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What is Decision Theory? (2/62)

Individuals and societies must often make choices under uncertainty.
How should an agent decide when faced with such uncertainty?

This is the subject of a branch of economics called Decision Theory.

The foundations of decision theory were laid by Leonard J. Savage in 1954.

Savage modelled the decision problem as follows.

There is an (infinite) set S of possible “states of the world”.

The true state is unknown.

S represents all information which is unknown to the agent.

There is a set X of possible “outcomes” (e.g. consumption bundles).
These are the things the agent ultimately cares about.

Each alternative defines a function ↵ : S�!X , called an act.

If the agent chooses the act ↵, and the true state of the world turns out to
be s, then she will obtain the outcome ↵(s).
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Savage’s Theorem (3/62)

Let X S be the set of all logically possible acts.
Let ⌫ be a preference order (a complete, transitive relation) on X S .
For any acts ↵,� 2 X S , the statement “↵ ⌫ �” means, “If the agent had a
choice, then she would choose ↵ rather than �, ex ante.”
Savage’s Theorem. Suppose ⌫ satisfies six axioms (encoding various

criteria of “consistency” or “rationality”). Then there exists:

I

a “cardinal utility” function U : X�!R, and
I

a (finitely additive) probability measure P on S,
which provide a subjective expected utility (SEU) representation for ⌫.

In other words, given any acts ↵,� 2 X S
, we have

⇣
↵ ⌫ �

⌘
()

✓Z

S
U[↵(s)] dP(s) �

Z

S
U[�(s)] dP(s)

◆
.

Heuristically, U describes the agent’s ex post tastes over outcomes in X .
Meanwhile, P describes her ex ante beliefs about states in S.
Thus, Savage says any “rational” agent can be described as maximizing
expected utility according to some system of preferences and beliefs.
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Desiderata (4/62)

There are three ways we could improve on Savage’s framework.

1. Scope. Savage assumed that S and X are arbitrary sets, and acts are
arbitrary functions from S to X . (This can be extended to measurable
spaces and measurable functions.)

But what if S and X are topological spaces, and acts must be continuous?

What if S and X are di↵erentiable manifolds, and acts must be
di↵erentiable functions?

Want: a single theory which works in all of these environments (rather than
multiple independent theories).

2. Holism. At di↵erent times, the same agent may face di↵erent sources of
uncertainty (e.g. horse races, financial markets, weather, tra�c) and
di↵erent possible sets of outcomes (e.g. financial gains or losses, social
status, physical (dis)comfort, physical danger), in di↵erent combinations.

Want: a framework which simultaneously yields a single, consistent SEU
representation of the agent’s preferences over all of these decision problems.
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Desiderata (5/62)

There are three ways we could improve on Savage’s framework.
1. Scope.
2. Holism.
3. Endogenous/implicit states and outcomes. Savage assumed that the
agent could explicitly specify all possible “states of nature” and all possible
“outcomes”, and could conceptualize each “act” as a function mapping
states to outcomes.

This may be unrealistically demanding.
Also, even if people do represent decision problems this way, di↵erent
people may adopt di↵erent representations of the same decision problem...

Want: A framework which does not require an explicit specification of the
states and outcomes in advance.

Ideally, the statespace and outcome space should emerge “endogenously”
from a description of the agent’s preferences over acts.

Idea. Reformulate classical decision theory using the tools of category
theory, and obtain a theorem which satisfies these three desiderata.
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Plan:
Part I. Savage structures; informal statement of main result.

Part II. Partitions and probability.

Part III. Concretization.

Part IV. Products, spans and quasipreferences.

Part V. Simple morphisms and SEU representations.

Part VI. Formal statement of axioms and main result.



Part I.

Savage structures



Definition: Category (8/62)

Recall: a category is a mathematical structure C with three parts.

I A collection [C] of entities, called the objects of C.
I For any pair of objects A,B 2 [C], a collection

�!C (A,B) of entities,
called morphisms from A to B.

I For any A,B, C 2 [C], a composition operation �, such that, for any

morphisms � 2 �!C (A,B) and  2 �!C (B, C), we have  � � 2 �!C (A, C).
The composition operation has two key algebraic properties:

I

Associativity. For all objects A,B, C,D 2 [C] and morphisms

↵ 2 �!C (A,B), � 2 �!C (B, C), and � 2 �!C (C,D),
� � (� � ↵) = (� � �) � ↵.

I

Identity. For every object A 2 [C], there is an identity morphism

IA 2 �!C (A,A) such that, for any object B 2 [C], we have IA � � = �

for all � 2 �!C (B,A), while � � IA = � for all � 2 �!C (A,B).
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B 2 [C], we have IA � � = � for all � 2 �!C (B, A), while � � IA = � for all � 2 �!C (A, B).

C is a concrete category if the objects in [C] are sets (usually with some

“structure”), the morphisms in
�!C (A,B) are functions from A to the set B

(which “preserve” this structure), and � is function composition.
Examples:

Set Objects are ordinary sets; morphisms are ordinary functions.

Meas Objects are measurable spaces; morphisms are measurable functions.

Top Objects are topological spaces; morphisms are continuous functions.

Di↵ Objects are di↵erentiable manifolds; morphisms are di↵’ble functions.

However, not all categories are concrete. We will use the term abstract

category to refer to a category which may or may not be concrete.
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Decision Contexts (10/62)

Let C be a category. A decision context on C is an ordered pair
(S,X ), where S and X are subcategories of C.
We interpret the objects of the subcategory S as “abstract state spaces”.

(But they might not literally be spaces.) We will call them state places.

For any S1,S2 2 [S], each � 2 �!S (S1,S2) is a C-morphism from S1 to S2

that is somehow “compatible” with the agent’s beliefs about S1 and S2

(e.g. a measure-preserving transformation between two probability spaces).

We interpret objects of the subcategory X as “abstract outcome spaces”.
(But they might not be spaces.) We will call them outcome places.

For any X1,X2 2 [X ], each element of
�!X (X1,X2) is a C-morphism from

X1 to X2 that is somehow “compatible” with the agent’s tastes over X1

and X2 (e.g. an order-preserving map between two ordered sets).

For any state place S in [S] and outcome place X in [X ], the morphisms

in
�!C (S,X ) represent “abstract acts” —these are devices which somehow

transform the abstract “states” in S into abstract “outcomes” in X .
For simplicity, we will call them acts.
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Savage structures: Definition (11/62)

Let (S,X ) be a decision context in a category C.
For every S 2 [S] and X 2 [X ], let ⌫S

X be a preference order on
�!C (S,X ),

representing the agent’s ex ante preferences over acts.

The collection S := {⌫S
X ; S 2 [S] and X 2 [X ]} is a Savage structure if:

(BP) For any S1,S2 2 [S], any � 2 �!S (S1,S2), any X 2 [X ], and any

↵,� 2 �!C (S2,X ), we have

⇣
↵ ⌫S2

X �
⌘

()
⇣
↵ � � ⌫S1

X � � �
⌘
. (Idea: � is “belief-preserving”.)

(TP) For any X1,X2 2 [X ], any � 2 �!X (X1,X2), any S 2 [S], and any

↵,� 2 �!C (S,X1), we have
⇣
↵ ⌫S

X1
�
⌘

()
⇣
� � ↵ ⌫S

X2
� � �

⌘
. (Idea: � is “taste-preserving”.)

Goal. Find conditions under which a Savage structure admits a subjective

expected utility (SEU) representation....
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Savage structures: Example: (12/62)
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(TP) For any X1, X2 2 [X ], any � 2 �!X (X1, X2), any S 2 [S], and any ↵,� 2 �!C (S, X1), we

have
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↵ ⌫S

X1
�
⌘

()
⇣
� � ↵ ⌫S

X2
� � �

⌘
. (Idea: � is “taste-preserving”.)

Example. Let C := Meas. Let S be a collection of measurable spaces,
each equipped with a probability measure.
For any S1,S2 2 [S], let

�!S (S1,S2) be the set of all measure-preserving
functions from S1 into S2. Then S is a subcategory of C.
Let X be a set of m’ble spaces X , each with a measurable u : X�!R.

For any (X1, u1), (X2, u2) 2 [X ], let
�!X (X1,X2) be all measurable functions

� : X1�!X2 such that u2 � � is a positive a�ne transform of u1. Then X
is another subcategory of C. Thus, (S,X ) is a decision context.

For any S in [S] and X in [X ], define ⌫S
X via the expected utility ranking

induced by the probability measure on S and the utility function on X .
Then S := {⌫S

X ; S 2 [S] and X 2 [X ]} is Savage structure on (S,X ).
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Informal statement of axioms (13/62)

Very informally, we require (S,X ) to satisfy three structural conditions:
(S1) Any state places S1 and S2 in S have a product S1 ⇥ S2 in S.

Idea. S1 ⇥ S2 encodes a coupling of the random variables represented by S1 and S2.

(S2) Any outcome places X1 and X2 in X have a coproduct (roughly: a
disjoint union) X1

` X2 in X .
(S3) Given any three stateplaces S, S1 and S2 in [S], and any S-morphisms

�1 and �2 as shown in the left-hand diagram below, there exists a
fourth state place S0 in [S], and S-morphisms  1 and  2 such that
the right-hand diagram below commutes. Furthermore, S0 is the
“maximal” state place with this property (i.e. it is a pullback in C).

S1

S2 S

�1

�2

;

S0 S1

S2 S

 2

 1

�1

�2

Idea. S0 represents a coupling of the random variables represented by S1 and S2,

which are correlated through a “common observable” in S.
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Informal statement of axioms (14/62)

We require the preferences defined by S to be solvable. Roughly speaking,
this means that we can always find a compromise between two outcomes
which is perfectly indi↵erent to some third alternative.

We will also require S to satisfy five axioms (stated very informally):

(A1) On every outcome place in X , there is a nontrivial ex post preference
order, which governs the agent’s preferences over “constant” acts.

(A2) If one act ↵ “statewise dominates” another act � (in terms of the ex

post preferences), then the agent prefers ↵ to �.

(A3) The set of “simple” acts is order-dense in the set of all acts.

(A4) Tradeo↵s between outcomes are consistent: if the agent is indi↵erent
between “trading outcome w for x” and “trading outcome y for z”,
but strictly prefers outcome w

0 to w , then the agent cannot be
indi↵erent between “trading w

0 for x” and “trading y for z”.

(A5) Ex post preferences are Archimedean: the value di↵erence between two
outcomes w and x cannot be “infinitesimal” relative to the value
di↵erence between two other outcomes y and z .



Informal statement of axioms (14/62)

We require the preferences defined by S to be solvable. Roughly speaking,
this means that we can always find a compromise between two outcomes
which is perfectly indi↵erent to some third alternative.

We will also require S to satisfy five axioms (stated very informally):

(A1) On every outcome place in X , there is a nontrivial ex post preference
order, which governs the agent’s preferences over “constant” acts.

(A2) If one act ↵ “statewise dominates” another act � (in terms of the ex

post preferences), then the agent prefers ↵ to �.

(A3) The set of “simple” acts is order-dense in the set of all acts.

(A4) Tradeo↵s between outcomes are consistent: if the agent is indi↵erent
between “trading outcome w for x” and “trading outcome y for z”,
but strictly prefers outcome w

0 to w , then the agent cannot be
indi↵erent between “trading w

0 for x” and “trading y for z”.

(A5) Ex post preferences are Archimedean: the value di↵erence between two
outcomes w and x cannot be “infinitesimal” relative to the value
di↵erence between two other outcomes y and z .



Informal statement of axioms (14/62)

We require the preferences defined by S to be solvable. Roughly speaking,
this means that we can always find a compromise between two outcomes
which is perfectly indi↵erent to some third alternative.

We will also require S to satisfy five axioms (stated very informally):

(A1) On every outcome place in X , there is a nontrivial ex post preference
order, which governs the agent’s preferences over “constant” acts.

(A2) If one act ↵ “statewise dominates” another act � (in terms of the ex

post preferences), then the agent prefers ↵ to �.

(A3) The set of “simple” acts is order-dense in the set of all acts.

(A4) Tradeo↵s between outcomes are consistent: if the agent is indi↵erent
between “trading outcome w for x” and “trading outcome y for z”,
but strictly prefers outcome w

0 to w , then the agent cannot be
indi↵erent between “trading w

0 for x” and “trading y for z”.

(A5) Ex post preferences are Archimedean: the value di↵erence between two
outcomes w and x cannot be “infinitesimal” relative to the value
di↵erence between two other outcomes y and z .



Informal statement of axioms (14/62)

We require the preferences defined by S to be solvable. Roughly speaking,
this means that we can always find a compromise between two outcomes
which is perfectly indi↵erent to some third alternative.

We will also require S to satisfy five axioms (stated very informally):

(A1) On every outcome place in X , there is a nontrivial ex post preference
order, which governs the agent’s preferences over “constant” acts.

(A2) If one act ↵ “statewise dominates” another act � (in terms of the ex

post preferences), then the agent prefers ↵ to �.

(A3) The set of “simple” acts is order-dense in the set of all acts.

(A4) Tradeo↵s between outcomes are consistent: if the agent is indi↵erent
between “trading outcome w for x” and “trading outcome y for z”,
but strictly prefers outcome w

0 to w , then the agent cannot be
indi↵erent between “trading w

0 for x” and “trading y for z”.

(A5) Ex post preferences are Archimedean: the value di↵erence between two
outcomes w and x cannot be “infinitesimal” relative to the value
di↵erence between two other outcomes y and z .



Informal statement of axioms (14/62)

We require the preferences defined by S to be solvable. Roughly speaking,
this means that we can always find a compromise between two outcomes
which is perfectly indi↵erent to some third alternative.

We will also require S to satisfy five axioms (stated very informally):

(A1) On every outcome place in X , there is a nontrivial ex post preference
order, which governs the agent’s preferences over “constant” acts.

(A2) If one act ↵ “statewise dominates” another act � (in terms of the ex

post preferences), then the agent prefers ↵ to �.

(A3) The set of “simple” acts is order-dense in the set of all acts.

(A4) Tradeo↵s between outcomes are consistent: if the agent is indi↵erent
between “trading outcome w for x” and “trading outcome y for z”,
but strictly prefers outcome w

0 to w , then the agent cannot be
indi↵erent between “trading w

0 for x” and “trading y for z”.

(A5) Ex post preferences are Archimedean: the value di↵erence between two
outcomes w and x cannot be “infinitesimal” relative to the value
di↵erence between two other outcomes y and z .



Informal statement of axioms (14/62)

We require the preferences defined by S to be solvable. Roughly speaking,
this means that we can always find a compromise between two outcomes
which is perfectly indi↵erent to some third alternative.

We will also require S to satisfy five axioms (stated very informally):

(A1) On every outcome place in X , there is a nontrivial ex post preference
order, which governs the agent’s preferences over “constant” acts.

(A2) If one act ↵ “statewise dominates” another act � (in terms of the ex

post preferences), then the agent prefers ↵ to �.

(A3) The set of “simple” acts is order-dense in the set of all acts.

(A4) Tradeo↵s between outcomes are consistent: if the agent is indi↵erent
between “trading outcome w for x” and “trading outcome y for z”,
but strictly prefers outcome w

0 to w , then the agent cannot be
indi↵erent between “trading w

0 for x” and “trading y for z”.

(A5) Ex post preferences are Archimedean: the value di↵erence between two
outcomes w and x cannot be “infinitesimal” relative to the value
di↵erence between two other outcomes y and z .



Informal statement of axioms (14/62)

We require the preferences defined by S to be solvable. Roughly speaking,
this means that we can always find a compromise between two outcomes
which is perfectly indi↵erent to some third alternative.

We will also require S to satisfy five axioms (stated very informally):

(A1) On every outcome place in X , there is a nontrivial ex post preference
order, which governs the agent’s preferences over “constant” acts.

(A2) If one act ↵ “statewise dominates” another act � (in terms of the ex

post preferences), then the agent prefers ↵ to �.

(A3) The set of “simple” acts is order-dense in the set of all acts.

(A4) Tradeo↵s between outcomes are consistent: if the agent is indi↵erent
between “trading outcome w for x” and “trading outcome y for z”,
but strictly prefers outcome w

0 to w , then the agent cannot be
indi↵erent between “trading w

0 for x” and “trading y for z”.

(A5) Ex post preferences are Archimedean: the value di↵erence between two
outcomes w and x cannot be “infinitesimal” relative to the value
di↵erence between two other outcomes y and z .



Informal statement of main result (15/62)

(S1) Any two state places in S have a product in S.
(S2) Any two outcome places in X have a coproduct in X .
(S3) Any pullback diagram in S has a C-pullback in S.
(A1) On every outcome place in X , there is an ex post preference relation, which governs the

agent’s preferences over “constant” acts.
(A2) If one act ↵ “statewise dominates” another act � (in terms of the ex post preferences),

then the agent prefers ↵ to �.
(A3) The set of “simple” acts is order-dense in the set of all acts.
(A4) Tradeo↵s between outcomes are consistent: if the agent is indi↵erent between “trading

outcome w for x” and “trading outcome y for z”, but strictly prefers outcome w

0 to w ,
then the agent cannot be indi↵erent between “trading w

0 for x” and “trading y for z”.
(A5) Ex post preferences are Archimedean: the value di↵erence between two outcomes w and x

cannot be “infinitesimal” relative to the di↵erence between two other outcomes y and z.

Theorem. (Informal statement) Let C be any biconnected category. Let

(S,X ) be a decision context satisfying structural conditions (S1)-(S3).

Let S be a solvable Savage structure on (S,X ). Then:
S has a “subjective expected utility representation” if and only if it satisfies

axioms (A1)-(A5).

In this representation, the “probabilistic beliefs” on each state place are

unique. The “utility function” on each outcome place represents the agent’s

“ex post preferences”, and is unique up to positive a�ne transform.
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S be a “solvable” Savage structure on (S,X ). Then:
S has a “subjective expected utility representation” if and only if it satisfies

axioms (A1)-(A5).

In this representation, the “probabilistic beliefs” on each state place are

unique. The “utility function” on each outcome place represents the agent’s

“ex post preferences”, and is unique up to positive a�ne transformations.

Many terms in the axioms and theorem appear in quotation marks, because
they have not yet been formally defined.

The meaning of these terms is fairly obvious in a concrete category like Set

or Meas.... but it is not clear what they even mean in an abstract category.

Before we can formally state the theorem or the axioms, we must develop a
theoretical framework in which these terms can be precisely defined....
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theoretical framework in which these terms can be precisely defined....



Part II

Partitions and Probability



Isomorphisms and monomorphisms (18/62)

Let X and Y be objects in a category C, and let � 2 �!C (X ,Y).

� is an isomorphism in C if there is a morphism  2 �!C (Y,X ) such that:

I  � � = IX (the identity morphism on X ).

I � �  = IY (the identity morphism on Y).

Examples. • If C = Set, then isomorphisms are bijections.
• If C = Meas, then isomorphisms are bi-measurable bijections.
• If C = Top, then isomorphisms are homeomorphisms.
• If C = Di↵, then isomorphisms are di↵eomorphisms.

We say that � is a monomorphism (or is monic) if, for any other object

W 2 C, and any morphisms  1, 2 2 �!C (W,X ), we have:
⇣
� �  1 = � �  2

⌘
()

⇣
 1 =  2

⌘
.

In most concrete categories, monomorphisms are injective morphisms.

Example. Let X be a subobject of Y (e.g. subspace, submanifold, etc.).
Then the inclusion morphism X ,! Y is usually a monomorphism.
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Coproducts (19/62)

Let R1,R2, . . . ,R
N

be objects in category C. A coproduct of
R1,R2, . . . ,R

N

is a structure R = (R; ◆1, . . . , ◆
N

), where R is an object in

C, and ◆
n

2 �!C (R
n

,R) for all n 2 [1 . . .N], with the following property: For

any other X 2 [C], and any morphisms f
n

2 �!C (R
n

,X ) (for all

n 2 [1 . . .N]), there is a unique F 2 �!C (R,X ) such that the next diagram
commutes: R

R1 R2 · · · RN

X

F

f
1

◆
1

f
2

◆
2

fN

◆N

1

We then write R =
Na

n=1

R
n

and F = [f1|f2| · · · |f
N

].

Note. R1, . . . ,R
N

might not have a coproduct in a category C. But if
they do, then it is essentially unique up to canonical isomorphism.

Example. In the categories Set, Meas, Top and Di↵, the coproduct is just
the disjoint union of the objects R1, . . . ,R

N

(with the appropriate
measurable/topological/di↵erentiable structure).
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Partitions (20/62)

Let S be an stateplace in S. R1 R2 R3 · · · · · · RN

R

S

◆
1

◆
2 ◆

3

◆N

⇢

4

An N-cell partition of S is a structure
R := (R1, ◆1;R2, ◆2; . . . ;R

N

, ◆
N

; R, ⇢), where:
I R is another stateplace in S.
I R1,R2, . . . ,R

N

are other objects in C (the cells of R);
I (R; ◆1, ◆2, . . . , ◆

N

) is a coproduct of R1,R2, . . . ,R
N

;

and
I ⇢ 2 �!S (R,S) is a C-monomorphism, called the gluing morphism.

Example 1. Suppose C = Set, Meas, Top, or Di↵.

Let S be an object in C. Let R1, . . . ,R
N

be disjoint subsets of S which are
subobjects of S in C (measurable subsets, subspaces, submanifolds, etc.).

Let R := R1 t · · · t R
N

(with e.g. disjoint union topology, not subspace

topology). Let ◆
n

: R
n

,! R and ⇢ : R ,! S be the inclusion maps.

Then (R1, ◆1; . . . ;R
N

, ◆
N

;R, ⇢) is a partition of S.
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N

;

and
I ⇢ 2 �!S (R,S) is a C-monomorphism, called the gluing morphism.
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Let S be an object in C. Let R1, . . . ,R
N

be disjoint subsets of S which are
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N
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topology). Let ◆
n

: R
n

,! R and ⇢ : R ,! S be the inclusion maps.

Then (R1, ◆1; . . . ;R
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Partition refinements (21/62)

Let R = (R1, ◆1; . . . ;R
N

, ◆
N

;R, ⇢) and R0 = (R0
1, ◆

0
1; . . . ;R0

N

0 , ◆0
N

0 ;R0, ⇢0)
be two partitions of S, with N

0 � N.

An adhesive from R0 to R is an ordered pair (⌘, ⌫), where:

• ⌘ 2 �!S (R0,R) is an S-morphism such that
this diagram commutes:

R0

R S

� ⇢0

⇢

1

• ⌫ : [1 . . .N 0]�![1 . . .N] is a surjection.

• For any m 2 [1 . . .N 0], if n = ⌫(m), then there is

a morphism ⌘
m

2 �!C (R0
m

,R
n

) such that this diagram
commutes:

R0
m R0

Rn R

◆0m

�m �

◆n

2

Heuristically, (⌘, ⌫) describes the way in which the cells of R0 are “glued
together” to make the cells of R. Note that (⌘, ⌫) is unique.
We say that R0 is a refinement of R, and write R0 �R.
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Partition refinements (an illustrative example) (22/62)

Here are two partitions R = (R1, ◆1; R2, ◆2; R3, ◆3; R, ⇢) and
R0 = (R0

1, ◆
0
1; R0

2, ◆
0
2; R0

3, ◆
0
3; R0

4, ◆
0
4; R0

5, ◆
0
5; R0

6, ◆
0
6; R0

7, ◆
0
7; R0, ⇢0).
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2 R0
3 R0

4 R0
5 R0

6 R0
7
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�
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◆
2

◆
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Partition refinements (an illustrative example) (22/62)

Here is an adhesive (⌘, ⌫) making R0 a refinement of R. In this case,
⌫(1) = ⌫(2) = 1, ⌫(3) = ⌫(4) = 2, and ⌫(5) = ⌫(6) = ⌫(7) = 3.
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Partition categories and common refinement (23/62)

Let R, R0 and R00 be three partitions an object S in the category C.
If R0 refines R via the adhesive (⌘1, ⌫1), and R00 refines R0 via the
adhesive (⌘2, ⌫2), then R00 refines R via the adhesive (⌘1 � ⌘2, ⌫1 � ⌫2).

Thus, the set of all partitions of S forms a category, RS(S), where the
objects are the partitions and the morphisms are the adhesives.

We will need RS(S) to satisfy the Common Refinement Property: For any
R1,R2 2 RS(S), there exists R 2 RS(S) with R�R1 and R�R2.

Example 2. Suppose S = C = Set, Meas, Top, or Di↵.

Then for any S 2 [S], the category RS(S) contains the partitions
described in Example 1 (with adhesives defined via inclusion maps).

In all cases, RS(S) satisfies the Common Refinement Property.
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Probability structures (24/62)

For all N 2 N, let �N := {p 2 RN

+; p1 + · · · + p

N

= 1} be the
N-dimensional probability simplex. Let S 2 S.

A probability structure on S is a system P := {pR; R 2 RS(S)}, where
I For each N-cell partition R in RS(S), we have pR 2 �N ; and
I For any partitions R0 �R in RS , if (⌘, ⌫) is the (unique) adhesive

from R0 to R, and pR = (p1, . . . , p
N

) and pR
0
= (p0

1, . . . , p
0
N

0), then

p

n

=
X

m2⌫�1{n}

p

0
m

, for all n 2 [1 . . .N]. (Additivity)

Idea: P assigns an additive “probability” to subobjects of S, but only if

they appear as a cell of some partition in RS(S).

Example 3. Let S 2 [Meas], and define RS(S) as in Example 2.

Then any probability measure µ on S induces a probability structure on
RS(S), in the obvious way.
(For every R = (R1, ◆1; . . . ;RN

, ◆
N

;R, ⇢) in RS(S), let pR
:= (µ[R1], . . . , µ[RN

]).)
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Measurability in a nutshell [skip summary] (25/62)

I A pullback is a categorical construction which plays the role of an
inverse image.

I Using pullbacks, we can define the preimage of any partition in
RS(S2) under any morphism � 2 �!C (S1,S2).

I We then define � to be measurable if every partition in RS(S2) has a
�-preimage in RS(S1).

I Suppose P1 is a probability structure on S1, and P2 is a probability
structure on S2.

I The morphism � is probability-preserving if the probability vector
assigned to a partition by P2 agrees with the probability vector
assigned to its �-preimage by P1.

I However, to save time, we will skip the details....
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Partial preimages [skip] (26/62)

Let R, S and S 0 be objects in C. Consider the diagram on the left below.

S 0

R S

�

⇢

S 0

R S

⇢0

�

⇢

Question. Does there exist an object R0, and morphisms ⇢0 2 �!C (R0,S 0)

and  2 �!C (R0,R), such that the right-hand diagram commutes?

Example. Suppose R is a subobject of S, and ⇢ is the inclusion morphism.

Let R0 := ��1(R) be the �-preimage of R in S 0. Let ⇢0 be the inclusion
morphism. Then the right-hand diagram commutes.

For this reason, we call (R0, ⇢0, ) a partial preimage of the left diagram.

Problem. The left-hand diagram might admit many such “partial”
preimages. Not all of them count as “true” preimages....

Idea. A pullback is a “maximal” partial preimage....
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Pullbacks [skip] (27/62)

A pullback of the left diagram is partial preimage (R0
0, ⇢

0
0, 0) which is a

maximal in the following sense. Given any other partial preimage
(R0, ⇢0, ), there is a unique morphism ⇠ 2 �!C (R0,R0

0) making the centre
diagram commute:

S 0

R S

�

⇢

; R0
0 S 0

R S

⇢00

 0 �

⇢

R0
0 S 0

R S

⇢00

 0 �

⇢

·y

Such a maximal preimage might not exist, but if it does, then it is unique
up to isomorphism. Thus, we say (R0

0, ⇢
0
0, 0) is “the” pullback of the left

diagram. This is indicated by the symbol “·y” in the right diagram.

Examples. Suppose C = Set, Meas, Top, or Di↵,

(a) If R
⇢
,! S is a subobject, then ��1(R) ,! S 0 yields a pullback.

(b) If S is a one-point space; then the pullback is just the Cartesian product
R ⇥ S 0, with the appropriate product structure.
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Partition preimages :Definition [skip to example] (28/62)

Let S and S 0 be two state places in S, and let � 2 �!C (S 0,S).
Let R = (R1, ◆1; . . . ;R

N

, ◆
N

;R, ⇢) be a partition of S.
A �-preimage of the partition R (if it exists) is constructed as follows.

1. Let R0 2 [S] and ⇢0 2 �!S (R0,S 0) satisfy the pullback diagram below.

2. For all n 2 [1 . . .N], let R0
n

be an object and let ◆0
n

2 �!C (R0
n

,R0) be a
morphism satisfying the left-hand pullback diagram below.
3. Suppose that (R0; ◆01, . . . , ◆

0
N

) is a coproduct of R0
1, . . . ,R0

N

.
Let R0 := (R0

1, ◆
0
1; . . . ;R0

N

, ◆0
N

;R0, ⇢0). Then R0 2 RS(S 0), and we get a
commuting diagram:

R0
n

R0

R
n

R

◆0
n

 
n

 

◆
n

·y
R0 S 0

R S

⇢0

 �

⇢

·y
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Measurable and probability-preserving morphisms. (30/62)

Let S be a subcategory of C. Let S1, S2 2 [S], and let � 2 �!C (S1,S2).

We will say that � is S-measurable if every S-partition R 2 RS(S2) has a
�-preimage ��1(R) in RS(S1).

Let P1 and P2 be probability structures on RS(S1) and RS(S2). We say �
is probability-preserving with respect to P1 and P2 if � is measurable and,
for every R2 2 RS(S2), if R1 := ��1(R2), then pR1

1 = pR2
2 .

Example 5. Let S be a subcategory of Meas. Let S1,S2 2 [S], and let
� : S1�!S2 be a measurable function.
For any S-partition R 2 RS(S2), define the preimage ��1(R) as in
Example 4; then ��1(R) 2 RS(S1). Thus, � is S-measurable.

Let µ1 and µ2 be probability measures on S1 and S2; and use these to define
probability structures P1 and P2 on RS(S1) and RS(S2) as in Example 3.
Suppose � is measure-preserving with respect to µ1 and µ2 (i.e.
µ1[��1(R)] = µ2[R] for every measurable subset R ✓ S2).
Then � is a probability-preserving morphism with respect to P1 and P2.
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Part III

Concretization



Quasiconstant morphisms (32/62)

Let C be a category. An object B in C is null if
�!C (A,B) = ; for all A 2 [C].

Example. The empty set ; is the unique null object in the category Set.

Let B, C 2 [C] be non-null, and let  2 �!C (B, C).
Say that  is quasiconstant if for any other object A 2 [C], and any

f1, f2 2 �!C (A,B) we have  � f1 =  � f2.

Examples.
(a) In a concrete category, any constant morphism is quasiconstant.
(b) If C has a terminal object, then a morphism is quasiconstant if and
only if it can be factored through a terminal morphism.
Formally, let Z be the terminal object, and suppose

�!C (Z, B) 6= ;.

Then a morphism g 2 �!C (B, C) is quasiconstant if and only if there

is a morphism g

0 2 �!C (Z, C) making this diagram commute:

B C

Z

g

g0

Rn Rn

R

⇢n

⇢†
n

◆n

2

Let K(B, C) denote the set of all quasiconstant morphisms from B into C.
We will use these quasiconstant morphisms to construct a “concrete”
representation of C....
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The concretization functor (informal treatment) (33/62)

We say C is biconnected if
�!C (A,B) is nonempty for all non-null A,B 2 C.

Example. Set, Meas, Top, Di↵, etc. are biconnected.

Suppose C is a biconnected category. We can use quasiconstant
morphisms to define a concretization functor from C into Set, as follows...

For any object B in [C], let K(B) be the set of all quasiconstant morphisms
into B from any other object in [C].
There is an equivalence relation ⇠ on K(B) with the following properties:
I For any objects A,B 2 [C], if eA is the set of ⇠-equivalence classes of

K(A) and eB is the set of ⇠-equivalence classes of K(B), then any

morphism � 2 �!C (A,B) induces a function e� : eA�! eB.
I The transformation B 7! eB and � 7! e� is a functor from C into Set.

If C = Set, Meas, Top or Di↵, then this is just the forgetful functor.⇤

( ⇤ This is not the case in some other concrete categories.)

But the concretization functor is well-defined even in an abstract category.
We will refer to the elements of eB as the quasi-elements of B. [skip details]
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The concretization functor (formal treatment) [Skip] (34/62)
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Let C be a non-null object in [C], and let � 2 �!C (B, C).
For any b 2 eB, if b =  for some quasiconstant morphism  2 K(A,B)
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Part IV

Products, spans,

and

quasipreferences



Spans: executive summary [skip summary] (36/62)

I Let X be an outcome place in [X ].

I A span on X is a categorical construction which plays the role of a
binary relation on X .

I Let [⇤] be a span on X . Then we can define a binary relation f⇤ on eX .
For us, f⇤ will play the role of the ex post preferences order.

I For any state place S 2 [S], the span [⇤] induces a binary relation ⇤

on
�!C (S,X ).

⇤ will play the role of the statewise dominance order induced by f⇤ .

I If [⇤] satisfies reasonable conditions, then ⇤ and f⇤ are reflexive and
transitive, and f⇤ is also complete (i.e. it is a preference order on eX ).

I In this case, we say that [⇤] is a quasipreference on X .

I However, to save time, we will skip the details....
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Products (37/62)

Let C be a category, and let S1 and S2 be objects in C.
A product of S1 and S2 is a triple (S;⇡1,⇡2), where S is another object in

C, and where ⇡1 2 �!C (S,S1) and ⇡2 2 �!C (S,S2) are morphisms (called
projections) with the following property: for any other object R in C, and
any morphisms f1 2 �!C (R,S1) and f2 2 �!C (R,S2), there is a unique

morphism F 2 �!C (R,S) such that the following diagram commutes:

R

S1 S S2

f1
F

f2

⇡1 ⇡2

Example. In most concrete categories, S is the Cartesian product S1 ⇥ S2

(equipped with the suitable “product” structure), while ⇡1 and ⇡2 are the
coordinate projection maps (i.e. ⇡1(s1, s2) = s1 and ⇡2(s1, s2) = s2).

For any f1 2 �!C (R,S1) and f2 2 �!C (R,S2), we get a function
F : R�!S1 ⇥ S2 defined by F (r) := (f1(r), f2(r)), for all r 2 R.
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Spans (38/62)

Let X 2 [C]. A span on X is a structure h⇤i = (Q; q1, q2), where Q is

another object in C, and where q1, q2 2 �!C (Q,X ).

Prototypical example. Suppose the product object X ⇥ X existed in C.
Let Q ◆

,! X ⇥ X be a subobject of X ⇥ X (e.g. a binary relation).
Construct the following commuting diagram:

Q

X X ⇥ X X

q1
◆

q2

⇡1 ⇡2

Then (Q; q1, q2) is a span on X .

As this example shows, spans generalize binary relations.

Indeed, if C = Set, then spans are equivalent to binary relations.

In other categories, the link from spans to relations on X is more subtle.

However, each span determines binary relations on morphisms and
quasielements, as we now explain....
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Spans define binary relations on morphisms (39/62)

Let h⇤i = (Q; q1, q2) be a span on X , and let S be another object in C.
Let ↵,� 2 �!C (S,X ). Define ↵⇤� if there is a morphism r 2 �!C (S,Q)

which makes this diagram commute:

S

X Q X

↵
r

�

q1 q2

Example. Suppose C = Set, and h⇤i represents a binary relation ⇤ on X .

If ↵,� : S�!X are functions, then (↵⇤�) ,
⇣
↵(s)⇤�(s) for all s 2 S

⌘
.

If ⇤ is a preference order on X , this says that ↵ statewise dominates �.

Given any quasielements x1, x2 2 eX , and any S 2 [C]+, we define
⇣
x1f⇤ x2

⌘
()

⇣
9 1,2 2 K(S,X ) with x1 = 1, x2 = 2, and 1⇤2

⌘
.

This defines a relation f⇤ on eX (independent of the choice of S).
If C = Set, then every binary relation on eX comes from a span in this way.
For us, f⇤ will play the role of the ex post preference relation, and ⇤ will
be the “statewise dominance” relation induced by f⇤ .
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Quasirelations and quasipreferences (40/62)

Let h⇤i = (Q; q1, q2) and h⇤0i = (Q0; q0
1, q

0
2) be two spans on X .

We say that h⇤i and h⇤0i are equivalent if there are morphisms

f 2 �!C (Q0,Q) and g 2 �!C (Q,Q0) such that this diagram commutes:

Q0

X Q X

q

0
1

f

g

q

0
2

q1 q2

Let [⇤] denote the equivalence class of h⇤i. We call [⇤] a quasirelation.

If two spans are equivalent, then they induce the same relation ⇤ on
�!C (S,X ), and the same relation f⇤ on eX .

Thus, ⇤ and f⇤ can be associated to the entire quasirelation [⇤].

If [⇤] satisfies reasonable conditions, then ⇤ and f⇤ are reflexive and
transitive, and f⇤ is also complete (i.e. it is a preference order on eX ).

In this case, we say that [⇤] is a quasipreference on X .
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In this case, we say that [⇤] is a quasipreference on X .



Quasirelations and quasipreferences (40/62)

Let h⇤i = (Q; q1, q2) and h⇤0i = (Q0; q0
1, q

0
2) be two spans on X .

We say that h⇤i and h⇤0i are equivalent if there are morphisms

f 2 �!C (Q0,Q) and g 2 �!C (Q,Q0) such that this diagram commutes:

Q0

X Q X

q

0
1

f

g

q

0
2

q1 q2

Let [⇤] denote the equivalence class of h⇤i. We call [⇤] a quasirelation.

If two spans are equivalent, then they induce the same relation ⇤ on
�!C (S,X ), and the same relation f⇤ on eX .

Thus, ⇤ and f⇤ can be associated to the entire quasirelation [⇤].

If [⇤] satisfies reasonable conditions, then ⇤ and f⇤ are reflexive and
transitive, and f⇤ is also complete (i.e. it is a preference order on eX ).

In this case, we say that [⇤] is a quasipreference on X .



Compatible utility functions (41/62)

Let X 2 [C]. A function u : eX�!R is a C-compatible utility function if
there is a quasipreference [⇤] on X for which u is an ordinal representation:

⇣
x

f⇤ y

⌘
()

⇣
u(x) � u(y)

⌘
, for all x , y 2 eX .

Example. If C = Set, then every real-valued function on eX is a compatible
utility function. But in other categories, this is not necessarily the case.

For example, let C = Cpct, the category of compact spaces and continuous
maps, and let X 2 [Cpct].

Then a function u : eX�!R is a Cpct-compatible utility function if and only
if it is an increasing transform of a continuous, R-valued function on X .

(This means, in particular, that u must be Borel-measurable.)
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Simple morphisms (43/62)

Let R = (R; ◆1, . . . , ◆
N

) be a coproduct of some objects R1, . . . ,R
N

2 [C].
Let X 2 [C] be another object.

For all n 2 [1 . . .N], let �
n

2 K(R
n

,X ) be a quasiconstant morphism.
Let x

n

2 eX be its ⇠-equivalence class (the “value” of �
n

).

By the defining property of coprod-
ucts, there is a unique morphism � =

[�1| · · · |�
N

] 2 �!C (R,X ) such that this
diagram commutes:

Say � is a simple morphism from R
into X , and write “� = [x1| · · · |x

N

]”.

R

R1 R2 · · · RN

X

�

�
1

◆
1

�
2

◆
2

�N

◆N

5

Idea: � is “constant” when restricted to each of R1, . . .R
N

.

Let ⌃(R,X ) be the set of all simple morphisms from R to X which are
compatible with the coproduct structure of R.
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Expected utility for simple morphisms (44/62)

Let S 2 [S] and X 2 [X ].

Let P = (pR)R2RS(S) be a probability structure on RS(S).

Let R = (R1, ◆1; . . . ;R
N

, ◆
N

; R; ⇢) 2 RS(S) (a partition of S).

Let � 2 ⌃(R,X ) be simple morphism.

Suppose � = [x1| · · · |x
N

], for some quasielements x1, . . . , x
N

2 eX

Let u : eX�!R be a real-valued function (e.g. a “utility function”).

We define the expected utility of �, with respect to u and P, as follows:

Eu

P[�] :=
NX

n=1

p

R
n

u(x
n

),

where pR = (pR1 , . . . , pR
N

).
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Expected utility for any morphism (informal) [skip summary] (45/62)

We define the expected utility of a simple morphism �, with respect to u and P:

Eu

P[�] :=

NX

n=1

p

R
n

u(x

n

),

where pR
= (p

R
1 , . . . , pR

N

), and where x1, . . . , xN 2 eX are such that � = [x1| · · · |xN ].

Now, let u : eX�!R be a C-compatible utility function, representing a
quasipreference [⇤]. Meanwhile, let ↵ 2 �!C (S,X ) be any morphism.

We define Eu

P[↵] and Eu

P[↵], the lower and upper expected utilities of ↵
with respect to u and P, by approximating ↵ “from below” and “from
above” (in terms of [⇤]) by simple morphisms on partitions of S.

If RS(S) satisfies the Common Refinement Property, then Eu

P and Eu

P have
most of the properties you would expect from a notion of “expected utility”.

If Eu

P[↵] = Eu

P[↵], then we denote their common value by Eu

P[↵], and we
say that ↵ is (u,P)-integrable.

(But in fact, we don’t need (u,P)-integrable morphisms.) [skip details]
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Virtual simple morphisms [Skip to SEU] (46/62)

Let S 2 [C], and let R := (R1, ◆1; . . . ;R
N

, ◆
N

; R; ⇢) be a partition of S.

Let X 2 [C] and let � 2 �!C (S,X ). Thus, �0 := � � ⇢ 2 �!C (R,X ).

If �0 is a simple morphism on R, then we will say that � is a simple

morphism on S subordinate to the partition R.

Problem. In many categories (e.g. Top, Di↵), the only simple morphisms
on S are the constant functions....

Solution. Treat the simple morphisms in ⌃S(R,X ) as “virtual” simple
morphisms on S itself.

Formally, a virtual simple morphism on S is a structure (�, ⇢), where
R = (R1, ◆1; . . . ;R

N

, ◆
N

; R; ⇢) is a partition of S, and � 2 ⌃(R,X ).

Let ⌃S(S,X ) be the set of all virtual simple morphisms from S into X
arising from partitions in RS(S). Formally,

⌃S(S,X ) := {(�, ⇢) ; R = (R1, ◆1; . . . ;RN

, ◆
N

; R, ⇢) 2 RS(S) & � 2 ⌃(R,X )}.
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Expected utility for arbitrary morphisms [Skip to SEU] (47/62)

Now, let u : eX�!R be a C-compatible utility function, representing a
quasipreference [⇤

u

] on X .

For any ↵ 2 �!C (S,X ), we define

⌃u

S(↵) := {(�, ⇢) 2 ⌃S(S,X ) ; � �
u

↵ � ⇢}

and ⌃
u

S(↵) := {(�, ⇢) 2 ⌃S(S,X ) ; � ⇤
u

↵ � ⇢}.

Finally, define

Eu

P[↵] := sup
(�,⇢)2⌃u

S(↵)
Eu

P[�] and Eu

P[↵] := inf
(�,⇢)2⌃

u

S(↵)
Eu

P[�].

Interpretation. These are a lower estimate and an upper estimate of the
expected utility of ↵ with respect to u and P.

If Eu

P[↵] = Eu

P[↵], then we denote their common value by Eu

P[↵], and we
say that ↵ is (u,P)-integrable.

(But in fact, we don’t need (u,P)-integrable morphisms.)



Expected utility for arbitrary morphisms [Skip to SEU] (47/62)

Now, let u : eX�!R be a C-compatible utility function, representing a
quasipreference [⇤

u

] on X .

For any ↵ 2 �!C (S,X ), we define

⌃u

S(↵) := {(�, ⇢) 2 ⌃S(S,X ) ; � �
u

↵ � ⇢}

and ⌃
u

S(↵) := {(�, ⇢) 2 ⌃S(S,X ) ; � ⇤
u

↵ � ⇢}.

Finally, define

Eu

P[↵] := sup
(�,⇢)2⌃u

S(↵)
Eu

P[�] and Eu

P[↵] := inf
(�,⇢)2⌃

u

S(↵)
Eu

P[�].

Interpretation. These are a lower estimate and an upper estimate of the
expected utility of ↵ with respect to u and P.

If Eu

P[↵] = Eu

P[↵], then we denote their common value by Eu

P[↵], and we
say that ↵ is (u,P)-integrable.

(But in fact, we don’t need (u,P)-integrable morphisms.)



Expected utility for arbitrary morphisms [Skip to SEU] (47/62)

Now, let u : eX�!R be a C-compatible utility function, representing a
quasipreference [⇤

u

] on X .

For any ↵ 2 �!C (S,X ), we define

⌃u

S(↵) := {(�, ⇢) 2 ⌃S(S,X ) ; � �
u

↵ � ⇢}

and ⌃
u

S(↵) := {(�, ⇢) 2 ⌃S(S,X ) ; � ⇤
u

↵ � ⇢}.

Finally, define

Eu

P[↵] := sup
(�,⇢)2⌃u

S(↵)
Eu

P[�] and Eu

P[↵] := inf
(�,⇢)2⌃

u

S(↵)
Eu

P[�].

Interpretation. These are a lower estimate and an upper estimate of the
expected utility of ↵ with respect to u and P.

If Eu

P[↵] = Eu

P[↵], then we denote their common value by Eu

P[↵], and we
say that ↵ is (u,P)-integrable.

(But in fact, we don’t need (u,P)-integrable morphisms.)



Expected utility for arbitrary morphisms [Skip to SEU] (47/62)

Now, let u : eX�!R be a C-compatible utility function, representing a
quasipreference [⇤

u

] on X .

For any ↵ 2 �!C (S,X ), we define

⌃u

S(↵) := {(�, ⇢) 2 ⌃S(S,X ) ; � �
u

↵ � ⇢}

and ⌃
u

S(↵) := {(�, ⇢) 2 ⌃S(S,X ) ; � ⇤
u

↵ � ⇢}.

Finally, define

Eu

P[↵] := sup
(�,⇢)2⌃u

S(↵)
Eu

P[�] and Eu

P[↵] := inf
(�,⇢)2⌃

u

S(↵)
Eu

P[�].

Interpretation. These are a lower estimate and an upper estimate of the
expected utility of ↵ with respect to u and P.

If Eu

P[↵] = Eu

P[↵], then we denote their common value by Eu

P[↵], and we
say that ↵ is (u,P)-integrable.

(But in fact, we don’t need (u,P)-integrable morphisms.)



Expected utility for arbitrary morphisms [Skip to SEU] (47/62)

Now, let u : eX�!R be a C-compatible utility function, representing a
quasipreference [⇤

u

] on X .

For any ↵ 2 �!C (S,X ), we define

⌃u

S(↵) := {(�, ⇢) 2 ⌃S(S,X ) ; � �
u

↵ � ⇢}

and ⌃
u

S(↵) := {(�, ⇢) 2 ⌃S(S,X ) ; � ⇤
u

↵ � ⇢}.

Finally, define

Eu

P[↵] := sup
(�,⇢)2⌃u

S(↵)
Eu

P[�] and Eu

P[↵] := inf
(�,⇢)2⌃

u

S(↵)
Eu

P[�].

Interpretation. These are a lower estimate and an upper estimate of the
expected utility of ↵ with respect to u and P.

If Eu

P[↵] = Eu

P[↵], then we denote their common value by Eu

P[↵], and we
say that ↵ is (u,P)-integrable.

(But in fact, we don’t need (u,P)-integrable morphisms.)



Expected utility for arbitrary morphisms [Skip to SEU] (47/62)

Now, let u : eX�!R be a C-compatible utility function, representing a
quasipreference [⇤

u

] on X .

For any ↵ 2 �!C (S,X ), we define

⌃u

S(↵) := {(�, ⇢) 2 ⌃S(S,X ) ; � �
u

↵ � ⇢}

and ⌃
u

S(↵) := {(�, ⇢) 2 ⌃S(S,X ) ; � ⇤
u

↵ � ⇢}.

Finally, define

Eu

P[↵] := sup
(�,⇢)2⌃u

S(↵)
Eu

P[�] and Eu

P[↵] := inf
(�,⇢)2⌃

u

S(↵)
Eu

P[�].

Interpretation. These are a lower estimate and an upper estimate of the
expected utility of ↵ with respect to u and P.

If Eu

P[↵] = Eu

P[↵], then we denote their common value by Eu

P[↵], and we
say that ↵ is (u,P)-integrable.

(But in fact, we don’t need (u,P)-integrable morphisms.)



Expected utility for arbitrary morphisms [Skip to SEU] (47/62)

Now, let u : eX�!R be a C-compatible utility function, representing a
quasipreference [⇤

u

] on X .

For any ↵ 2 �!C (S,X ), we define

⌃u

S(↵) := {(�, ⇢) 2 ⌃S(S,X ) ; � �
u

↵ � ⇢}

and ⌃
u

S(↵) := {(�, ⇢) 2 ⌃S(S,X ) ; � ⇤
u

↵ � ⇢}.

Finally, define

Eu

P[↵] := sup
(�,⇢)2⌃u

S(↵)
Eu

P[�] and Eu

P[↵] := inf
(�,⇢)2⌃

u

S(↵)
Eu

P[�].

Interpretation. These are a lower estimate and an upper estimate of the
expected utility of ↵ with respect to u and P.

If Eu

P[↵] = Eu

P[↵], then we denote their common value by Eu

P[↵], and we
say that ↵ is (u,P)-integrable.

(But in fact, we don’t need (u,P)-integrable morphisms.)



Expected utility for arbitrary morphisms [Skip to SEU] (47/62)

Now, let u : eX�!R be a C-compatible utility function, representing a
quasipreference [⇤

u

] on X .

For any ↵ 2 �!C (S,X ), we define

⌃u

S(↵) := {(�, ⇢) 2 ⌃S(S,X ) ; � �
u

↵ � ⇢}

and ⌃
u

S(↵) := {(�, ⇢) 2 ⌃S(S,X ) ; � ⇤
u

↵ � ⇢}.

Finally, define

Eu

P[↵] := sup
(�,⇢)2⌃u

S(↵)
Eu

P[�] and Eu

P[↵] := inf
(�,⇢)2⌃

u

S(↵)
Eu

P[�].

Interpretation. These are a lower estimate and an upper estimate of the
expected utility of ↵ with respect to u and P.

If Eu

P[↵] = Eu

P[↵], then we denote their common value by Eu

P[↵], and we
say that ↵ is (u,P)-integrable.

(But in fact, we don’t need (u,P)-integrable morphisms.)



Expected utility for arbitrary morphisms [Skip to SEU] (47/62)

Now, let u : eX�!R be a C-compatible utility function, representing a
quasipreference [⇤

u

] on X .

For any ↵ 2 �!C (S,X ), we define

⌃u

S(↵) := {(�, ⇢) 2 ⌃S(S,X ) ; � �
u

↵ � ⇢}

and ⌃
u

S(↵) := {(�, ⇢) 2 ⌃S(S,X ) ; � ⇤
u

↵ � ⇢}.

Finally, define

Eu

P[↵] := sup
(�,⇢)2⌃u

S(↵)
Eu

P[�] and Eu

P[↵] := inf
(�,⇢)2⌃

u

S(↵)
Eu

P[�].

Interpretation. These are a lower estimate and an upper estimate of the
expected utility of ↵ with respect to u and P.

If Eu

P[↵] = Eu

P[↵], then we denote their common value by Eu

P[↵], and we
say that ↵ is (u,P)-integrable.

(But in fact, we don’t need (u,P)-integrable morphisms.)



Subjective expected utility representations (48/62)

Let (S,X ) be a decision context in a category C.
For every S 2 [S], let PS be a probability structure on RS(S).
For every X 2 [X ], let uX : eX�!R be a C-compatible utility function.
The structure [(PS)S2[S], (uX )X2[X ]] is an SEU structure on (S,X ) if:

(PP) For all S1,S2 2 [S], every measurable morphism in
�!S (S1,S2) is

probability-preserving with respect to PS1 and PS2 .

(UP) For all X1,X2 2 [X ], and every � 2 �!X (X1,X2), the composition
uX2 � e� is a positive a�ne transformation of uX1 —that is, there exist

A > 0 and B 2 R such that uX2 [e�(x)] = AuX1(x) + B for all x 2 eX1.

This SEU structure represents a Savage structure S = (⌫S
X )S2[S]

X2[X ] if, for

every S 2 [S], and every X 2 [X ], and all ↵,� 2 �!C (S,X ), we have
⇣
↵ �S

X �
⌘

()
⇣
Eu

P[↵] > Eu

P[�]
⌘
,

In particular, if ↵ and � are both (u,P)-integrable, then this implies:
⇣
↵ ⌫S

X �
⌘

()
⇣
Eu

P[↵] � Eu

P[�]
⌘
.
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(PP) For all S1,S2 2 [S], every measurable morphism in
�!S (S1,S2) is

probability-preserving with respect to PS1 and PS2 .

(UP) For all X1,X2 2 [X ], and every � 2 �!X (X1,X2), the composition
uX2 � e� is a positive a�ne transformation of uX1 —that is, there exist

A > 0 and B 2 R such that uX2 [e�(x)] = AuX1(x) + B for all x 2 eX1.

This SEU structure represents a Savage structure S = (⌫S
X )S2[S]

X2[X ] if, for

every S 2 [S], and every X 2 [X ], and all ↵,� 2 �!C (S,X ), we have
⇣
↵ �S

X �
⌘

()
⇣
Eu

P[↵] > Eu

P[�]
⌘
,

In particular, if ↵ and � are both (u,P)-integrable, then this implies:
⇣
↵ ⌫S

X �
⌘

()
⇣
Eu

P[↵] � Eu

P[�]
⌘
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Part VI

Formal statement of axioms and

main result



Structural conditions (S1)-(S3) (50/62)

The decision context (S,X ) must satisfy three structural conditions:

(S1) Every pair of state places in [S] have a product in the category S.
(S2) Every pair of outcome places in [X ] have a coproduct in X .

(S3) Consider a pullback diagram in the category C:
S
p

S
q

S
x

S
y

⌧

� ⇢

�

·y

If S
q

, S
x

, and S
y

are all in [S], and ⇢ and � are S-morphisms, then S
p

is also in [S], and ⌧ and � are also S-morphisms.

Interpretation: Given any two “random variables” (e.g. any two state
places S1 and S2), (S1) says we can couple them into a single “random
variable” (namely S = S1 ⇥ S2) such that S1 and S2 are“marginals” of S.
(S1 and S2 might not be independent random variables in this coupling.)

Given any two menus X1 and X2 of outcomes, (S2) says we can combine
them into a single menu (X1

` X2). The agent’s preferences on this larger
menu must agree with her preferences on the two submenus.
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Structural condition (S3) (51/62)

Suppose C is pullback-complete. Then (S3) is equivalent to:

(S30) For any S
q

,S
x

,S
y

2 [S], and any � 2 �!S (S
x

,S
y

) and ⇢ 2 �!S (S
q

,S
y

),
there exists a fourth state place S

p

, along with S-morphisms ⌧ and �
yielding the following pullback diagram in the category C:

S
p

S
q

S
x

S
y

⌧

� ⇢

�

·y

This is generalizes (S1). Suppose there are two sources of uncertainty, S
x

and S
q

. The morphisms ⇢ and � are “measurements” of S
x

and S
q

, taking
values in S

y

. Suppose that S
x

and S
q

are “correlated” in such a way that ⇢
and � always produce the same measurement value. Is there a way to
explain this correlation? (S30) says “yes”: there a single, common,
underlying source of uncertainty S

p

, such that S
x

and S
q

appear as
“factors” of S

p

(via the morphisms ⌧ and �).
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Solvability (52/62)

Let R = (R; ◆1, . . . , ◆
N

) be a coproduct of objects R1, . . . ,R
N

2 [C]. Let

⌃(R,X ) := {all simple morphisms from R to X}.

For any simple morphism � 2 ⌃(R,X ), there exist quasielements
x1, . . . , x

N

2 eX such that � = [x1| · · · |x
N

].

For any quasielement y 2 eX , and any n 2 [1 . . .N], let (y
n

|�) denote simple
morphism [x1| · · · |xn�1|y |x

n+1| · · · |x
N

] (another element of ⌃(R,X )).

A Savage structure S = (⌫S
X )S2[S]

X2[X ] is solvable if, for any R1, . . . ,R
N

in

[C] with a coproduct R = (R; ◆1, . . . , ◆
N

) such that R 2 [S], any X 2 [X ],
any simple acts �, ⌧ 2 ⌃(R,X ), any n 2 [1 . . .N], and any x , z 2 eX , if
(x

n

|�) �R
X ⌧ �R

X (z
n

|�), then there is y 2 eX with (y
n

|�) ⇡R
X ⌧ .

This is a standard condition in decision theory. It says that we can always
find a “suitable compromise” y between any two elements x and z in eX .

In other words, eX has “no gaps”.
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This is a standard condition in decision theory. It says that we can always
find a “suitable compromise” y between any two elements x and z in eX .

In other words, eX has “no gaps”.
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Axioms (A1) and (A2) (53/62)

The Savage structure S = (⌫S
X )S2[S]

X2[X ] must satisfy five axioms.....

Recall: K(S,X ) is the set of quasiconstant morphisms from S to X .
Heuristically, these represent “perfectly predictable” (i.e. “riskless”) acts.

Notation: For any  2 K(S,X ), let  2 eX denote its ⇠-equivalence class.

For any X 2 [X ], we require a quasipreference [⌫dom

X ] on X satisfying:

(A1) (Ex post preferences) Let ⌫xp

X be the preference order that [⌫dom

X ]

induces on eX . Then ⌫xp

X is nontrivial, and for any S 2 [S] and any
1,2 2 K(S,X ), we have 1 ⌫S

X 2 if and only if 1 ⌫xp

X 2.

(A2) (Statewise dominance) For any S 2 [S] and any ↵,� 2 �!C (S,X ), if

↵ ⌫dom

X �, then ↵ ⌫S
X �.

Interpretation: ⌫xp

X is the agent’s “ex post preference relation” on eX .
(A1) says that ⌫xp

X governs the agent’s preferences over “riskless” acts.

If ↵ ⌫dom

X �, then ↵ delivers a better ex post outcome than � in all

circumstances. Then (A2) says the agent should prefer ↵ over � ex ante.

Axioms (A1) and (A2) are part of Savage’s original characterization of SEU.
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Axiom (A3): Simple density (54/62)

Recall. If R = (R1, ◆1; . . . ;R
N

, ◆
N

;R, ⇢) is a partition of S, then

⌃(R,X ) := {all simple morphisms from R to X}.

(A3) (Simple density) For any S 2 S and X 2 X , and any

↵,� 2 �!C (S,X ), if ↵ �S
X �, then there exists a partition

R = (R1, ◆1; . . . ;R
N

, ◆
N

; R, ⇢) 2 RS(S), and two simple acts

↵0,�0 2 ⌃(R,X ) such that ↵ � ⇢ ⌫dom

X ↵0 �R
X �0 ⌫dom

X � � ⇢.

Idea: We can “approximate” any acts on S with simple acts.
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Axiom (A4): Tradeo↵ consistency (55/62)

Let R = (R; ◆1, . . . , ◆
N

) be a coproduct of some objects R1, . . . ,R
N

2 [C]
and suppose R 2 S. Let X 2 X .
For any w , x , y , z 2 eX , write (w x) ⇠= (y z) if there exists �, ⌧ 2 ⌃(R,X )
and n 2 [1 . . .N] such that (w

n

|�) ⇡R
X (x

n

|⌧) and (y
n

|�) ⇡R
X (z

n

|⌧).
Idea: The gain in changing w to x on R

n

is exactly equal to the gain in
changing y to z on R

n

(because both are exactly cancelled by the loss of
changing � to ⌧ on the complement of R

n

).

Thus, the “value di↵erence” between w and x should be the same as the
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Axiom (A5): Archimedeanism (56/62)

Let X 2 X , and consider an infinite sequence of quasielements
x1, x2, x3, x4, . . . drawn from eX .

The sequence (x
i

)1
i=1 is an infinite standard sequence if

(x
i

 x

i+1) ⇠= (x
j

 x

j+1) for all i , j 2 N.

Idea: x1, x2, x3, x4, ..... are “evenly spaced” in eX .

The sequence (x i )1
i=1 is bounded if there exist x⇤, x⇤ 2 eX such that

x⇤ �xp

X x1 �xp

X x2 �xp

X x3 �xp

X · · · · · · �xp

X x

⇤.

In this case, the utility-di↵erence between x

i

and x

i+1 is e↵ectively
“infinitesimal” relative to the utility-di↵erence between x⇤ and x

⇤

Our last axiom is a standard condition in decision theory, which rules out
such “infinitesimal” utility di↵erences....

(A5) (Archimedeanism) There are no bounded infinite standard sequences.
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SEU characterization theorem (formal statement) (57/62)

SEU characterization theorem. (Formal statement)
Let C be any biconnected category (e.g. Set, Meas, Top, Di↵, etc.)

Let (S,X ) be a decision structure satisfying structural conditions (S1)-(S3).

Let S be a solvable Savage structure on (S,X ). Then:

I S has an SEU representation if and only if it satisfies (A1)-(A5).

Let (PS)S2S and (uX )X2X be this SEU representation. Then:

I

For all S 2 S, the probability structure PS is unique.

I

For all X 2 X , the utility function uX is unique up to positive a�ne

transformations.

I

For any X 2 X , uX is an ordinal utility representation for the ex post
preference order ⌫xp

X .
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