and (13.18), to the

change of context rule of increasing orderings

qi log (z|x) = qi log (z| y) + qi log (y|x) . (13.22)

where qi is the chain rule constant for increasing orderings.

13.3. Deriving the Bernoulli Law. We now will apply chain rule (13.19) to the

lattice of ordering in Figure 21, where the elements x, y, z are understood to be

orderings.
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Figure 21. A lattice of orderings

We focus on the small diamond in Figure 21, defined by x, x∨ y, y, and x∧ y. If

we consider the context to be x ∨ y, then the chain rule (13.19) for this diamond

may be written down as:

qd log (x ∧ y|x ∨ y) = qd log (x ∧ y| y) + qd log (y|x ∨ y) . (13.23)

which reduces to, by way of (13.1) and (13.2),

qd log (x| y) = qd log (x| y) + qd log (y| y) . (13.24)

which implies that

qd log (y| y) = 0. (13.25)

It follows from (13.25) and the properties of the logarithm that

qd log (x| y) = qd log
x

y
. (13.26)

We again focus on the small diamond in Figure 21, defined by x, x ∨ y, y, and

x ∧ y. If we now consider the context to be x ∧ y, then the chain rule (13.22) for

this diamond may be written down as:

qi log (x ∨ y|x ∧ y) = qi log (x ∨ y| y) + qi log (y|x ∧ y) . (13.27)

which, by way of (13.1) and (13.2), reduces to

qi log (y|x) = qi log (y| y) + qi log (y|x) . (13.28)

which implies that

qi log (y| y) = 0. (13.29)

It follows from (13.29) and the properties of the logarithm that

qi log (y|x) = qi log
y

x
. (13.30)
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Now, we may go, by way of (13.30), from an ordering x to y, and then, by way

of (13.26), go from y back to x again. The taking of this path should be consistent,

in that the net gain in ordering is zero, which leaves with the equality:

qi log
y

x
+ qd log

x

y
= 0, (13.31)

or, equivalently,

qi log
y

x
= −qd log

x

y
= qd log

y

x
. (13.32)

It follows from (13.32) that for the lattice of order, consistency demands that the

constants qi and qd must be equal, which leaves us with the Bernoulli law, which

for x < y, assigns the valuation

q log
y

x
. (13.33)

for an increase in ordering, and

q log
x

y
. (13.34)

for a decrease in ordering.

If the ordering elements x1, x2, etc., are numbers on the positive real, where

x1 < x2 < etc..., then xi will tend to ∞, as i → ∞. However, if the ordering

elements x1, x2, etc., are numbers on the negative real, where x1 < x2 < etc..., then

xi will tend to 0, as i→∞.

This then explains why loss aversion, a phenomenon belonging to the positive

Bernoulli law, in which losses are weighted heavier than commensurate gains, in the

negative Bernoulli law, changes to the phenomenon of debt relief in which gains are

weighted heavier than commensurate losses.

14. Discussion

In this fact sheet we have presented the eight supporting contacts, in chronological

order, that led us, finally, to the belief that the Bayesian decision theory, just like

the Bayesian probability and information theories, is Bayesian in the strictest sense

in the word; that is, an inescapable consequence of the desideratum of consistency.

This belief led us to consider that the Bernoulli law, the only remaining degree of

freedom in our decision theory, might be more fundamental then we initially had

thought.

Because our initial justification for the Bernoulli law had come from the obser-

vation that this law, in the guise of the Weber-Fechner and the Steven’s power

law, had been demonstrated by psycho-physics to be an appropriate model for the

way we humans perceive the increments in sensory stimuli, in terms of sensation

strength. So, if monetary outcomes are considered to be a sensory stimuli, in the

most abstract sense of the word, then it would follow the Bernoulli law would be the
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most appropriate model for the way we humans perceive the increments in monetary

wealth, in terms of their utilities.

The tipping point, where the Bayesian decision theory transitioned from an

intuitive idea to something more fundamental, came for us when, having found the

skewness intervals, we were re-analyzing the Kahnmenan and Tversky data on the

psychological preferences in certainty bets.

It was found that Bayesian decision algorithm confirmed most of the reported

preferences. Nonetheless, some preferences were forcefully rejected.

For example, for the certainty bet where we have to choose between a certain gain

of 3000, and a probability p = 0.8 of gaining 4000 and a probability of 1− p = 0.2 of

gaining nothing, it is found that 80% of the N = 95 subjects preferred the certain

outcome, [33].

For an initial wealth of m = 1000, it is found that, by way of the Bernoulli law

and skewness interval, that the fair probability for this certainty bet is p = 0.963.

So, only for probabilities larger than this fair probability, will those with a modest

income feel inclined to consider the uncertainty choice, which is in correspondence

with the observed preference for the certainty choice.

However, for the certainty bet where we have to choose between a certain loss of

3000, and a probability p = 0.8 of losing 4000 and a probability of 1− p = 0.2 of

losing nothing, it is found that 92% of the N = 95 subjects preferred the uncertain

outcome, [33].

For an initial wealth of m = 5000, it is found that, by way of the Bernoulli law and

skewness interval, that the fair probability for this certainty bet is p = 0.747. So, only

for probabilities smaller than this fair probability, will those with a modest income

feel inclined to consider the uncertainty choice, which is in strong contradiction with

the observed preference for the uncertainty choice.

Now, for an initial wealth that tends to infinity, both fair probabilities will tend to

p = 0.902, which is in correspondence with both observed preferences. Nonetheless,

we felt that human intuition had erred in the latter experiment, as the both the

subjects and we ourselves47, do not have initial wealths that tend to infinity.

In the study of Kahneman and Tversky’s work, we had learned to doubt somewhat

the infallibility of the experimental method of hypothetical betting choices48. As a

consequence, we were put in the position that we put more faith in the Bayesian

decision theory, than the reported preferences in the hypothetical betting choices.

47For we were, in choice, among the 92% who opted for the uncertainty bet.
48See Appendix F.
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That is, we trusted the Bayesian decision algorithm to teach our intuition, in those

instances where the intuitive ‘resolution’ is lacking to make clear and crisp choices49.

Especially so, since we, on the one hand, had eliminated the confounding effect of

the skewness of the utility probability distributions, by way of the skewness intervals,

and, on the other hand, had taken painstaking care to search out those ‘unyielding

practical realities’, as mentioned in the introduction, that would put our foundations

to the test. And it had been found that all these practical realities fell nicely in line

with the proposed foundations of the Bayesian decision theory.

Moreover, the resulting decision criteria managed to educate our intuitions in

unexpected ways; from the adjusted odds ratio, to the way the skewness intervals

were handled, to the way what constituted a fair outcome confidence interval, to the

way the fair probabilities curve replicated the qualitative S-curve of the probability

weighting functions of Kahneman and Tversky.

So, by analogy, Jaynes’ reasoning computer of Bayesian probability theory, [28],

had become a decision making computer. And this decision making computer, not

much unlike a veteran stock broker, knew when to take his losses and not to throw

good money after bad.

This then put the burden on us to provide a proof of the fundamentalness of the

Bayesian decision theory. Because the history of Bayesian probability has taught us

that the usefulness of a theory, in terms of its practical and beautifully intuitive

results, in the absence of a compelling axiomatic basis, provides no safeguard against

attacks by those who choose to close their eyes to this usefulness50.

It may be read in Jaynes’ [28], that to the best of his knowledge, there are as of

yet no formal principles at all for assigning numerical values to loss functions; not

even when the criterion is purely economic, because the utility of money remains

ill-defined. In the absence of these formal principles, Jaynes final verdict was that

decision theory can not be fundamental.

We believe that Jaynes would have approved, would he have been told that his

direct descendents, Knuth and Skilling, would be the ones that would provide the

Bayesian community with the formal principles with which to assign numerical

values to loss functions51.

49Just like we have learned, having been Bayesians for the past ten years, to trust the Bayesian
probability algorithm to teach our intuition, in those instances where the intuitive resolution is

lacking to make clear and crisp plausibility assessments.
50Note that this historical fact explains why Bayesians have their axiomatic house in such good

order. This process started with the work of Cox, [8], was expanded upon by Jaynes, [28], which

was then further refined by the work of Knuth and Skilling, [39]. Moreover, the more general
axiomatic framework of the latter has enabled them, amongst other things, [41], to bring some

order to the field of quantum theory, by showing why this theory is forced to use a complex

arithmetic, [22].
51Though we think that the research along the lines of [22] would have pleased him even more.

Because the deepest driving motivation behind all of Jaynes’ work on statistical theory was not
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For that is what Knuth and Skilling have done, by providing the lattice theoretical

framework, on which quantifications are derived, by way of associativity symmetries

on the underlying lattice algebra, which inherits its meaning from the join and meet

of its constituting lattice elements.

The Bernoulli law, initially derived by Bernoulli, by way of common sense first

principles, has now been derived by way of a quantification on the lattice of ordering;

thus, removing the one remaining degree of freedom of the Bayesian decision theory,

and, in the process, demonstrating why it is that Bernoulli’s law has proved to be so

ubiquitous in the field of psycho-physics. Simply, because consistency demands it.

15. A Post Scriptum by the First Author

Now, if the Bayesian decision theory is indeed an inescapable consequence of the

desideratum of consistency, as we think it is, then we would have that the whole

human gamut of plausibility and relevancy perception, and the consequent decision

making process, when it comes to decisions of a monetary nature, tend to adhere

to the primary first principle of consistency. And, not much unlike Fechner, [15],

we are suddenly struck by the implied harmony between the physical and mental

universes.

For, one might argue that the material world is just a dead mechanism, with life

and consciousness occurring only as an incident and only as incidental and fully

predetermined by-products of mechanistic laws. In such a soulless world, mental

irrationality is not that great of a mystery. For we humans are, obviously, just

flawed mechanisms, accidents of an uncaring nature.

The opposite argument, then, would be that Nature itself has a deep preference

for consistency52. And we humans, being creatures of Nature, feel a deep need to

approach, however faltering, Nature’s perfect consistency. This need is such, that

some of us may even commit themselves to a rigorous and lifelong program of mental

training53. In this opposite world view, mental irrationality becomes the mystery,

as opposed to it being the iron standard.

In the latter view of the world, it becomes apparent why it is that the work of

Kahneman and Tversky, in its aggresive and triumphant self-assertion, may inspire

just the desire for more powerful practical methods of inference. It was rather the conviction
that progress in basic understanding of physical law, prevented for fifty years by the positivist

Copenhagen philosophy, could be resumed only by a drastic modification of the view of the world
then taught to physics. Jaynes was of the belief that the mathematics of quantum theory described

in part physical law, in part human inference, all scrambled together in such a way that nobody

had seen how to seperate them. Jaynes had become convinced that this unscrambling would
require that the probability theory itself should be reformulated along the lines of the Bayesian
probability theory, [26, 27].
52The apple always drops downwards from the tree. Light is always bended by the gravity well of
a black hole. Electricity currents always flows from the negative charge to the positive. Etc...
53Those who do are typically called scientists.
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such ire. Because of its characterization of humans as cognitive cripples, it dismisses

our highest mental aspirations, and, by so doing, it triggers our defensive fight or

flight reaction.

We may read in [48], that Edwards himself, who was Kahneman and Tversky’s

mentor, struggled for many years to make his peace with the work of his former

pupils, but that he, nonetheless, never succeeded in doing so.

Even Jaynes, veteran of many years of the polemical warfare that was the great

schism between Bayesians and frequentists, who, like Newton, could crush his

intellectual opponents with a playful swoop of his mighty paw, seems to have

been defeated by the impenetrability of the Kahneman and Tversky work. For

we may read in [28], which was to be his statistical legacy, that the Kahneman

and Tversky psychological experiments are inherently silly, and that if you call

something Bayesian, it need not necessarily be so. This type of argumentation is in

total contradiction to Jaynes’ usual high form, [24, 26], which leads us to the belief

that Jaynes decided that he just could not be bothered by the inanity of it all.

We ourselves too, if left to our own devices, would have abandoned the critical

analysis of the Kahneman and Tversky work a long time ago, seeing that this work

hardly admits any point of attack because of its very amorphousness54. Were it not

for a very fortunate, though, at times, still painful, serendipity, which, eventually,

forced us to formulate a Bayesian answer to the behavioristic economics paradigm.

We say eventually, because we tried our hardest to steer ourselves away from the

Kahneman and Tversky work, which never failed to depress us.

Our first line of escape was the development of a new class of C-splines, an

explicit base for B-splines, and a non-informative prior with does not needlessly

penalize these highly parametrized regression models, thus, solving the problem of

54It took these authors two years to formulate an articulate answer to the Kahneman and Tversky
charge that humans reason in a fundamentally non-Bayesian manner. And we invite all Bayesians
to take a look at the decision theoretical paper [33]. In this paper Kahneman and Tversky define

the weighting function π as some monotonic increasing function in p. For the weighted probability

π(p), it is said that the impossible and certain events are weighted, respectively, such that π(0) = 0
and π(1) = 1. The property of subcertainty then is that we may have that

π(p) + π(1− p) < 1.

But this implies the possibility of

π(p) + π(1− p) < π(1) ,

which then would imply that the subjectively weighted probabilities of two mutually exclusive

and exhaustive propositions do not add up to certainty, which is in violation of the sum rule.

Moreover it is stated by Kahneman and Tversky that this violation is an ‘essential element of
people’s attitude to uncertain events’. However, when reading [33], do not make the mistake we

ourselves initially made, to read it like it actually were a work of statistics. By doing so, one may

invite a massive mental disconnect, as one’s statistical training will read meaning where there is
none, which further down the line, as Kahneman and Tversky take their argument to its inevitable

conclusion, will leave the statistically trained reader both confused and bewildered. But rather,

read it like an essay on statistics by two under-graduate students, who, unfettered by any actual
statistical knowledge, let their fancy take them where ever it may lead.



FACT SHEET 71

over-fitting, [12, 13, 44]. However, seeing that we did not have a PhD in numerical

analysis, but a PhD in risk perception, this could do little in terms of alleviating

our plight.

The second line of escape, which was closer to the mark, for relevancy judgments

play an important role in risk communication, was Knuth’s Inquiry Calculus, which

at the time was still a work in progress, as the specific product rule for the relevancy

measure was still lacking. We desperately needed this Bayesian information theory

to work, as it offered us a way out of our predicament. So, we tinkered away, until

we had a working specific product rule for relevancies, and when Knuth and Skilling

came with their [39], we could formulate a formal proof to accompany our tinkering,

[14].

Furthermore, the Bayesian information theory also provided us with a non-trivial

application of our Inner Nested Sampling algorithm, which is a specific imple-

mentation, for Dirichlet distributions, of Skilling’s 2004 general Nested Sampling

framework55. This Inner Nested Sampling algorithm, on which the jury is still out56,

promised to give the information theoretical thesis work the additional technical

gravitas, with which we could, in all good conscience, consider our PhD mission

accomplished.

But these were all, however gratifying their results, in the final analysis, moves

of desperation. For the work of Kahneman and Tversky, was still there, ever

triumphant in its drab belligerence; denying us, by way of its anti-Bayesian stance,

entry into the decision theoretical field. It was only when we saw our contract

renewed, through the European Commission’s Seventh Framework Program, that

we were finally forced to face our nemesis.

The work package to which we had been assigned called for a behavioristic

economical analysis of multi-hazard events. And it was only through the kind, but

nonetheless unrelenting, insistence of our work package leader57 that we came to the

55Nested Sampling is a Bayesian Monte Carlo sampling scheme, which represents a quantum leap

in the way we numerically evaluate highly variate integrals. Integrals that until now defied all
direct evaluation, by way of the curse of dimensionality, may now be evaluated as a matter of

course, and Nested Sampling framework, as an added bonus also will provide the user, if needed,

with a set of properly weighed random samples, [54].
56For we still have to submit, as was promised, to Skilling a revised version in which a more
generous amount of graphs is included. So as to better guide the unsuspecting reader through
the somewhat involved geometrical arguments, which, on the one hand, take advantage of the

n-simplex form of the parameter space of the Dirichlet distribution, and, on the other hand, use

the surface of the unit n-sphere to obtain uniformly sampled differentials of the contour of the
initial likelihood space.
57We here acknowledge our debt of gratitude to Nadejda Komendantova, for doing what a work
package leader ought to do. First by encouraging us to stay on point, for information theory is
no decision theory, as we ourselves, at the time, were painfully aware. And, later on, when the
first draft of the Bayesian decision theory had seen the light of day, through the first three case
studies presented in this fact sheet, shielding this theory against the attacks from a somewhat

underwhelmed scientific reviewer, who thought it all to be too abstract, with so much still left
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Bayesian decision theory, whose structure allowed us to finally begin to formulate a

Bayesian answer to the Kahneman and Tversky work. An answer that was long

overdue.
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Appendix A. Variance Preferences

In the Bayesian decision theory bounds of confidence intervals are compared with

each other. So, in the Bayesian framework both the expectation values and standard

deviations, or, equivalently, variances, of the utility probability distributions are
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taken into account in the making of decisions. It turns out that this suggestion was

also made by both Allais [3, 4, 2] and Georgescu-Roegen58 [18].

Moreover, Allais constructed his famous paradox for the sole purpose of demon-

strating the psychological reality of ‘variance preferences’, [5]. An Allais paradox

may go as follows. Assuming linear utilities for the value of money, we have bets D1

and D2, which have the utility probability distributions:

P (u|D1) =
{

1, u = 1.000.000 (A.1)

and

P (u|D2) =

0.5, u = 0

0.5, u = 4.000.000
(A.2)

Based on the utility probability distributions (A.1) and (A.2), people tend to prefer

bet D1 over D2, even though the utility expectation value under bet D1 is much

smaller than under bet D2,

E(u|D1) = 1.000.000 < 2.000.000 = E(u|D2) , (A.3)

which is in contradiction with the basic premise of expected utility theory that

people will choose that bet which maximizes the expected utility.

Allais contributed this finding to the fact that the variance under bet D1 is zero,

while under bet D2 it is much greater than zero; what holds for the variances, also

holds for standard deviations:

std(u|D1) = 0 << 2.000.000 = std(u|D2) . (A.4)

These standard deviations, together with their corresponding means, (A.3), convey

that D1 assuredly will lead to a great gain in utility; whereas under D2 there is a

very real chance of not winning anything at all.

People not only try to maximize the expectation value of utility, they also take

into account the variances of the respective utility probability distributions. Hence,

the name variance preferences, that is, preferences between decisions based upon

the variance, or, equivalently, the standard deviations of the utility probability

distributions59.

Allais’ paradox stands prominent among the paradoxes which are used to dismiss

excepted utility theory, [46]. This is somewhat ironic, as it is Allais himself who

showed us the way out by pointing out that, together with the expected value, the

58We were unable to find Georgescu-Roegen’s article, referenced in [10], on-line.
59Allais states that decisions ought to be taken on the basis of all the information present in the

utility probability distribution, ψ (γ), by way of some function h, Eq.6, [4]. However, Allais does

not proceed to give suggestions as to the form and shape of this function h, at least, as far as we
are aware. The lower and upper bounds of the utility probability distributions, as used in this fact
sheet, are possible examples of such functions h.
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variances and higher order moments of the utility probability distributions should

also be taken into account, we quote60 [5]:

In the Theory of Games, von Neumann and Morgenstern presented

both a method for determining cardinal utility and a rational rule

of behavior. Both are based on the consideration of an index which

may be called the neo-Bernoullian utility index61. The theory de-

vised by von Neumann and Morgenstern demonstrates the existence

of this index from a system of postulates, and they identified it

with cardinal utility in Jevons’ sense. According to them, in or-

der to be rational, any operator must maximize the mathematical

expectation of this index.

This stance struck me as being unacceptable because it amounts

to neglecting the probability distribution of psychological values

around their mean, which precisely represents the fundamental

psychological element of the theory of risk.

I illustrated my argumentation through counter-examples; one

of them became famous as the ‘Allais Paradox’. In fact, the ‘Allais

Paradox’ is paradoxical in appearance only, and it merely corre-

sponds to a very profound psychological reality, the preference for

security in the neighborhood of certainty.

The main reason that the concept of variance preferences never caught on is

probably because Allais failed to provide an explicit function by which monetary

outcomes could be transformed to utilities. Thus, preventing Allais to proceed with

the constructing of utility probability distributions and the computation of their

variances.

We can only guess as to why Allais disqualified Bernoulli’s law as a possible

candidate utility function. It may be that Allais disqualified Bernoulli’s function

because of the latter’s oversight to realize the importance of the variances of the

utility probability distributions as a criterion of action.

60Italics are by Allais himself.
61Note that the method for determining cardinal utility, mentioned by Allais, refers to the utility
measurement scheme which is proposed by von Neumann and Morgenstern in their [47]. This

measurement scheme is very much different from the one that was originally proposed by Bernoulli

[6]. So much so, that we would opt to designate the resulting utility index to be ‘non-Bernoullian’,
rather than neo-Bernoullian. Bernoulli derives his utility function, or, equivalently, the Weber-

Fechner law, by way of three simple considerations. This utility function is then used to compute
the expectation of utilities (as opposed to the expectation of monetary outcomes). Von Neumann
and Morgenstern, however, postulate, as we believe, a more opague axiomatic system, from which

they then derive that the utility indices, which are to be compared, necessarily must take the form
of expectation values. A result which is in contradiction with empirical observations, as Ellsberg

and Allais have shown with their paradoxes. See [10] for a simple application of the von Neumann

and Morgenstern utility assignment scheme.
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Or it may be that he thought the problem to be intractable, as also perceived to

need to assign subjective probability values to the ‘objective’ frequentistic probabili-

ties of orthodox statistics.

This then would not only constitute another oversight on the part of Bernoulli,

as Bernoulli himself had not perceived this need62, but it would also compound the

problem of assigning moral values to objective monies, seeing that one also would

have to assign moral values to objective frequencies.

Appendix B. A Prerequisite Statistical Language

The Bayesian decision theory presented in this thesis is just Bernoulli’s expected

utility theory, with the intuitive adjustment that we base our decisions on the

confidence bounds of our utility probability distributions63, instead of, as was

initially proposed by Bernoulli, their means.

It can hardly be over-stated how amazing it is that Bernoulli got so much of it

right in his 1738 essay. Considering that at the time statistics was still in its early

infancy.

In 1738 mathematicians where still trying to formulate a solution to the problem

of inverse probabilities. The problem of inverse probabilities may be paraphrased as

follows, [25]. If, for some probability p, the probability distribution of r successes in

n trials is given as

p(r|n, p) =
n!

r! (n− r)!
pr (1− p)n−r .

Then what does the observing of r successes in n trials tell us about the probability

p, if this probability is unknown?

Bayes was the first one to actually solve the problem of inverse probabilities, as

he derived in 1763, for all intents and purposes, the beta distribution:

p(p| r, n) =
(n+ 1)!

r! (n− r)!
pr (1− p)n−r ,

However, it was Laplace, in 1774, who took the problem of inverse probabilities to

its greatest generality; thus, starting the field of Bayesian statistics.

Laplace posed the following question. If for some set of parameters {A}, the

probability distribution of some other set of parameters {B} is given as

p({A}| {B}) .

62This is because Bernoulli regarded probabilities, just like Laplace who came after him, to be

a state of knowledge, rather than a limiting frequency of an imaginary infinity of replications of
some experiment. And a state of knowledge is always ‘subjective’, [28].
63This adjustment is in the spirit of Allais’ suggestion of variance preferences.
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Then what does the observing of {B} tell us about the probability of {A}, if {A} is

unknown? And the solution given by Laplace is the well-known Theorem of Bayes64:

p({B}| {A}) = p({B}) p({A}| {B})
p({A})

,

So, we see that the scientific field of statistics, in 1738, was still very much a field in

development.

It was only in 1809 that the normal distribution,

p (x|µ, σ) =
1√
2πσ

exp

[
− 1

2σ2
(x− µ)

2

]
.

was discovered by Gauss65. This normal law enabled Laplace to finally derive his

central limit theorem, which he published in its final form in 1812.

The central limit theorem states that the sum of any xi observations, for i =

1, . . . , n, will tend to have a normal probability distribution, having a mean of nµ

and a standard deviation of
√
nσ, as n tends to infinity, irrespective, of the actual

probability law that ‘generated’ these xi; where µ and σ are the mean and standard

deviation of the generating probability law of the xi.

As a corollary of the central limit theorem it may be found that if we have just

the one observation x, that is, n = 1, and if that one observation is generated by the

normal law. Then, this sample will have a value somewhere in the range between

(µ− σ, µ+ σ) ,

with probability ∫ µ+σ

µ−σ

1√
2πσ

exp

[
− 1

2σ2
(x− µ)

2

]
dx = 0.68,

which, then, is the rationale behind the ubiquitous use of the sigma confidence

intervals.

So, the reason that Bernoulli did not, or better yet, could not, take the higher

order cumulants of the utility probability distributions into account in his decision

theoretical program, was simply because the prerequisite statistical language to

think along the lines of confidence bound maximizations was still lacking at the

time, when he wrote his 1738 essay.

64We summarize, the beta distribution is the Bayes’ distribution and Bayes’ Theorem is Laplace’s

Theorem.
65Gauss himself, at the time, did not realize the importance of the normal law, which he had just

derived. But it was Laplace who immediately saw its importance, as he had been studying this

normal law himself, through the limiting behavior of the binomial distribution,

p ( r|n, p) =
n!

r! (n− r)!
pr (1− p)n−r ,

as n tends to infinity.
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But we can imagine, that Bernoulli, had he been here today with us, would have

been quite delighted to see that his 1738 proposal, with the proper adjustments,

which allow for all the statistical discoveries that have been made from 1738 until

now, has stood the test of time so gracefully.

As it will lead, as we will demonstrate in this fact sheet, to very intuitive results,

when applied to problems of choice.

Appendix C. Utility Probability Distributions Insurer

Let the insurance company have an initial wealth of M . If the customer pays the

insurance premium P and i contingencies occur in conjunction, then the increment

in the amount of money for a given outcome Oi is

∆Mi = P − iL (C.1)

Then by way of (4.3) and (C.1), we may construct the following conditional utility

distribution, used for mapping outcomes to utilities:

p(u|Oi, D1) =

1, u = log M+P−iL
M

0, u 6= log M+P−iL
M

(C.2)

or, equivalently,

p(u|Oi, P,D1) = δ

(
u− log

M + P − iL
M

)
, (C.3)

where δ is the Dirac delta function:

δ(u− c) du =

1, u = c

0, u 6= c
(C.4)

Because of (C.4), we have that∫
δ(u− c) f(u) du = f(c) . (C.5)

This property of the Dirac delta enables us to make a one-on-one mapping, from

outcomes to utilities.

By way of the product rule, we then may combine (4.2) and (C.3) in order to

obtain the bivariate distribution of the utility u and the outcome Oi:

p(u,Oi|P,D1) = p(u|Oi, P,D1) p(Oi|D1)

(C.6)

= δ

(
u− log

M + P − iL
M

)(
n

i

)
pi (1− p)n−i .
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Marginalizing over the outcomes Oi, we find the utility probability distribution

p(u|P,D1) =

n∑
i=0

δ

(
u− log

M + P − iL
M

)(
n

i

)
pi (1− p)n−i . (C.7)

In order to get a more intuitive feel for (C.7) we observe that (C.2) is an one-

on-one mapping. So, we may make a change of variable by interchanging the label

Oi by its corresponding utility value. This then allows us to write (C.7) in the

alternative form:

P

(
u = log

M + P − iL
M

)
=

(
n

i

)
pi (1− p)n−i . (C.8)

Though (C.8) initially may seem a more intuitive notation then (C.7), the Dirac-

delta notation of (C.7) is to be preferred, as it more closely reflects the fact that

we marginalize over the outcomes Oi in order to obtain univariate probability

distribution for the utilities u.

Moreover, after one gets used to the Dirac-delta notation, it will be notation

(C.8) which becomes awkward to the eye.

If the insurance company does not sell the insurance, that is, decision D2, then

for each outcome Oi, we have that the initial wealth M of the insurance company

remains as is. So,

p(u|Oi, D2) = δ

(
u− log

M

M

)
= δ(u) , (C.9)

and we find, by way of the product and generalized sum rule, compare with (C.6)

and (C.7):

p(u|D2) = δ(u)

n∑
i=0

(
n

i

)
pi (1− p)n−i = δ(u) , (C.10)

or, equivalently, a probability 1 of neither loss nor gain:

P (u = 0) = 1. (C.11)

We now have constructed the utility probability distributions under both decisions

D1, insure, and D2, do not insure; respectively, (C.7) and (C.10).

Appendix D. Non-Linear Preferences

Tversky and Kahneman [60], state that non-linear preferences constitute one of

the minimal challenges that must be met by any adequate descriptive theory of

choice. We shall explain.

If we have a bet which has the following outcome probability distributions

p(O|D1) =
{

1, O = 1.000.000 (D.1)
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and

p(O|D2) =

0.99, O = 5.000.000

0.01, O = 0
(D.2)

then people will typically prefer the bet D1 over D2.

In contrast, if we have a bet which has the following outcome probability distri-

butions

p(O|D1) =

0.90, O = 1.000.000

0.10, O = 0
(D.3)

and

p(O|D2) =

0.89, O = 5.000.000

0.11, O = 0
(D.4)

then people will typically prefer the bet D2 over D1.

Allais gave this example, in a slightly altered form, to demonstrate that Savage’s

fifth axiom of independence does not hold, [4]. According to Savage’s independence

axiom, which we do not endorse, we may add for both (D.1) and (D.2) a probability

mass of 0.10 to the proposition u = 0, while subtracting that same probability mass

for the respective propositions u = 5.000.000 and u = 1.000.000, leading to (D.3)

and (D.4), and still maintain the same problem of choice. But this assumption, as

one would hope, is shown to be incorrect by the observed reversal in preferences

from bet D1 over D2 to bet D2 over D1.

Now, according to Kahneman and Tversky the example by Allais not only refutes

Savage’s axiom of independence, but it also shows that the difference between

probabilities of 0.99 and 1.00 has more impact on preferences than the difference

between 0.10 and 0.11.

Kahneman and Tversky find this observation to be so full of meaning that they

deem it to be a psychological phenomenon in and of itself, and proceed to label it as

the ‘certainty effect’, [33], which later turns into ‘non-linear preferences’, [60]. But

for Bayesians the phenomenon of non-linear preferences is not that special and not

that new66.

66The particular U-shape of the non-informative Jeffreys’ prior for the parameter θ of the beta
distribution,

p(θ) ∝ θ−1 (1− θ)−1 ,

is a consequence of the non-linearity of probabilities. If we make a change of variable from θ to the

log-odds ω = log [θ/ (1− θ)], then it may be found that the implied non-informative prior of the
log-odds ω is uniform,

p(ω) ∝ constant.

So, log-odds, having the whole infinity of the x-axis at their disposal, are linear; whereas probabilities,

being forced to lie within the heavily constricted interval [0, 1], are not.
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While working on the German enigma code, during World War II, Good67 and

Turing introduced the ‘deciban’ measure which is measured in decibans:

deciban(P ) = 10 log10

P

1− P
, (D.5)

and which gives the plausibility of a proposition being true, relative to it not being

true, [21].

For undecidedness, that is, for a fifty-fifty change of some hypothesis A being

true, we have

P = 1− P = 0.5. (D.6)

Substituting (D.6) in (D.5), we find that undecidedness, (D.6), corresponds with

deciban(0.5) = 10 log10(1) = 0. (D.7)

Just as 1 db sound represents the just noticeable difference relative to silence, so a

±1 deciban change in probability represents the just noticeable difference relative

to undecidedness, [20].

Using (D.5), we find that the decibans associated with the probabilities 0.99 and

1.00 are, respectively,

deciban(0.99) = 10 log10

0.99

0.01
= 19.96 (D.8)

and

deciban(1.00) = 10 log10

1.00

0.00
→∞. (D.9)

Now, (D.9) tells us that a probability 1.00 is a limit case of absolute certainty.

Whereas a probability of 0.99 is not, representing just under 20 decibans of evidence

for proposition A being true.

So, the difference in evidence for proposition A being true for the probabilities

0.99 and 1.00 is much more than 1 deciban:

deciban(1.00)− deciban(0.99) =∞ >> 1. (D.10)

It may be checked that, (D.5), the probabilities of 0.10 and 0.11 correspond with a

less than 1 deciban difference in evidence:

deciban(0.11)− deciban(0.10) = 0.46 < 1. (D.11)

67Good wrote about 2000 articles on Bayesian statistics, found throughout the statistical and
philosophical literature starting in 1940. Workers in the field generally granted that every idea

in modern statistics can be found expressed by him in one or more of these articles; but their

sheer number made it impossible to find or cite them, and most are only one or two pages long,
dashed off in an hour and never developed further. So, for many years, whatever one did in

Bayesian statistics, one just conceded priority to Jack Good by default, without attempting the
literature search, which would have required days. Finally, in 1983, a bibliography was provided

of most of the first 1517 of these articles with a long index, so it is now possible to give proper

acknowledgments of his works up to 1983, [28].
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So, if we find that subjects prefer the second bet in the second collection of bets,

equations (D.3) and (D.4). Then this also may be interpreted as follows. Subjects

are indifferent to the difference in probabilities 0.10 and 0.11, as this difference

represents a change of less then 1 deciban in the plausibility of hypothesis A being

true, (D.11). So, all things being equal, subjects choose the bet with the highest

potential payout of 5.000.000 dollars.

In closing, the deciban, (D.5), represents the intuitive scale on which the plausi-

bility of proposition A being true, relative to it not being true, is judged; that is, the

deciban is the scale of the numerically coded plausibilities. Whereas the probability,

P =
10

deciban(P )
10

1 + 10
deciban(P )

10

, (D.12)

represents the non-intuitive ‘technical’ scale, which follows from the quantification

of our common sense, [39, 55].

So, if the difference between probabilities of 0.99 and 1.00 has more impact on

preferences than the difference between 0.10 and 0.11, as is found in psychological

experiments, then this is reflective of the fact that the qualitative properties of the

intuitive deciban-scale, up to a certain point, are retained in the transformation to

the more technical probability-scale.

We say up to a certain point, because probability theory, which makes use of the

technical probabilities, is common sense amplified, having a much higher probability

resolution than our human brains can ever hope to achieve. More concretely, we

expect that for human probability perception the range of meaningful decibans is

bounded somewhere around, say, ±40 deciban, [28].

Appendix E. Bernoulli’s Error

Kahneman dedicates in his Nobel lecture a whole section on ‘Bernoulli’s error’

and on how prospect theory may remedy this error, [34].

In Kahneman’s Nobel lecture we may read the following on Bernoulli’s error:

The idea that decision makers evaluate outcomes by the utility

of final asset positions has been retained in economic analyses for

almost 300 years. This is rather remarkable, because the idea is

easily shown to be wrong; I call it Bernoulli’s error. Bernoulli’s

model is flawed because it is reference-independent: it assumes that

the value that is assigned to a given state of wealth does not vary

with the decision maker’s initial state of wealth.

So, Bernoulli’s model is claimed to be in error in that it would evaluate outcomes

by the utility of final asset positions alone, without taking into account the initial

wealth of the decision maker.
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But it may be checked, Paragraph 10 of [6], that Bernoulli gives an utility function

of the form:

u (S|S0) = q log
S

S0
. (E.1)

where, adopting the Kahneman’s terminology, S and S0 are, respectively, the final

and initial asset states. Let the asset increment ∆S be defined as

∆S = S − S0. (E.2)

Then, by substituting (E.2) into (E.1), we obtain the equivalent utility function,

(4.3):

u (∆S|S0) = q log
S0 + ∆S

S0
. (E.3)

It follows that in Bernoulli’s expected utility theory asset increments ∆S, be they

positive or negative, are evaluated relative to the initial wealth S0 of the decision

maker.

This then begs the question: What was it, that led Kahneman to the misguided

belief that in Bernoulli’s model the gains and losses are not the carriers of utility?

Kahneman and Tversky state the first two tenets68 of expected utility theory to

be, respectively, the tenets of expectation and asset integration, [33]. The tenet of

expectation is

U(x1, p1; . . . ;xn, pn) = p1u(x1) + · · ·+ pnu(xn) . (E.4)

The tenet of asset integration states that if w is our current asset position, that is,

our initial wealth, then we will accept an uncertain prospect having outcomes xi if

U(w + x1, p1; . . . ;w + xn, pn) > u(w) . (E.5)

By substituting (E.4) into (E.5), we obtain the implied asset integration tenet:

p1u(w + x1) + · · ·+ pnu(w + xn) > u(w) . (E.6)

But then we have that the tenets of expectation and asset integration, as stated by

Kahneman and Tversky, are incompatible with Bernoulli’s expected utility theory.

For the expectation tenet (E.4), Bernoulli’s expected utility theory [6] implies

the function u:

u(x) = q log
w + x

w
, (E.7)

whereas, under the asset integration tenet (E.6), the implied function u would be

u(x) = q log x. (E.8)

68The third, and last, tenet is that of loss aversion, which states that u must be some concave
down function. The Bernoulli law is concave down.
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By way of (E.7), (E.8), and the fact that

q log
w + x

w
6= q log x,

it is then demonstrated that the two tenets, as proposed by Kahneman and Tversky

in their [33], are incompatible with Bernoulli’s expected utility theory.

By dropping the expectation tenet (E.4), while retaining the asset integration in

its form of (E.6), we may, very easily, do away with the Kahneman and Tversky

inconsistency.

By substituting the implied (E.8) into the asset integration tenet (E.6), we find69:

p1 [q log(w + x1)] + · · ·+ pn [q log(w + xn)] > q log(w) , (E.9)

Then, by way of the properties of the log function, we may rewrite (E.9) into the

equivalent

p1

[
q log

w + x1
w

]
+ · · ·+ pn

[
q log

w + xn
w

]
> 0, (E.10)

which for any psychologist should be recognizable as the weighted sum of Weber-

Fechner utilities70.

Especially, if those psychologists, like Kahneman and Tversky, explicitly state

that the facts of perceptual adaptation were in their minds when they began their

joint research on decision making under risk, [34].

So, if it is claimed by Kahneman and Tversky [33] that Bernoulli’s model is in

error, as it would evaluate outcomes by the utility of final asset states alone, rather

than gains or losses. Then we may infer that Kahneman and Tversky did not fully

realize71 that, according to Bernoulli [6], their abstract (E.6) necessarily implies the

concrete (E.10).

At the end of the quote on Bernoulli’s error72 we may find the following cryptic

footnote by Kahneman:

What varies with wealth in Bernoulli’s theory is the response to

a given change of wealth. This variation is represented by the

69Note that Laplace [42] discusses Bernoulli’s suggestion by way of the equivalent inequality:

p1 log(w + x1) + · · ·+ pn log(w + xn) > log(w) .

70The Weber-Fechner law is used, amongst other things, to determine the decibel scale of human
sound perception, where the Weber constant has been experimentally determined as q = 10

log 10
.

71In all fairness, we ourselves initially thought that we had improved on the insurance example
given by Jaynes in his [28], by using the Weber-Fachner law, which we still remembered from our

psychology days, rather than Laplace’s

p1 [log(w + x1)] + · · ·+ pn [log(w + xn)] > log(w) .

But it was professor Han Vrijling, to whom we owe a debt of gratitude, who first pointed us to
Bernoulli’s [6], and the equivalence of the Weber-Fechner law and the Bernoulli law. It was only
then, that we realized that Laplace’s formulation is equivalent to (E.9).
72Given at the beginning of the chapter.
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curvature of the utility function for wealth. Such a function cannot

be drawn if the utility of wealth is reference-dependent, because

utility then depends not only on current wealth but also on the

reference level of wealth.

We now will offer up an interpretation of what is stated in this footnote; as it may

shed some further light on the Kahneman and Tversky position.

Let us assume that Kahneman and Tversky had at least some sense of what is

written in, and here we quote Kahneman, [34], ‘the brilliant essay that introduced

the first version of expected utility theory (Bernoulli, 1738)’; that is, we assume

that they were aware of the fact that Bernoulli proposes to use the log function, in

some shape or form, in order to assign utilities to outcomes.

Then it may well have been that Kahneman and Tversky were under the wrongful

impression that Benoulli’s utility function is given as

u = q log (w + x) , (E.11)

The first two sentences in the footnote then may be interpreted as expressing the

idea that, with differing levels of wealth w, the supposed utility function (E.11) will

be more or less linear in a given change of wealth x.

If in the third sentence we let ‘current wealth’ stand for change in wealth and

‘reference level of wealth’ for initial state of wealth, then we may interpret it as

stating that (E.11) misses the necessary structure to take into account the initial

state of wealth in its utility assignments.

Bernoulli’s supposed error then would be that he proposed as his utility function

(E.11). But Bernoulli proposed (E.7) instead of (E.11).

The erroneous utility function (E.11) is problematic in that it cannot assign a

value of zero to a change of wealth of x = 0. In Kahneman and Tversky’s prospect

theory we have that changes in wealth x are assigned values by way of the value

function v, where73

v(x) = 0, for x = 0. (E.12)

So, if we read in [34]:

Preferences appeared to be determined by attitudes to gains and

losses, defined relative to a reference point, but Bernoulli’s theory

and its successors did not incorporate a reference point. We therefore

proposed an alternative theory of risk, in which the carriers of utility

are gains and losses - changes of wealth rather than states of wealth.

73Note, Kahneman and Tversky’s two-part value function is given as, [60]:

v(x) =

{
xα, x ≥ 0

−λ (−x)β , x < 0
.
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Prospect theory (Kahneman & Tversky, 1979) embraces the idea

that preferences are reference-dependent, and includes the extra

parameter that is required by this assumption.

Then we may interpret is as saying that the erroneous u cannot assign zero utilities

to zero outcomes, whereas Kahneman and Tversky’s value function v can.

It would then follow that that which is embraced by prospect theory is the

constraint74 (E.12) on the value function v. But this constraint also holds, trivially,

for Bernoulli’s utility function (E.7).

Now, after having established some tentative understanding into the reasoning

process that might have led Kahneman and Tversky to their misunderstanding of

Bernoulli’s position, and after having provided a possible interpretation of Kahne-

man’s footnote, we may start to wonder: We know how the initial wealth w factors

into Bernoulli’s expected utility theory, but how does this initial wealth factor into

prospect theory?

We quote Kahneman and Tversky [33]:

The emphasis on changes as the carriers of value should not be

taken to imply that the value of a particular change is independent

of initial position. Strictly speaking, value should be treated as

a function in two arguments: the asset position that serves as

a reference point, and the magnitude of the change (positive or

negative) from that reference point.

And we could not agree more, though we ourselves would have dropped the ‘strictly

speaking’ modifier, as it weakens the imperative. Kahneman and Tversky continue:

However, the preference order of prospects is not greatly altered by

small or even moderate variations in asset position. . . . Consequently,

the representation of value as a function in one argument generally

provides a satisfactory approximation.

So, it is Kahneman himself rather than Bernoulli, who does not take explicitly

into account the decision maker’s initial state of wealth75.

Appendix F. Bayesian Probability Theory vs. Kahneman and Tversky

The whole of Bayesian probability theory flows forth from two simple rules. The

product rule,

P (A)P (B|A) = P (AB) = P (B)P (A|B) , (F.1)

and the sum rule

P
(
A
)

= 1− P (A) . (F.2)

74Constraints are not the same as parameters.
75As may be checked in the previous footnote.
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By way of the product and the sum rule, we may derive the generalized sum rule,

P (A+B) = P (A) + P (B)− P (AB) . (F.3)

If we have that the propositions are exhaustive and mutually exclusive, that is,

B = A, we have that, by way of (F.2) and(F.3),

P
(
A+A

)
= P (A) + P

(
A
)

= 1, (F.4)

we may obtain a probability distribution. This probability distribution then may be

further generalized to the bivariate probability distribution:∑
i

∑
j

P (AiBj) = 1, (F.5)

and higher variate probability distributions, which allows us ‘marginalize’ over any

parameter, say, Bj , which is of no direct interest:

P (Ai) =
∑
j

P (AiBj) . (F.6)

Now, to a non-Bayesian it may seem to be somewhat surprising, that the whole

of Bayesian probability theory flows forth from the product and rules. But the

whole of Boolean logic, on an operational level, is also captured by the AND-

and NOT-operations. These operations correspond, respectively, with (F.1) and

(F.2); as these operators combine, with the negation of a NAND-operation, in the

OR-operation, which corresponds with (F.3).

Moreover, it may be shown that Boolean logic is just a special limit case of the

more general Bayesian probability theory. The operators of Boolean logic combine

in a like manner as the operators in Bayesian probability theory. But in Boolean

logic propositions can have only the truth values true or false. Whereas in Bayesian

probability theory propositions can have plausibility values in the interval [0, 1],

where 0 and 1, respectively, correspond with false and true.

So Boolean logic is the language of deduction. Whereas Bayesian probability

theory is the language of both induction and deduction; the latter being a limit case

of the former, in which we have absolute knowledge about the propositions in play.

We will present in this Appendix first the case of Bayesian probability theory

being common sense quantified. We will do this by way of a simple demonstration

of the reasoning power of the product and sum rules, (F.1) and (F.2).

We then examine one of the Kahneman and Tversky experiments, which is said to

demonstrate that people do not reason as a Bayesian would, that is, consistently76.

76As consistency is the very axiom by which we may derive the product and sum rules of Bayesian
probability theory, [8, 28, 39, 55].
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F.1. The case for Bayesian probability theory. Bayesian statistics is not only

said to be common sense quantified, but also common sense amplified77, having a

much higher ‘probability resolution’ than our human brains can ever hope to achieve

[28].

This statement is in accordance with the Kahneman and Tversky finding that, if

presented with some chance of a success, p, subjects fail to draw the appropriate

binomial probability distribution of the number of successes, r, in n draws. Even

though subjects manage to find the expected number of successes, they fail to

accurately determine the probability spread of the r successes. Kahneman and

Tversky see this as evidence that humans are fundamentally non-Bayesian in the

way they do their inference, [31].

We instead propose that human common sense is not hard-wired for problems

involving sampling distributions. Otherwise there would be no need for such a

thing as data-analysis, as we only would have to take a quick look at our sufficient

statistics after which we then would draw the probability distributions of interest.

However, humans do seem to be hard-wired for more ‘Darwinian’ problems of

inference. For example, if we are told that our burglary alarm has gone off, after

which we are also told that a small earthquake has occurred in the vicinity of our

house around the time that the alarm went off. Then common sense would suggest

that the additional information concerning the occurrence of a small earthquake

will somehow modify our probability assessment of there actually being a burglar in

the house.

We may use Bayesian probability theory to examine how the knowledge of a

small earthquake having occurred translates to our state of knowledge regarding the

plausibility of a burglary. The narrative we will formally analyze is taken from [51]:

Fred lives in Los Angeles and commutes 60 miles to work. Whilst

at work, he receives a phone-call from his neighbor saying that

Fred’s burglar alarm is ringing. While driving home to investigate,

Fred hears on the radio that there was a small earthquake that day

near his home.

77If Bayesian inference were not common sense amplified, then it could not ever hope to enjoy the
successes it currently enjoys in the various fields of science; astronomy, astrophysics, chemistry,

image recognition, etc...



90 H.R.N. VAN ERP, R.O. LINGER, AND P.H.A.J.M. VAN GELDER

Let

B = Burglary

B = No burglary

A = Alarm

A = No alarm

E = Small earthquake

E = No earthquake

We assume that the neighbor would never phone if the alarm is not ringing and

that the radio report is trustworthy too; thus, we know for a fact that the alarm is

ringing and that a small earthquake has occurred near the home. Furthermore, we

assume that the occurrence of an earthquake and a burglary are independent. We

also assume that a burglary alarm is almost certainly triggered by either a burglary

or a small earthquake or both, that is,

P
(
A|BE

)
= P

(
A|BE

)
= P (A|BE)→ 1, (F.7)

whereas alarms in the absence of both a burglary and a small earthquake are

extremely rare, that is,

P
(
A|B E

)
→ 0. (F.8)

Let

P (E) = e, P (B) = b. (F.9)

Then we have, by way of the sum rule (F.2),

P
(
E
)

= 1− e, P
(
B
)

= 1− b. (F.10)

It follows, by way of the product rule (F.1), as well as (F.7) through (F.10), that

P
(
ABE

)
= P

(
A|BE

)
P (B)P

(
E
)
→ b (1− e) ,

P
(
ABE

)
= P

(
A|BE

)
P
(
B
)
P (E)→ (1− b) e,

(F.11)

P (ABE) = P (A|BE)P (B)P (E)→ be,

P
(
AB E

)
= P

(
A|B E

)
P
(
B
)
P
(
E
)
→ 0.
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By way of ‘marginalization’, that is, an application of the generalized sum rule,

(F.3), we obtain the probabilities

P
(
AB
)

= P
(
AB E

)
+ P

(
ABE

)
→ (1− b) e,

(F.12)

P (AB) = P (ABE) + P
(
ABE

)
→ b,

and

P (A) = P (AB) + P
(
AB
)
→ b+ e− be, (F.13)

and

P
(
AE
)

= P
(
ABE

)
+ P

(
AB E

)
→ b (1− e) ,

(F.14)

P (AE) = P (ABE) + P
(
ABE

)
→ e.

The moment Fred hears that his burglary alarm is going off, then there are two

possibilities.

One possibility is that Fred may be new to Los Angeles and, consequently,

overlook the possibility of a small earthquake triggering his burglary alarm, which

will make his prior probability of his alarm going off, (F.13), go to

P (A)→ b+ e− be = b, since e = 0, (F.15)

seeing that that the possibility of an earthquake is overlooked.

Fred then assesses, by way of the product rule (F.1),(F.12) and (F.15), the

likelihood of a burglary to be

P (B|A) =
P (AB)

P (AE)
→ b

b
= 1, (F.16)

which leaves him greatly distressed, as he drives to his home to investigate.

Another possibility is that Fred is a veteran Los Angeleno and, as a consequence,

instantly will take into account the hypothesis of a small tremor occurring near his

house.

Having an optimistic disposition, Fred does not assign to much weight to the

possibility of an earthquake and a burglary occurring both at the same time. So, he

updates his prior probability of his alarm going off from (F.13) to

P (A)→ b+ e− be→ b+ e, since be→ 0. (F.17)

Fred then assesses, by way of the product rule (F.1),(F.12) and (F.17), the

likelihood of a burglary to be

P (B|A) =
P (AB)

P (AE)
→ b

b+ e
. (F.18)
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If earthquakes are somewhat more common than burglaries, then Fred, based on his

(F.16), may still hope for the best, as he drives home to investigate.

Either way, the moment that Fred hears on the radio that a small earthquake has

occurred near his house, around the time when the burglary alarm went off, then,

by way of the product rule (F.1) and (F.11) and (F.14), Fred updates the likelihood

of a burglary to be

P (B|AE) =
P (ABE)

P (AE)
→ be

e
= b. (F.19)

In the presence of an alternative explanation for the triggering of the burglary alarm,

that is, a small earthquake occurring, the burglary alarm has lost its predictive

power over the prior probability of a burglary, that is, (F.9) and (F.19),

P (B|AE)→ P (B) . (F.20)

Consequently, Fred’s fear for a burglary, as he rides home, after having heard

that a small earthquake did occur, will only be dependent upon his assessment of

the general likelihood of a burglary occurring. If we assume that Fred lives in a

nice neighborhood, rather than some crime-ridden ghetto, then we can imagine that

Fred will be, if not greatly, then at least somewhat, relieved.

One of the arguments made against Bayesian probability theory as a normative

model for human rationality is that people are generally numerical illiterate. Hence,

the Bayesian model is deemed to be too numerical a model for human inference,

[56].

However, note that the Bayesian analysis given here was purely qualitative, in

that no actual numerical values were given to our probabilities, apart from (F.7)

and (F.8), which are limit cases of certainty and, hence, in a sense, may also be

considered to be qualitative.

Moreover, the result of this qualitative analysis seems to be intuitive enough.

Indeed, the qualitative correspondence of the product and sum rules with common

sense has been noted and demonstrated time and again by many distinguished

scientists, including Laplace [42], Keynes [35], Jeffreys [29], Polya [49, 50], Cox [9],

Tribus [58], de Finetti [17], Rosenkrantz [53], and Jaynes [28].

F.2. The case against Bayesian probability theory. The psychological para-

digm of heuristics and biases originated as a reaction to the shortcomings of the

mathematical expected utility theory.

In the 1950’s it was found that expected utility theory, the then dominant decision

theory, failed to adequately model human decision making in certain instances, lead-

ing to such paradoxes as the Ellsberg and Allais paradox78. Consequently, Edwards

78See Appendix A.



FACT SHEET 93

and his research team of PhD-students and post-docs took it upon themselves to

remedy the situation, [48].

Kahneman and Tversky, both post-docs under Edwards, proposed to construct

a systematic theory about the psychology of uncertainty and judgment. In this

psychological theory a handful of heuristics would replace the mathematical laws

of chance as a more realistic model for subjective judgment of uncertainty. But

what started as a parsimonious theory of human inference, consisting of only three

heuristics and their associated biases, [34], has proliferated into 20 heuristics and

an impressive 170+ biases79.

Heuristics are said to be mental short cuts or ‘rules of thumb’ humans use to do

inference. It is theorized that, as we do not always have the time or resources to

compare all the information at hand, we use heuristics to do inference quickly and

efficiently.

However, or so we are warned, even though these mental short cuts will be helpful

most of the times, if used carelessly heuristics may lead to heuristic-induced biases,

that is, systematic errors in reasoning, [34].

For example, when we use the representativeness heuristic then we estimate the

likelihood of an event by comparing it to an existing prototype that already exists

in our minds, [32].

Our prototype is what we think is the most relevant or typical example of

a particular event or object. The bias associated with the representativeness

heuristic is that when making judgments based on representativeness we are likely

to overestimate the likelihood that the representative event will occur; just because

an event or object is representative does not mean that it is more likely to occur.

In order to demonstrate this bias Kahneman and Tversky performed the following

experiment, [32]. They divided the participants in their study up into three groups.

The base-rate group was asked to guess the percentage of all first-year graduate

students in the following nine fields of specialization: business administration,

computer science, engineering, humanities and education, law, library science,

medicine, physics, and social sciences.

The base-rate group estimated the highest percentage of graduate students, with

20%, to be in humanities and education, and the second lowest percentage, with

7%, to be in computer sciences.

The similarity group was presented with the following profile:

Tom W. is of high intelligence, although lacking in true creativity.

He has a need for order and clarity, and for neat and tidy systems in

which every detail finds its appropriate place. His writing is rather

79Source Wikipedia, search ‘heuristics’ and ‘list of cognitive biases’.
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dull and mechanical, occasionally enlivened by somewhat corny

puns and by flashes of imagination of the sci-fi type. He has a strong

drive for competence. He seems to feel little sympathy for other

people and does not enjoy interacting with others. Self-centered,

he nonetheless has a deep moral sense.

After which they were asked to rate how similar Tom was perceived to be to the

typical graduate student in each of the nine graduate specializations.

The similarity group assigned computer science the highest ranking position, with

a mean similarity of 2.1, whereas humanities and education was assigned the second

lowest ranking position, with a mean similarity ranking of 7.2.

The prediction group was given the same personality sketch of Tom as the

similarity group, with the following additional information:

The preceding personality sketch of Tom W. was written during

Tom’s senior year in high school by a psychologist, on the basis of

projective tests. Tom W. is currently a graduate student.

Then they were asked to rank the nine fields of graduate specialization in order of

the likelihood that Tom was now a graduate student in each of these fields.

It was found that 95% of the prediction group judged that Tom was more likely

to study computer science than humanities and education.

Since the likelihood rankings of the prediction group closely follow the similarity

rankings of the similarity group, whereas they do not follow the base-rate estimates

of the base-rate group, Kahneman and Tversky conclude that the representativeness

heuristic must have been used by the participants in the prediction group, [32].

However, the use of representativeness does not necessarily imply the represen-

tativeness heuristic. We quote Kahneman and Tversky on the representativeness

heuristic, [31]:

Our thesis is that, in many situations, an event A1 is judged more

probable than an event A2 whenever A1 appears more representative

than A2. In other words, the ordering of events by their subjective

probabilities coincides with their ordering by representativeness.

We now will give a formal analysis of the representativeness heuristic, as proposed

by Kahneman and Tversky.

Let

A1 = Computer Science Student

A2 = Humanities and Education Student

B = Profile
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If Tom’s psychological profile, B, is more representative of computer science students,

A1, than of humanities students, A2, then

P (B|A1) > P (B|A2) , (F.21)

or, equivalently,
P (B|A1)

P (B|A2)
> 1. (F.22)

So, the representativeness heuristic is build upon the thesis:

P (B|A1)

P (B|A2)
> 1 =⇒ P (A1|B)

P (A2|B)
> 1, (F.23)

where ‘ =⇒ ’ is the symbol for logical implication.

However, thesis (F.23) is unfounded in that it does not follow directly from the

rules of plausible reasoning. Moreover, Kahneman and Tversky seem to intuit as

much; seeing that they warn us for the bias of base rate neglect, when using their

representativeness thesis, [32].

By taking the conclusion part in the thesis (F.23) as the starting point of a formal

Bayesian analysis, we may find, by way of the product rule (F.1), that

P (A1|B)

P (A2|B)
=
P (B)

P (B)

P (A1|B)

P (A2|B)

=
P (A1B)

P (A2B)
(F.24)

=
P (A1)

P (A2)

P (B|A1)

P (B|A2)
.

It follows that the correct thesis, which actually does take into account the base

rate, would be
P (B|A1)

P (B|A2)
>
P (A2)

P (A1)
=⇒ P (A1|B)

P (A2|B)
> 1. (F.25)

Kahneman and Tversky make in [32] the implicit assumption that the reported

use of representativeness, that is, an evaluation and use of the odds (F.22), as

reported by the participants of the prediction group, necessarily implies their thesis

(F.23). This leads them to conclude that the participants must have used their

representativeness heuristic.

However, it can be seen that this assumption is incorrect, as the Bayesian thesis

(F.25) also makes use of the odds in (F.22) and, thus, representativeness. Moreover,

based on the reported use of representativeness and the experimental data, one

could make the case that the participants in the experiment intuitively made use of

the correct (F.25), instead of the erroneous (F.23).
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Kahneman and Tversky report that the prior odds for humanities and education

against computer science were estimated by the participants to be, [32]:

P (A2)

P (A1)
≈ 3. (F.26)

Now, (F.24), or, equivalently, thesis (F.25), tells us that (F.26) together with

P (B|A1)

P (B|A2)
> 3 (F.27)

implies the conclusion
P (A1|B)

P (A2|B)
> 1, (F.28)

or, equivalently,

P (A1|B) > P (A2|B) . (F.29)

So, if 95% of the participants in the third group judged that Tom was more likely

to study computer science than humanities, then we may infer that 95% of the

participants deemed the odds-inequality (F.27) to hold, which in our opinion is not

that far-fetched80.

Kahneman and Tversky, however, are of the opinion that the plausibility judg-

ments of the participants in the third group ‘drastically violate the rules of the

normative [that is, Bayesian] rules of prediction’, seeing that the following consider-

ations were ignored by the participants in the prediction group, [32]:

First given the notorious invalidity of projective personality tests, it

is very likely that Tom W. was never in fact as compulsive and as

aloof as his description suggests. Second, even if the description was

valid when Tom W. was in high school, it may not longer be valid

now that he is in graduate school. Finally, even if the description is

still valid, there are probably more people who fit that description

among students of humanities and education than among students of

computer science, simply because there are so many more students

in the former than in the latter field.

As to the last consideration, it follows from the Bayesian ‘heuristic’ (F.25) that

the inference of Tom being a computer science student implies the corollary inference

that among all the graduate students who fit Tom’s description there will be more

students of computer science than students of humanities and education. Even if

80Indeed, the ranking of computer sciences was, with a mean similarity of 2.1, more than three

times higher than the ranking of humanities, which had a mean similarity ranking of only 7.2, [32].
Even though rankings do not translate easily to probabilities, as a sine qua non, this ordering of

similarity rankings still constitutes corroborating evidence for inequality (F.27) to have held for
the participants in the Kahneman and Tversky experiment.
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there are many more students in the field of humanities and education than in the

field of computer science.

The odds (F.26) represent the ratio of humanities and education students to

computer science students. Whereas the odds (F.27) represent the ratio of computer

students having a profile like Tom’s to humanities and eduction students having a

like profile. If the latter odds dominate the former, then we must conclude, by way

of (F.24), that there are probably more people who fit Tom’s description among

students of computer science than among students of humanities and education;

that is, P (A1B) > P (A2B). Which invalidates Kahneman’s and Tversky’s last

consideration.

Moreover, we have also grown to distrust Kahneman and Tversky’s competency

somewhat, when it comes to matters of the normative rules of prediction.

This, then, leaves us with the following arguments for the thesis that people tend

to neglect the base rate, when taking the mental shortcut (F.23), thus, violating

the rules of the normative [that is, Bayesian] rules of prediction:

(1) given the notorious [that is, clinical] invalidity of projective personality tests,

it is very likely that Tom W. was never in fact as compulsive and as aloof

as his description suggests.

(2) even if the description was valid when Tom W. was in high school, it may

not longer be valid now that he is in graduate school.

Now, it would seem that these arguments pertain to some other thesis, namely,

that the participants of the prediction group should have disregarded the description

of Tom altogether, as no data was actually given. But this alternative thesis, apart

from it not being the issue, is not all that compelling.

Because, if, in answer to the first argument, we filter out those qualifications which

might point to compulsiveness and aloofness, then we are left with the following

profile for Tom:

• high intelligence,

• dull and mechanical writing,

• lacking in true creativity,

• corny puns,

• flashes of imagination of the sci-fi type,

• strong drive for competence,

• deep moral sense,

which tells us quite a lot.
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It tells us that Tom is very bright, does not like to read, as he apparently is not

that lyrical in his writing, is not very artistic, has a sense of humor, has a passion

for sci-fi, is disciplined, and has a sense of justice81.

As to the second argument, which is also the hardest to answer. It is taught at

the psychology courses, that personality traits tend to be stable over long periods

of time. So, if Tom did not like to write in high school82, than chances are that he

would pick a field op specialization in which he would not have to read and write a

lot. Which would make humanities and education less probable a field of choice,

and computer sciences more probable.

But, lest we forget, the original thesis under discussion was that normative rules

of prediction tend to be neglected, as people tend to neglect the base rate; not the

alternative thesis that the prediction group should have disregarded the description

of Tom, because of the clinical invalidity of projective personality tests and the

possibility that Tom might have changed his personality over the course of the few

years between high school and college.

If Kahneman and Tversky wish to prove their initial thesis, then at this point,

having presented their experimental data, they should proceed to demonstrate that

their subjects could not possibly have used the normative, that is, Bayesian, rules

of prediction, as those rules would have implied results other than those that were

observed. Which they do not.

So, not only do Kahneman and Tversky manage to confuse the participants of

the prediction group into thinking that information was given, where in actuality

there was none83. They also manage to derail their own critical discussion of their

actual thesis, by not staying at the issue at hand.

Having come to the end of our discussion of the representative heuristic, we find

that the reported plausibility judgments by the prediction group are not inconsistent

with a possible use of the Bayesian ‘heuristic; (F.26) through (F.29), seeing that

the odds (F.27) may be assumed to lie in the realm of the possible. This makes the

Kahneman and Tversky experiment inconclusive.

Appendix G. The Framing Effect

The assumption that preferences are not affected by variations of irrelevant

features of options or outcomes is called invariance, [59].

According to Kahneman and Tversky invariance is an essential aspect of ratio-

nality, which is violated in demonstrations of framing effects, [34]. Now, in order to

81Moreover, what is left out also gives us some tentative information on Tom’s psychologist.
82A liking, admittedly, is not a personality trait, but still.
83Or so they believe.
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discuss these framing effects, we will first have to discuss the topic of loss and gain

adaptation84.

Imagine a person who is involved in a business venture, who has lost 2000, and

now is facing a choice between a sure gain of 1000 and an even chance to win 2000

or nothing, [33]. If he has not adapted to his loss, he is likely to add this loss to all

the outcomes and, consequently, by way of the Weber-Fechner law (4.3), code the

problem as a choice between the following utility distributions

p(u|D1) =
{

1.0, u = q log S0−1000
S0

(G.1)

and

p(u|D2) =

0.5, u = q log S0−2000
S0

0.5, u = q log S0−0
S0

(G.2)

where S0 is the pre-loss asset position and q is the Weber constant for money.

Looking at the increments in assets, it is predicted that our business man will

tend to prefer D2 over D1, as this is the preferred choice under risk seeking in

the negative domain85. It follows that a failure to adapt to losses may induce risk

seeking in the negative domain, [33]. Stated differently, a person who has not made

peace with his losses is likely to accept gambles that would be unacceptable to him

otherwise. We may find support for this hypothesis by the observation that the

tendency to bet on long shots will increase in the course of a betting day, [45].

However, if our business man has adapted to his loss, then he will update his

pre-loss asset position S0 to an adjusted asset position S
(adj.)
0 in which the loss is

discounted:

S
(adj.)
0 = S0 − 2000

and code the problem as a choice between the utility distributions

p(u|D1) =

{
1.0, u = q log

S
(adj.)
0 + 1000

S
(adj.)
0

(G.3)

and

p(u|D2) =


0.5, u = q log

S
(adj.)
0 + 0

S
(adj.)
0

0.5, u = q log
S

(adj.)
0 + 2000

S
(adj.)
0

(G.4)

where S
(adj.)
0 is the post-loss asset position and q is the Weber constant for money.

Again looking at the increments in assets, we see that the signs of these increments

have reversed. By this reversal in the sign of the asset increments, we go from a risk

seeking in the negative domain scenario to a risk aversion in the positive domain

84What we will call loss and gain adaptation is called shifts of reference by Kahneman and Tversky,

[33].
85See the section on the fifth supporting contact.
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scenario86, [33]. So, it is now predicted that our business man, having already

adapted to his loss, will tend to reverse his preferences, and choose D1 over D2.

Having introduced the concepts of loss and gain adaptation and the adjusted

initial wealth S
(adj.)
0 , we now may turn to the discussion of the framing effect.

Consider the following problems, which were presented to two different groups of

subjects, [33].

Group 1: In addition to whatever you own, you have been given

1000. You are now asked to choose between

p(O|D1) =

0.5, O = 0

0.5, O = 1000

and

p(O|D2) =
{

1.0, O = 500

Group 2: In addition to whatever you own, you have been given

2000. You are now asked to choose between

p(O|D1) =

0.5, O = −1000

0.5, O = 0

and

p(O|D2) =
{

1.0, O = −500

It is found that 84% of N = 70 subjects in Group 1 prefer bet D2 over bet D1;

whereas 69% of N = 68 subjects in Group 2 prefer bet D1 over bet D2, indicating

risk seeking in the negative domain, [33].

This result may indicate that the subjects in both groups adapted to the respective

gifts of 1000 and 2000, by adjusting their initial S0 into a new S
(adj.)
0 , before choosing

between the two bets. Since we would have expected to see the same preferences

for both groups had the gifts been discounted in the outcomes87. But instead, we

observe a reversal in preferences. So, we conclude that the gifts must have been

discounted in initial wealth, rather than in the outcomes.

Furthermore, based on the unadjusted outcomes alone, as given in the corre-

sponding outcome probability distributions, we would expect both the observed risk

aversion in the positive domain in Group 1, that is, the observed preference of D2

86idem.
87It may be checked that a discounting of the respective gifts in the corresponding outcomes would

have resulted in identical outcome probability distributions for both Groups 1 and 2:

p(O|D1) =

{
0.5, O = 1000

0.5, O = 2000

and

p(O|D2) =
{

1.0, O = 1500 .
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over D1, and the observed risk seeking in the negative domain in Group 2, that is,

the observed preference of D1 over D2. This then also points to an adjustment of

the initial wealth, rather an adjustment of the outcomes.

However, an alternative, more parsimonious, explanation for this framing effect,

or, equivalently, the observed reversal in preferences in both groups, would be that

the respective gifts of 1000 and 2000 were neglected by the subjects, [33].

And we would tend to agree with Kahneman and Tversky on this one. For, when

reviewing these hypothetical choices, we ourselves overlooked these gifts too.

But where Kahneman and Tversky see the framing effect as an indication that

such monetary gifts, as a rule, will not factor into our real-life decisions, we quote,

[33]:

The apparent neglect of a bonus [our gift] that was common to

both options [our decisions D1 and D2] in Problems 11 and 12 [our

Groups 1 and 2] implies that the carriers of value or utility are

changes of wealth, rather than final asset positions that include

current wealth. This conclusion is the cornerstone of an alternative

theory of risky choice [their prospect theory].

We, instead, propose that this neglect of the gifts point to the limitations of

the experimental method of hypothetical choices, as employed by Kahneman and

Tversky.

Speaking strictly for ourselves, the receiving of a real-life gift of either 1000 or

2000 euros would be quite the momentous occasion. Consequently, we can hardly

imagine neglecting such a substantial sum of money, or, for that matter, not factoring

its occurrence in our every monetary decision88.

So, it would seem, at least based on the above [33] quotation, that Kahneman

and Tversky build their prospect theory around a phenomenon which, as our

introspection would suggest, is nothing but an experimental artifact of the method

of hypothetical choices.

88The question if such a gift would be discounted into our initial wealth S0, or into the specific
outcomes ∆S of some set of decisions Di, would be dependent on the particular context in which

the gift was received.
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