Categorical Decision Theory

Marcus Pivato ${ }^{1}$ and Vassili Vergopoulos ${ }^{2}$
(1) THEMA, Université de Cergy-Pontoise Labex MME-DII (ANR11-LBX-0023-01).
(2) Paris School of Economics

Delft University of Technology

What is Decision Theory?

Individuals and societies must often make choices under uncertainty. How should an agent decide when faced with such uncertainty?

What is Decision Theory?

Individuals and societies must often make choices under uncertainty. How should an agent decide when faced with such uncertainty?

This is the subject of a branch of economics called Decision Theory.

What is Decision Theory?

Individuals and societies must often make choices under uncertainty. How should an agent decide when faced with such uncertainty?

This is the subject of a branch of economics called Decision Theory. The foundations of decision theory were laid by Leonard J. Savage in 1954.

What is Decision Theory?

Individuals and societies must often make choices under uncertainty. How should an agent decide when faced with such uncertainty?

This is the subject of a branch of economics called Decision Theory.
The foundations of decision theory were laid by Leonard J. Savage in 1954. Savage modelled the decision problem as follows.

What is Decision Theory?

Individuals and societies must often make choices under uncertainty. How should an agent decide when faced with such uncertainty?

This is the subject of a branch of economics called Decision Theory.
The foundations of decision theory were laid by Leonard J. Savage in 1954.
Savage modelled the decision problem as follows.
There is an (infinite) set \mathcal{S} of possible "states of the world".

What is Decision Theory?

Individuals and societies must often make choices under uncertainty. How should an agent decide when faced with such uncertainty?

This is the subject of a branch of economics called Decision Theory.
The foundations of decision theory were laid by Leonard J. Savage in 1954.
Savage modelled the decision problem as follows.
There is an (infinite) set \mathcal{S} of possible "states of the world".
The true state is unknown.

What is Decision Theory?

Individuals and societies must often make choices under uncertainty. How should an agent decide when faced with such uncertainty?

This is the subject of a branch of economics called Decision Theory.
The foundations of decision theory were laid by Leonard J. Savage in 1954.
Savage modelled the decision problem as follows.
There is an (infinite) set \mathcal{S} of possible "states of the world".
The true state is unknown.
\mathcal{S} represents all information which is unknown to the agent.

What is Decision Theory?

Individuals and societies must often make choices under uncertainty. How should an agent decide when faced with such uncertainty?

This is the subject of a branch of economics called Decision Theory.
The foundations of decision theory were laid by Leonard J. Savage in 1954.
Savage modelled the decision problem as follows.
There is an (infinite) set \mathcal{S} of possible "states of the world".
The true state is unknown.
\mathcal{S} represents all information which is unknown to the agent.
There is a set \mathcal{X} of possible "outcomes" (e.g. consumption bundles). These are the things the agent ultimately cares about.

What is Decision Theory?

Individuals and societies must often make choices under uncertainty. How should an agent decide when faced with such uncertainty?

This is the subject of a branch of economics called Decision Theory.
The foundations of decision theory were laid by Leonard J. Savage in 1954.
Savage modelled the decision problem as follows.
There is an (infinite) set \mathcal{S} of possible "states of the world".
The true state is unknown.
\mathcal{S} represents all information which is unknown to the agent.
There is a set \mathcal{X} of possible "outcomes" (e.g. consumption bundles).
These are the things the agent ultimately cares about.
Each alternative defines a function $\alpha: \mathcal{S} \longrightarrow \mathcal{X}$, called an act.

What is Decision Theory?

Individuals and societies must often make choices under uncertainty. How should an agent decide when faced with such uncertainty?

This is the subject of a branch of economics called Decision Theory.
The foundations of decision theory were laid by Leonard J. Savage in 1954.
Savage modelled the decision problem as follows.
There is an (infinite) set \mathcal{S} of possible "states of the world".
The true state is unknown.
\mathcal{S} represents all information which is unknown to the agent.
There is a set \mathcal{X} of possible "outcomes" (e.g. consumption bundles).
These are the things the agent ultimately cares about.
Each alternative defines a function $\alpha: \mathcal{S} \longrightarrow \mathcal{X}$, called an act.
If the agent chooses the act α, and the true state of the world turns out to be s, then she will obtain the outcome $\alpha(s)$.

Savage's Theorem

Let $\mathcal{X}^{\mathcal{S}}$ be the set of all logically possible acts.
\qquad Savage's Theorem. Suppose \succeq satisfies six axioms (encoding various riteria of "consistency" or "rationality"). Then there exists: - a "cardinal utility" function $U: \mathcal{X} \longrightarrow \mathbb{R}$, and which provide a subjective expected utility (SEU) representation for In other words, given any acts $\alpha, \beta \in \mathcal{X}^{\mathcal{S}}$, we have

Savage's Theorem

Let $\mathcal{X}^{\mathcal{S}}$ be the set of all logically possible acts.
Let \succeq be a preference order (a complete, transitive relation) on $\mathcal{X}^{\mathcal{S}}$.

Savage's Theorem

Let $\mathcal{X}^{\mathcal{S}}$ be the set of all logically possible acts.
Let \succeq be a preference order (a complete, transitive relation) on $\mathcal{X}^{\mathcal{S}}$.
For any acts $\alpha, \beta \in \mathcal{X}^{\mathcal{S}}$, the statement " $\alpha \succeq \beta$ " means, "If the agent had a choice, then she would choose α rather than β, ex ante."

Savage's Theorem

Let $\mathcal{X}^{\mathcal{S}}$ be the set of all logically possible acts.
Let \succeq be a preference order (a complete, transitive relation) on $\mathcal{X}^{\mathcal{S}}$.
For any acts $\alpha, \beta \in \mathcal{X}^{\mathcal{S}}$, the statement " $\alpha \succeq \beta$ " means, "If the agent had a choice, then she would choose α rather than β, ex ante."
Savage's Theorem. Suppose \succeq satisfies six axioms (encoding various criteria of "consistency" or "rationality").

Savage's Theorem

Let $\mathcal{X}^{\mathcal{S}}$ be the set of all logically possible acts.
Let \succeq be a preference order (a complete, transitive relation) on $\mathcal{X}^{\mathcal{S}}$.
For any acts $\alpha, \beta \in \mathcal{X}^{\mathcal{S}}$, the statement " $\alpha \succeq \beta$ " means, "If the agent had a choice, then she would choose α rather than β, ex ante."
Savage's Theorem. Suppose \succeq satisfies six axioms (encoding various criteria of "consistency" or "rationality"). Then there exists:

- a "cardinal utility" function $U: \mathcal{X} \longrightarrow \mathbb{R}$, and

Savage's Theorem

Let $\mathcal{X}^{\mathcal{S}}$ be the set of all logically possible acts.
Let \succeq be a preference order (a complete, transitive relation) on $\mathcal{X}^{\mathcal{S}}$.
For any acts $\alpha, \beta \in \mathcal{X}^{\mathcal{S}}$, the statement " $\alpha \succeq \beta$ " means, "If the agent had a choice, then she would choose α rather than β, ex ante."
Savage's Theorem. Suppose \succeq satisfies six axioms (encoding various criteria of "consistency" or "rationality"). Then there exists:

- a "cardinal utility" function $U: \mathcal{X} \longrightarrow \mathbb{R}$, and
- a (finitely additive) probability measure P on \mathcal{S},

Savage's Theorem

Let $\mathcal{X}^{\mathcal{S}}$ be the set of all logically possible acts.
Let \succeq be a preference order (a complete, transitive relation) on $\mathcal{X}^{\mathcal{S}}$.
For any acts $\alpha, \beta \in \mathcal{X}^{\mathcal{S}}$, the statement " $\alpha \succeq \beta$ " means, "If the agent had a choice, then she would choose α rather than β, ex ante."
Savage's Theorem. Suppose \succeq satisfies six axioms (encoding various criteria of "consistency" or "rationality"). Then there exists:

- a "cardinal utility" function $U: \mathcal{X} \longrightarrow \mathbb{R}$, and
- a (finitely additive) probability measure P on \mathcal{S}, which provide a subjective expected utility (SEU) representation for \succeq.

Savage's Theorem

Let $\mathcal{X}^{\mathcal{S}}$ be the set of all logically possible acts.
Let \succeq be a preference order (a complete, transitive relation) on $\mathcal{X}^{\mathcal{S}}$.
For any acts $\alpha, \beta \in \mathcal{X}^{\mathcal{S}}$, the statement " $\alpha \succeq \beta$ " means, "If the agent had a choice, then she would choose α rather than β, ex ante."
Savage's Theorem. Suppose \succeq satisfies six axioms (encoding various criteria of "consistency" or "rationality"). Then there exists:

- a "cardinal utility" function $U: \mathcal{X} \longrightarrow \mathbb{R}$, and
- a (finitely additive) probability measure P on \mathcal{S}, which provide a subjective expected utility (SEU) representation for \succeq. In other words, given any acts $\alpha, \beta \in \mathcal{X}^{\mathcal{S}}$, we have

$$
(\alpha \succeq \beta) \Longleftrightarrow\left(\int_{\mathcal{S}} U[\alpha(s)] \mathrm{d} P(s) \geq \int_{\mathcal{S}} U[\beta(s)] \mathrm{d} P(s)\right)
$$

Savage's Theorem

Let $\mathcal{X}^{\mathcal{S}}$ be the set of all logically possible acts.
Let \succeq be a preference order (a complete, transitive relation) on $\mathcal{X}^{\mathcal{S}}$.
For any acts $\alpha, \beta \in \mathcal{X}^{\mathcal{S}}$, the statement " $\alpha \succeq \beta$ " means, "If the agent had a choice, then she would choose α rather than β, ex ante."
Savage's Theorem. Suppose \succeq satisfies six axioms (encoding various criteria of "consistency" or "rationality"). Then there exists:

- a "cardinal utility" function $U: \mathcal{X} \longrightarrow \mathbb{R}$, and
- a (finitely additive) probability measure P on \mathcal{S}, which provide a subjective expected utility (SEU) representation for \succeq. In other words, given any acts $\alpha, \beta \in \mathcal{X}^{\mathcal{S}}$, we have

$$
(\alpha \succeq \beta) \Longleftrightarrow\left(\int_{\mathcal{S}} U[\alpha(s)] \mathrm{d} P(s) \geq \int_{\mathcal{S}} U[\beta(s)] \mathrm{d} P(s)\right)
$$

Heuristically, U describes the agent's ex post tastes over outcomes in \mathcal{X}. Meanwhile, P describes her ex ante beliefs about states in \mathcal{S}.

Savage's Theorem

Let $\mathcal{X}^{\mathcal{S}}$ be the set of all logically possible acts.
Let \succeq be a preference order (a complete, transitive relation) on $\mathcal{X}^{\mathcal{S}}$.
For any acts $\alpha, \beta \in \mathcal{X}^{\mathcal{S}}$, the statement " $\alpha \succeq \beta$ " means, "If the agent had a choice, then she would choose α rather than β, ex ante."
Savage's Theorem. Suppose \succeq satisfies six axioms (encoding various criteria of "consistency" or "rationality"). Then there exists:

- a "cardinal utility" function $U: \mathcal{X} \longrightarrow \mathbb{R}$, and
- a (finitely additive) probability measure P on \mathcal{S}, which provide a subjective expected utility (SEU) representation for \succeq. In other words, given any acts $\alpha, \beta \in \mathcal{X}^{\mathcal{S}}$, we have

$$
(\alpha \succeq \beta) \Longleftrightarrow\left(\int_{\mathcal{S}} U[\alpha(s)] \mathrm{d} P(s) \geq \int_{\mathcal{S}} U[\beta(s)] \mathrm{d} P(s)\right)
$$

Heuristically, U describes the agent's ex post tastes over outcomes in \mathcal{X}. Meanwhile, P describes her ex ante beliefs about states in \mathcal{S}. Thus, Savage says any "rational" agent can be described as maximizing expected utility according to some system of preferences and beliefs.

Desiderata

There are three ways we could improve on Savage's framework. 1. Scope. Savage assumed that \mathcal{S}
arbitrary functions from \mathcal{S} to \mathcal{X}.
spaces and measurable functions.)

Desiderata

There are three ways we could improve on Savage's framework.

1. Scope. Savage assumed that \mathcal{S} and \mathcal{X} are arbitrary sets, and acts are arbitrary functions from \mathcal{S} to \mathcal{X}. (This can be extended to measurable spaces and measurable functions.)

Desiderata

There are three ways we could improve on Savage's framework.

1. Scope. Savage assumed that \mathcal{S} and \mathcal{X} are arbitrary sets, and acts are arbitrary functions from \mathcal{S} to \mathcal{X}. (This can be extended to measurable spaces and measurable functions.)
But what if \mathcal{S} and \mathcal{X} are topological spaces, and acts must be continuous?

Desiderata

There are three ways we could improve on Savage's framework.

1. Scope. Savage assumed that \mathcal{S} and \mathcal{X} are arbitrary sets, and acts are arbitrary functions from \mathcal{S} to \mathcal{X}. (This can be extended to measurable spaces and measurable functions.)
But what if \mathcal{S} and \mathcal{X} are topological spaces, and acts must be continuous?
What if \mathcal{S} and \mathcal{X} are differentiable manifolds, and acts must be differentiable functions?

Desiderata

There are three ways we could improve on Savage's framework.

1. Scope. Savage assumed that \mathcal{S} and \mathcal{X} are arbitrary sets, and acts are arbitrary functions from \mathcal{S} to \mathcal{X}. (This can be extended to measurable spaces and measurable functions.)

But what if \mathcal{S} and \mathcal{X} are topological spaces, and acts must be continuous?
What if \mathcal{S} and \mathcal{X} are differentiable manifolds, and acts must be differentiable functions?

Want: a single theory which works in all of these environments (rather than multiple independent theories).

Desiderata

There are three ways we could improve on Savage's framework.

1. Scope. Savage assumed that \mathcal{S} and \mathcal{X} are arbitrary sets, and acts are arbitrary functions from \mathcal{S} to \mathcal{X}. (This can be extended to measurable spaces and measurable functions.)

But what if \mathcal{S} and \mathcal{X} are topological spaces, and acts must be continuous?
What if \mathcal{S} and \mathcal{X} are differentiable manifolds, and acts must be differentiable functions?

Want: a single theory which works in all of these environments (rather than multiple independent theories).
2. Holism. At different times, the same agent may face different sources of uncertainty (e.g. horse races, financial markets, weather, traffic) and different possible sets of outcomes (e.g. financial gains or losses, social status, physical (dis)comfort, physical danger), in different combinations.

Desiderata

There are three ways we could improve on Savage's framework.

1. Scope. Savage assumed that \mathcal{S} and \mathcal{X} are arbitrary sets, and acts are arbitrary functions from \mathcal{S} to \mathcal{X}. (This can be extended to measurable spaces and measurable functions.)
But what if \mathcal{S} and \mathcal{X} are topological spaces, and acts must be continuous?
What if \mathcal{S} and \mathcal{X} are differentiable manifolds, and acts must be differentiable functions?

Want: a single theory which works in all of these environments (rather than multiple independent theories).
2. Holism. At different times, the same agent may face different sources of uncertainty (e.g. horse races, financial markets, weather, traffic) and different possible sets of outcomes (e.g. financial gains or losses, social status, physical (dis)comfort, physical danger), in different combinations.
Want: a framework which simultaneously yields a single, consistent SEU representation of the agent's preferences over all of these decision problems.

Desiderata

There are three ways we could improve on Savage's framework.

1. Scope.

2. Holism.
3. Endogenous/implicit states and outcomes. Savage assumed that the agent could explicitly specify all possible "states of nature" and all possible "outcomes", and could conceptualize each "act" as a function mapping states to outcomes.

Desiderata

There are three ways we could improve on Savage's framework.

1. Scope.

2. Holism.
3. Endogenous/implicit states and outcomes. Savage assumed that the agent could explicitly specify all possible "states of nature" and all possible "outcomes", and could conceptualize each "act" as a function mapping states to outcomes.

This may be unrealistically demanding.
\qquad
\qquad

Desiderata

There are three ways we could improve on Savage's framework.

1. Scope.

2. Holism.
3. Endogenous/implicit states and outcomes. Savage assumed that the agent could explicitly specify all possible "states of nature" and all possible "outcomes", and could conceptualize each "act" as a function mapping states to outcomes.

This may be unrealistically demanding.
Also, even if people do represent decision problems this way, different people may adopt different representations of the same decision problem...

Desiderata

There are three ways we could improve on Savage's framework.

1. Scope.

2. Holism.
3. Endogenous/implicit states and outcomes. Savage assumed that the agent could explicitly specify all possible "states of nature" and all possible "outcomes", and could conceptualize each "act" as a function mapping states to outcomes.

This may be unrealistically demanding.
Also, even if people do represent decision problems this way, different people may adopt different representations of the same decision problem...
Want: A framework which does not require an explicit specification of the states and outcomes in advance.

Desiderata

There are three ways we could improve on Savage's framework.

1. Scope.

2. Holism.
3. Endogenous/implicit states and outcomes. Savage assumed that the agent could explicitly specify all possible "states of nature" and all possible "outcomes", and could conceptualize each "act" as a function mapping states to outcomes.

This may be unrealistically demanding.
Also, even if people do represent decision problems this way, different people may adopt different representations of the same decision problem...
Want: A framework which does not require an explicit specification of the states and outcomes in advance.

Ideally, the statespace and outcome space should emerge "endogenously" from a description of the agent's preferences over acts.

Desiderata

There are three ways we could improve on Savage's framework.

1. Scope.
2. Holism.
3. Endogenous/implicit states and outcomes. Savage assumed that the agent could explicitly specify all possible "states of nature" and all possible "outcomes", and could conceptualize each "act" as a function mapping states to outcomes.
This may be unrealistically demanding.
Also, even if people do represent decision problems this way, different people may adopt different representations of the same decision problem...
Want: A framework which does not require an explicit specification of the states and outcomes in advance.

Ideally, the statespace and outcome space should emerge "endogenously" from a description of the agent's preferences over acts.

Idea. Reformulate classical decision theory using the tools of category theory, and obtain a theorem which satisfies these three desiderata.

Plan:

Part I. Savage structures; informal statement of main result. Part II. Partitions and probability.
Part III. Concretization.
Part IV. Products, spans and quasipreferences.
Part V. Simple morphisms and SEU representations.
Part VI. Formal statement of axioms and main result.

Part I.

Savage structures

Definition: Category

Recall: a category is a mathematical structure \mathcal{C} with three parts.

Definition: Category

Recall: a category is a mathematical structure \mathcal{C} with three parts.

- A collection $[\mathcal{C}]$ of entities, called the objects of \mathcal{C}.

Definition: Category

Recall: a category is a mathematical structure \mathcal{C} with three parts.

- A collection $[\mathcal{C}]$ of entities, called the objects of \mathcal{C}.
- For any pair of objects $\mathcal{A}, \mathcal{B} \in[\mathcal{C}]$, a collection $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ of entities, called morphisms from \mathcal{A} to \mathcal{B}.

Definition: Category

Recall: a category is a mathematical structure \mathcal{C} with three parts.

- A collection $[\mathcal{C}]$ of entities, called the objects of \mathcal{C}.
- For any pair of objects $\mathcal{A}, \mathcal{B} \in[\mathcal{C}]$, a collection $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ of entities, called morphisms from \mathcal{A} to \mathcal{B}.
- For any $\mathcal{A}, \mathcal{B}, \mathcal{C} \in[\mathcal{C}]$, a composition operation \circ, such that, for any morphisms $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ and $\psi \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$, we have $\psi \circ \phi \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{C})$.

Definition: Category

Recall: a category is a mathematical structure \mathcal{C} with three parts.

- A collection $[\mathcal{C}]$ of entities, called the objects of \mathcal{C}.
- For any pair of objects $\mathcal{A}, \mathcal{B} \in[\mathcal{C}]$, a collection $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ of entities, called morphisms from \mathcal{A} to \mathcal{B}.
- For any $\mathcal{A}, \mathcal{B}, \mathcal{C} \in[\mathcal{C}]$, a composition operation \circ, such that, for any morphisms $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ and $\psi \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$, we have $\psi \circ \phi \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{C})$.
The composition operation has two key algebraic properties:
- Associativity. For all objects $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \in[\mathcal{C}]$ and morphisms $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B}), \beta \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$, and $\gamma \in \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{D})$, $\gamma \circ(\beta \circ \alpha)=(\gamma \circ \beta) \circ \alpha$.

Definition: Category

Recall: a category is a mathematical structure \mathcal{C} with three parts.

- A collection $[\mathcal{C}]$ of entities, called the objects of \mathcal{C}.
- For any pair of objects $\mathcal{A}, \mathcal{B} \in[\mathcal{C}]$, a collection $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ of entities, called morphisms from \mathcal{A} to \mathcal{B}.
- For any $\mathcal{A}, \mathcal{B}, \mathcal{C} \in[\mathcal{C}]$, a composition operation \circ, such that, for any morphisms $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ and $\psi \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$, we have $\psi \circ \phi \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{C})$.
The composition operation has two key algebraic properties:
- Associativity. For all objects $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \in[\mathcal{C}]$ and morphisms

$$
\begin{aligned}
& \alpha \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B}), \beta \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C}), \text { and } \gamma \in \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{D}), \\
& \gamma \circ(\beta \circ \alpha)=(\gamma \circ \beta) \circ \alpha .
\end{aligned}
$$

- Identity. For every object $\mathcal{A} \in[\mathcal{C}]$, there is an identity morphism $I_{\mathcal{A}} \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{A})$ such that, for any object $\mathcal{B} \in[\mathcal{C}]$, we have $I_{\mathcal{A}} \circ \phi=\phi$ for all $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{A})$, while $\phi \circ \boldsymbol{I}_{\mathcal{A}}=\phi$ for all $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$.

A category is a mathematical structure \mathcal{C} with three parts:

- A collection $[\mathcal{C}]$ of entities, called the objects of \mathcal{C}.
- For any $\mathcal{A}, \mathcal{B} \in[\mathcal{C}]$, a collection $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ of entities, called morphisms from \mathcal{A} to \mathcal{B}.
- For any $\mathcal{A}, \mathcal{B}, \mathcal{C} \in[\mathcal{C}]$, a composition operation \circ, such that, for any morphisms $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ and $\psi \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$, we have $\psi \circ \phi \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{C})$.
The composition operation has two key algebraic properties:
- Associativity. For all $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \in[\mathcal{C}]$ and all $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B}), \beta \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$, and $\gamma \in \overrightarrow{\mathcal{C}}(\mathcal{C}, \mathcal{D}), \gamma \circ(\beta \circ \alpha)=(\gamma \circ \beta) \circ \alpha$.
- Identity. For every $\mathcal{A} \in[\mathcal{C}]$, there is an identity morphism $I_{\mathcal{A}} \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{A})$ such that, for any $\mathcal{B} \in[\mathcal{C}]$, we have $I_{\mathcal{A}} \circ \phi=\phi$ for all $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{A})$, while $\phi \circ I_{\mathcal{A}}=\phi$ for all $\phi \in \overrightarrow{\boldsymbol{C}}(\mathcal{A}, \mathcal{B})$.

A category is a mathematical structure \mathcal{C} with three parts:

- A collection $[\mathcal{C}]$ of entities, called the objects of \mathcal{C}.
- For any $\mathcal{A}, \mathcal{B} \in[\mathcal{C}]$, a collection $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ of entities, called morphisms from \mathcal{A} to \mathcal{B}.
- For any $\mathcal{A}, \mathcal{B}, \mathcal{C} \in[\mathcal{C}]$, a composition operation \circ, such that, for any morphisms $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ and $\psi \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$, we have $\psi \circ \phi \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{C})$.
The composition operation has two key algebraic properties:
- Associativity. For all $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \in[\mathcal{C}]$ and all $\alpha \in \overrightarrow{\boldsymbol{C}}(\mathcal{A}, \mathcal{B}), \beta \in \overrightarrow{\boldsymbol{C}}(\mathcal{B}, \mathcal{C})$, and $\gamma \in \overrightarrow{\boldsymbol{C}}(\mathcal{C}, \mathcal{D}), \gamma \circ(\beta \circ \alpha)=(\gamma \circ \beta) \circ \alpha$.
- Identity. For every $\mathcal{A} \in[\mathcal{C}]$, there is an identity morphism $\boldsymbol{I}_{\mathcal{A}} \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{A})$ such that, for any $\mathcal{B} \in[\mathcal{C}]$, we have $\boldsymbol{I}_{\mathcal{A}} \circ \phi=\phi$ for all $\phi \in \overrightarrow{\boldsymbol{C}}(\mathcal{B}, \mathcal{A})$, while $\phi \circ \boldsymbol{I}_{\mathcal{A}}=\phi$ for all $\phi \in \overrightarrow{\boldsymbol{C}}(\mathcal{A}, \mathcal{B})$.
\mathcal{C} is a concrete category if the objects in $[\mathcal{C}]$ are sets (usually with some "structure"), the morphisms in $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ are functions from \mathcal{A} to the set \mathcal{B} (which "preserve" this structure), and \circ is function composition.

A category is a mathematical structure \mathcal{C} with three parts:

- A collection $[\mathcal{C}]$ of entities, called the objects of \mathcal{C}.
- For any $\mathcal{A}, \mathcal{B} \in[\mathcal{C}]$, a collection $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ of entities, called morphisms from \mathcal{A} to \mathcal{B}.
- For any $\mathcal{A}, \mathcal{B}, \mathcal{C} \in[\mathcal{C}]$, a composition operation \circ, such that, for any morphisms $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ and $\psi \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$, we have $\psi \circ \phi \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{C})$.
The composition operation has two key algebraic properties:
- Associativity. For all $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \in[\mathcal{C}]$ and all $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B}), \beta \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$, and $\gamma \in \overrightarrow{\boldsymbol{C}}(\mathcal{C}, \mathcal{D}), \gamma \circ(\beta \circ \alpha)=(\gamma \circ \beta) \circ \alpha$.
- Identity. For every $\mathcal{A} \in[\mathcal{C}]$, there is an identity morphism $I_{\mathcal{A}} \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{A})$ such that, for any $\mathcal{B} \in[\mathcal{C}]$, we have $\boldsymbol{I}_{\mathcal{A}} \circ \phi=\phi$ for all $\phi \in \overrightarrow{\boldsymbol{C}}(\mathcal{B}, \mathcal{A})$, while $\phi \circ \boldsymbol{I}_{\mathcal{A}}=\phi$ for all $\phi \in \overrightarrow{\boldsymbol{C}}(\mathcal{A}, \mathcal{B})$.
\mathcal{C} is a concrete category if the objects in $[\mathcal{C}]$ are sets (usually with some "structure"), the morphisms in $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ are functions from \mathcal{A} to the set \mathcal{B} (which "preserve" this structure), and \circ is function composition.

Examples:

Set Objects are ordinary sets; morphisms are ordinary functions.

A category is a mathematical structure \mathcal{C} with three parts:

- A collection $[\mathcal{C}]$ of entities, called the objects of \mathcal{C}.
- For any $\mathcal{A}, \mathcal{B} \in[\mathcal{C}]$, a collection $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ of entities, called morphisms from \mathcal{A} to \mathcal{B}.
- For any $\mathcal{A}, \mathcal{B}, \mathcal{C} \in[\mathcal{C}]$, a composition operation \circ, such that, for any morphisms $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ and $\psi \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$, we have $\psi \circ \phi \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{C})$.
The composition operation has two key algebraic properties:
- Associativity. For all $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \in[\mathcal{C}]$ and all $\alpha \in \overrightarrow{\boldsymbol{C}}(\mathcal{A}, \mathcal{B}), \beta \in \overrightarrow{\boldsymbol{C}}(\mathcal{B}, \mathcal{C})$, and $\gamma \in \overrightarrow{\boldsymbol{C}}(\mathcal{C}, \mathcal{D}), \gamma \circ(\beta \circ \alpha)=(\gamma \circ \beta) \circ \alpha$.
- Identity. For every $\mathcal{A} \in[\mathcal{C}]$, there is an identity morphism $I_{\mathcal{A}} \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{A})$ such that, for any $\mathcal{B} \in[\mathcal{C}]$, we have $\boldsymbol{I}_{\mathcal{A}} \circ \phi=\phi$ for all $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{A})$, while $\phi \circ \boldsymbol{I}_{\mathcal{A}}=\phi$ for all $\phi \in \overrightarrow{\boldsymbol{C}}(\mathcal{A}, \mathcal{B})$.
\mathcal{C} is a concrete category if the objects in $[\mathcal{C}]$ are sets (usually with some "structure"), the morphisms in $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ are functions from \mathcal{A} to the set \mathcal{B} (which "preserve" this structure), and \circ is function composition.

Examples:

Set Objects are ordinary sets; morphisms are ordinary functions.
Meas Objects are measurable spaces; morphisms are measurable functions.

A category is a mathematical structure \mathcal{C} with three parts:

- A collection $[\mathcal{C}]$ of entities, called the objects of \mathcal{C}.
- For any $\mathcal{A}, \mathcal{B} \in[\mathcal{C}]$, a collection $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ of entities, called morphisms from \mathcal{A} to \mathcal{B}.
- For any $\mathcal{A}, \mathcal{B}, \mathcal{C} \in[\mathcal{C}]$, a composition operation \circ, such that, for any morphisms $\phi \in \overrightarrow{\boldsymbol{C}}(\mathcal{A}, \mathcal{B})$ and $\psi \in \overrightarrow{\boldsymbol{C}}(\mathcal{B}, \mathcal{C})$, we have $\psi \circ \phi \in \overrightarrow{\boldsymbol{\mathcal { C }}}(\mathcal{A}, \mathcal{C})$.
The composition operation has two key algebraic properties:
- Associativity. For all $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \in[\mathcal{C}]$ and all $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B}), \beta \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$, and $\gamma \in \overrightarrow{\boldsymbol{C}}(\mathcal{C}, \mathcal{D}), \gamma \circ(\beta \circ \alpha)=(\gamma \circ \beta) \circ \alpha$.
- Identity. For every $\mathcal{A} \in[\mathcal{C}]$, there is an identity morphism $I_{\mathcal{A}} \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{A})$ such that, for any $\mathcal{B} \in[\mathcal{C}]$, we have $\boldsymbol{I}_{\mathcal{A}} \circ \phi=\phi$ for all $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{A})$, while $\phi \circ \boldsymbol{I}_{\mathcal{A}}=\phi$ for all $\phi \in \overrightarrow{\boldsymbol{C}}(\mathcal{A}, \mathcal{B})$.
\mathcal{C} is a concrete category if the objects in $[\mathcal{C}]$ are sets (usually with some "structure"), the morphisms in $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ are functions from \mathcal{A} to the set \mathcal{B} (which "preserve" this structure), and \circ is function composition.

Examples:

Set Objects are ordinary sets; morphisms are ordinary functions.
Meas Objects are measurable spaces; morphisms are measurable functions.
Top Objects are topological spaces; morphisms are continuous functions.

A category is a mathematical structure \mathcal{C} with three parts:

- A collection $[\mathcal{C}]$ of entities, called the objects of \mathcal{C}.
- For any $\mathcal{A}, \mathcal{B} \in[\mathcal{C}]$, a collection $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ of entities, called morphisms from \mathcal{A} to \mathcal{B}.
- For any $\mathcal{A}, \mathcal{B}, \mathcal{C} \in[\mathcal{C}]$, a composition operation \circ, such that, for any morphisms $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ and $\psi \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$, we have $\psi \circ \phi \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{C})$.
The composition operation has two key algebraic properties:
- Associativity. For all $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \in[\mathcal{C}]$ and all $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B}), \beta \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$, and $\gamma \in \overrightarrow{\boldsymbol{C}}(\mathcal{C}, \mathcal{D}), \gamma \circ(\beta \circ \alpha)=(\gamma \circ \beta) \circ \alpha$.
- Identity. For every $\mathcal{A} \in[\mathcal{C}]$, there is an identity morphism $I_{\mathcal{A}} \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{A})$ such that, for any $\mathcal{B} \in[\mathcal{C}]$, we have $\boldsymbol{I}_{\mathcal{A}} \circ \phi=\phi$ for all $\phi \in \overrightarrow{\boldsymbol{C}}(\mathcal{B}, \mathcal{A})$, while $\phi \circ \boldsymbol{I}_{\mathcal{A}}=\phi$ for all $\phi \in \overrightarrow{\boldsymbol{C}}(\mathcal{A}, \mathcal{B})$.
\mathcal{C} is a concrete category if the objects in $[\mathcal{C}]$ are sets (usually with some "structure"), the morphisms in $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ are functions from \mathcal{A} to the set \mathcal{B} (which "preserve" this structure), and \circ is function composition.

Examples:

Set Objects are ordinary sets; morphisms are ordinary functions.
Meas Objects are measurable spaces; morphisms are measurable functions.
Top Objects are topological spaces; morphisms are continuous functions.
Diff Objects are differentiable manifolds; morphisms are diff'ble functions.

A category is a mathematical structure \mathcal{C} with three parts:

- A collection $[\mathcal{C}]$ of entities, called the objects of \mathcal{C}.
- For any $\mathcal{A}, \mathcal{B} \in[\mathcal{C}]$, a collection $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ of entities, called morphisms from \mathcal{A} to \mathcal{B}.
- For any $\mathcal{A}, \mathcal{B}, \mathcal{C} \in[\mathcal{C}]$, a composition operation \circ, such that, for any morphisms $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ and $\psi \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$, we have $\psi \circ \phi \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{C})$.
The composition operation has two key algebraic properties:
- Associativity. For all $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \in[\mathcal{C}]$ and all $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B}), \beta \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$, and $\gamma \in \overrightarrow{\boldsymbol{C}}(\mathcal{C}, \mathcal{D}), \gamma \circ(\beta \circ \alpha)=(\gamma \circ \beta) \circ \alpha$.
- Identity. For every $\mathcal{A} \in[\mathcal{C}]$, there is an identity morphism $I_{\mathcal{A}} \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{A})$ such that, for any $\mathcal{B} \in[\mathcal{C}]$, we have $\boldsymbol{I}_{\mathcal{A}} \circ \phi=\phi$ for all $\phi \in \overrightarrow{\boldsymbol{C}}(\mathcal{B}, \mathcal{A})$, while $\phi \circ \boldsymbol{I}_{\mathcal{A}}=\phi$ for all $\phi \in \overrightarrow{\boldsymbol{C}}(\mathcal{A}, \mathcal{B})$.
\mathcal{C} is a concrete category if the objects in $[\mathcal{C}]$ are sets (usually with some "structure"), the morphisms in $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ are functions from \mathcal{A} to the set \mathcal{B} (which "preserve" this structure), and \circ is function composition.

Examples:

Set Objects are ordinary sets; morphisms are ordinary functions.
Meas Objects are measurable spaces; morphisms are measurable functions.
Top Objects are topological spaces; morphisms are continuous functions.
Diff Objects are differentiable manifolds; morphisms are diff'ble functions.
However, not all categories are concrete.

A category is a mathematical structure \mathcal{C} with three parts:

- A collection $[\mathcal{C}]$ of entities, called the objects of \mathcal{C}.
- For any $\mathcal{A}, \mathcal{B} \in[\mathcal{C}]$, a collection $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ of entities, called morphisms from \mathcal{A} to \mathcal{B}.
- For any $\mathcal{A}, \mathcal{B}, \mathcal{C} \in[\mathcal{C}]$, a composition operation \circ, such that, for any morphisms

$$
\phi \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B}) \text { and } \psi \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C}), \text { we have } \psi \circ \phi \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{C})
$$

The composition operation has two key algebraic properties:

- Associativity. For all $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \in[\mathcal{C}]$ and all $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B}), \beta \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$, and $\gamma \in \overrightarrow{\boldsymbol{C}}(\mathcal{C}, \mathcal{D}), \gamma \circ(\beta \circ \alpha)=(\gamma \circ \beta) \circ \alpha$.
- Identity. For every $\mathcal{A} \in[\mathcal{C}]$, there is an identity morphism $\boldsymbol{I}_{\mathcal{A}} \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{A})$ such that, for any $\mathcal{B} \in[\mathcal{C}]$, we have $\boldsymbol{I}_{\mathcal{A}} \circ \phi=\phi$ for all $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{A})$, while $\phi \circ \boldsymbol{I}_{\mathcal{A}}=\phi$ for all $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$.
\mathcal{C} is a concrete category if the objects in $[\mathcal{C}]$ are sets (usually with some "structure"), the morphisms in $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ are functions from \mathcal{A} to the set \mathcal{B} (which "preserve" this structure), and \circ is function composition.

Examples:

Set Objects are ordinary sets; morphisms are ordinary functions.
Meas Objects are measurable spaces; morphisms are measurable functions.
Top Objects are topological spaces; morphisms are continuous functions.
Diff Objects are differentiable manifolds; morphisms are diff'ble functions.
However, not all categories are concrete. We will use the term abstract category to refer to a category which may or may not be concrete.

Decision Contexts

Let \mathcal{C} be a category. $(\mathcal{S}, \mathcal{X})$, where \mathcal{S} and \mathcal{X} are subcategories of \mathcal{C}.

We interpret the objects of the subcategory \mathcal{S} as "abstract state spaces" (But they might not literally be spaces.) We will call them state places. For any $S_{1}, S_{2} \in[S]$, each $\phi \in \vec{S}\left(S_{1}, S_{2}\right)$ is a C-morphism from S_{1} to S_{2} that is somehow "compatible" with the agent's beliefs about \mathcal{S}_{1} and \mathcal{S}_{2} (e.g. a measure-preserving transformation between two probability spaces)

We interpret objects of the subcategory \mathcal{X} as "abstract outcome spaces" (But they might not be spaces.) We will call them outcome places. For any $\mathcal{X}_{1}, \mathcal{X}_{2} \in[\mathcal{X}]$, each element of $\widehat{\mathcal{X}}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$ is a \mathcal{C}-morphism from \mathcal{X}_{1} to \mathcal{X}_{2} that is somehow "compatible" with the agent's tastes over \mathcal{X}_{1} and \mathcal{X}_{2} (e.g. an order-preserving map between two ordered sets).

For any state place \mathcal{S} in $[\mathcal{S}]$ and outcome place \mathcal{X} in $[\mathcal{X}]$, the morphisms in $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$ represent "abstract acts" -these are devices which somehow transform the abstract "states" in \mathcal{S} into abstract "outcomes" in \mathcal{X} For simplicity, we will call them acts.

Decision Contexts

Let \mathcal{C} be a category. A decision context on \mathcal{C} is an ordered pair $(\mathcal{S}, \mathcal{X})$, where \mathcal{S} and \mathcal{X} are subcategories of \mathcal{C}.

Decision Contexts

Let \mathcal{C} be a category. A decision context on \mathcal{C} is an ordered pair $(\mathcal{S}, \mathcal{X})$, where \mathcal{S} and \mathcal{X} are subcategories of \mathcal{C}.

We interpret the objects of the subcategory \mathcal{S} as "abstract state spaces". (But they might not literally be spaces.) We will call them state places.

Decision Contexts

Let \mathcal{C} be a category. A decision context on \mathcal{C} is an ordered pair $(\mathcal{S}, \mathcal{X})$, where \mathcal{S} and \mathcal{X} are subcategories of \mathcal{C}.

We interpret the objects of the subcategory \mathcal{S} as "abstract state spaces". (But they might not literally be spaces.) We will call them state places. For any $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, each $\phi \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ is a \mathcal{C}-morphism from \mathcal{S}_{1} to \mathcal{S}_{2} that is somehow "compatible" with the agent's beliefs about \mathcal{S}_{1} and \mathcal{S}_{2} (e.g. a measure-preserving transformation between two probability spaces).

Decision Contexts

Let \mathcal{C} be a category. A decision context on \mathcal{C} is an ordered pair $(\mathcal{S}, \mathcal{X})$, where \mathcal{S} and \mathcal{X} are subcategories of \mathcal{C}.

We interpret the objects of the subcategory \mathcal{S} as "abstract state spaces". (But they might not literally be spaces.) We will call them state places. For any $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, each $\phi \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ is a \mathcal{C}-morphism from \mathcal{S}_{1} to \mathcal{S}_{2} that is somehow "compatible" with the agent's beliefs about \mathcal{S}_{1} and \mathcal{S}_{2} (e.g. a measure-preserving transformation between two probability spaces).

We interpret objects of the subcategory \mathcal{X} as "abstract outcome spaces". (But they might not be spaces.) We will call them outcome places.

Decision Contexts

Let \mathcal{C} be a category. A decision context on \mathcal{C} is an ordered pair $(\mathcal{S}, \mathcal{X})$, where \mathcal{S} and \mathcal{X} are subcategories of \mathcal{C}.

We interpret the objects of the subcategory \mathcal{S} as "abstract state spaces". (But they might not literally be spaces.) We will call them state places. For any $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, each $\phi \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ is a \mathcal{C}-morphism from \mathcal{S}_{1} to \mathcal{S}_{2} that is somehow "compatible" with the agent's beliefs about \mathcal{S}_{1} and \mathcal{S}_{2} (e.g. a measure-preserving transformation between two probability spaces).

We interpret objects of the subcategory \mathcal{X} as "abstract outcome spaces". (But they might not be spaces.) We will call them outcome places. For any $\mathcal{X}_{1}, \mathcal{X}_{2} \in[\mathcal{X}]$, each element of $\overrightarrow{\mathcal{X}}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$ is a \mathcal{C}-morphism from \mathcal{X}_{1} to \mathcal{X}_{2} that is somehow "compatible" with the agent's tastes over \mathcal{X}_{1} and \mathcal{X}_{2} (e.g. an order-preserving map between two ordered sets).

Decision Contexts

Let \mathcal{C} be a category. A decision context on \mathcal{C} is an ordered pair $(\mathcal{S}, \mathcal{X})$, where \mathcal{S} and \mathcal{X} are subcategories of \mathcal{C}.

We interpret the objects of the subcategory \mathcal{S} as "abstract state spaces". (But they might not literally be spaces.) We will call them state places. For any $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, each $\phi \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ is a \mathcal{C}-morphism from \mathcal{S}_{1} to \mathcal{S}_{2} that is somehow "compatible" with the agent's beliefs about \mathcal{S}_{1} and \mathcal{S}_{2} (e.g. a measure-preserving transformation between two probability spaces).

We interpret objects of the subcategory \mathcal{X} as "abstract outcome spaces". (But they might not be spaces.) We will call them outcome places. For any $\mathcal{X}_{1}, \mathcal{X}_{2} \in[\mathcal{X}]$, each element of $\overrightarrow{\mathcal{X}}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$ is a \mathcal{C}-morphism from \mathcal{X}_{1} to \mathcal{X}_{2} that is somehow "compatible" with the agent's tastes over \mathcal{X}_{1} and \mathcal{X}_{2} (e.g. an order-preserving map between two ordered sets).

For any state place \mathcal{S} in $[\mathcal{S}]$ and outcome place \mathcal{X} in $[\mathcal{X}]$, the morphisms in $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$ represent "abstract acts" —these are devices which somehow transform the abstract "states" in \mathcal{S} into abstract "outcomes" in \mathcal{X}.

Decision Contexts

Let \mathcal{C} be a category. A decision context on \mathcal{C} is an ordered pair $(\mathcal{S}, \mathcal{X})$, where \mathcal{S} and \mathcal{X} are subcategories of \mathcal{C}.

We interpret the objects of the subcategory \mathcal{S} as "abstract state spaces". (But they might not literally be spaces.) We will call them state places. For any $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, each $\phi \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ is a \mathcal{C}-morphism from \mathcal{S}_{1} to \mathcal{S}_{2} that is somehow "compatible" with the agent's beliefs about \mathcal{S}_{1} and \mathcal{S}_{2} (e.g. a measure-preserving transformation between two probability spaces).

We interpret objects of the subcategory \mathcal{X} as "abstract outcome spaces". (But they might not be spaces.) We will call them outcome places. For any $\mathcal{X}_{1}, \mathcal{X}_{2} \in[\mathcal{X}]$, each element of $\overrightarrow{\mathcal{X}}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$ is a \mathcal{C}-morphism from \mathcal{X}_{1} to \mathcal{X}_{2} that is somehow "compatible" with the agent's tastes over \mathcal{X}_{1} and \mathcal{X}_{2} (e.g. an order-preserving map between two ordered sets).

For any state place \mathcal{S} in $[\mathcal{S}]$ and outcome place \mathcal{X} in $[\mathcal{X}]$, the morphisms in $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$ represent "abstract acts" —these are devices which somehow transform the abstract "states" in \mathcal{S} into abstract "outcomes" in \mathcal{X}. For simplicity, we will call them acts.

Savage structures: Definition

Let $(\mathcal{S}, \mathcal{X})$ be a decision context in a category \mathcal{C}. representing the agent's ex ante preferences over acts. The collection $\mathfrak{S}:=\{\succ \mathcal{S}, \mathcal{S} \in[\mathcal{S}]$ and $\mathcal{X} \in[\mathcal{X}]\}$ is a Savage structure if (Idea: ϕ is "belief-preserving" Goal. Find conditions under which a Savage structure admits a subjective expected utility (SEU) representation.

Savage structures: Definition

Let $(\mathcal{S}, \mathcal{X})$ be a decision context in a category \mathcal{C}.
For every $\mathcal{S} \in[\mathcal{S}]$ and $\mathcal{X} \in[\mathcal{X}]$, let $\succeq_{\mathcal{X}}^{\mathcal{S}}$ be a preference order on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, representing the agent's ex ante preferences over acts.

Savage structures: Definition

Let $(\mathcal{S}, \mathcal{X})$ be a decision context in a category \mathcal{C}.
For every $\mathcal{S} \in[\mathcal{S}]$ and $\mathcal{X} \in[\mathcal{X}]$, let $\succeq_{\mathcal{X}}^{\mathcal{S}}$ be a preference order on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, representing the agent's ex ante preferences over acts.
The collection $\mathfrak{S}:=\left\{\succeq_{\mathcal{X}}^{\mathcal{X}} ; \mathcal{S} \in[\mathcal{S}]\right.$ and $\left.\mathcal{X} \in[\mathcal{X}]\right\}$ is a Savage structure if:
(BP) For any $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, any $\phi \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$, any $\mathcal{X} \in[\mathcal{X}]$, and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{2}, \mathcal{X}\right)$, we have

$$
\left(\alpha \succeq_{\mathcal{X}}^{\mathcal{S}_{2}} \beta\right) \Longleftrightarrow\left(\alpha \circ \phi \succeq_{\mathcal{X}}^{\mathcal{S}_{1}} \beta \circ \phi\right) . \quad \text { (Idea: } \phi \text { is "belief-preserving".) }
$$

Savage structures: Definition

Let $(\mathcal{S}, \mathcal{X})$ be a decision context in a category \mathcal{C}.
For every $\mathcal{S} \in[\mathcal{S}]$ and $\mathcal{X} \in[\mathcal{X}]$, let $\succeq_{\mathcal{X}}^{\mathcal{S}}$ be a preference order on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, representing the agent's ex ante preferences over acts.
The collection $\mathfrak{S}:=\left\{\succeq_{\mathcal{X}}^{\mathcal{X}} ; \mathcal{S} \in[\mathcal{S}]\right.$ and $\left.\mathcal{X} \in[\mathcal{X}]\right\}$ is a Savage structure if:
(BP) For any $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, any $\phi \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$, any $\mathcal{X} \in[\mathcal{X}]$, and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{2}, \mathcal{X}\right)$, we have

$$
\left(\alpha \succeq_{\mathcal{X}}^{\mathcal{S}_{2}} \beta\right) \Longleftrightarrow\left(\alpha \circ \phi \succeq_{\mathcal{X}}^{\mathcal{S}_{1}} \beta \circ \phi\right) . \quad \text { (Idea: } \phi \text { is "belief-preserving".) }
$$

(TP) For any $\mathcal{X}_{1}, \mathcal{X}_{2} \in[\mathcal{X}]$, any $\phi \in \overrightarrow{\mathcal{X}}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$, any $\mathcal{S} \in[\mathcal{S}]$, and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}, \mathcal{X}_{1}\right)$, we have

$$
\left(\alpha \succeq_{\mathcal{X}_{1}}^{\mathcal{S}} \beta\right) \Longleftrightarrow\left(\phi \circ \alpha \succeq_{\mathcal{X}_{2}}^{\mathcal{S}} \phi \circ \beta\right) . \quad \text { (Idea: } \phi \text { is "taste-preserving".) }
$$

Savage structures: Definition

Let $(\mathcal{S}, \mathcal{X})$ be a decision context in a category \mathcal{C}.
For every $\mathcal{S} \in[\mathcal{S}]$ and $\mathcal{X} \in[\mathcal{X}]$, let $\succeq_{\mathcal{X}}^{\mathcal{S}}$ be a preference order on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, representing the agent's ex ante preferences over acts.
The collection $\mathfrak{S}:=\left\{\succeq_{\mathcal{X}}^{\mathcal{X}} ; \mathcal{S} \in[\mathcal{S}]\right.$ and $\left.\mathcal{X} \in[\mathcal{X}]\right\}$ is a Savage structure if:
(BP) For any $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, any $\phi \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$, any $\mathcal{X} \in[\mathcal{X}]$, and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{2}, \mathcal{X}\right)$, we have

$$
\left(\alpha \succeq_{\mathcal{X}}^{\mathcal{S}_{2}} \beta\right) \Longleftrightarrow\left(\alpha \circ \phi \succeq_{\mathcal{X}}^{\mathcal{S}_{1}} \beta \circ \phi\right) . \quad \text { (Idea: } \phi \text { is "belief-preserving".) }
$$

(TP) For any $\mathcal{X}_{1}, \mathcal{X}_{2} \in[\mathcal{X}]$, any $\phi \in \overrightarrow{\mathcal{X}}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$, any $\mathcal{S} \in[\mathcal{S}]$, and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}, \mathcal{X}_{1}\right)$, we have

$$
\left(\alpha \succeq \succeq_{\mathcal{X}_{1}}^{\mathcal{S}} \beta\right) \Longleftrightarrow\left(\phi \circ \alpha \succeq_{\mathcal{X}_{2}}^{\mathcal{S}} \phi \circ \beta\right) . \quad \text { (Idea: } \phi \text { is "taste-preserving".) }
$$

Goal. Find conditions under which a Savage structure admits a subjective expected utility (SEU) representation....

Savage structures: Example:

The collection $\mathfrak{S}:=\left\{\succeq_{\mathcal{X}}^{\mathcal{X}} ; \mathcal{S} \in[\mathcal{S}]\right.$ and $\left.\mathcal{X} \in[\mathcal{X}]\right\}$ is a Savage structure if:
(BP) For any $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, any $\phi \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$, any $\mathcal{X} \in[\mathcal{X}]$, and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{2}, \mathcal{X}\right)$, we have $\left(\alpha \succeq_{\mathcal{X}}^{\mathcal{S}_{2}} \beta\right) \Longleftrightarrow\left(\alpha \circ \phi \succeq_{\mathcal{X}}^{\mathcal{S}_{1}} \beta \circ \phi\right)$. (Idea: ϕ is "belief-preserving".)
(TP) For any $\mathcal{X}_{1}, \mathcal{X}_{2} \in[\mathcal{X}]$, any $\phi \in \overrightarrow{\mathcal{X}}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$, any $\mathcal{S} \in[\mathcal{S}]$, and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}, \mathcal{X}_{1}\right)$, we have $\left(\alpha \succeq_{\mathcal{X}_{1}}^{\mathcal{S}} \beta\right) \Longleftrightarrow\left(\phi \circ \alpha \succeq_{\mathcal{X}_{2}}^{\mathcal{S}} \phi \circ \beta\right)$. (Idea: ϕ is "taste-preserving".)

Example. Let $\mathcal{C}:=$ Meas.

Savage structures: Example:

The collection $\mathfrak{S}:=\left\{\succeq_{\mathcal{X}}^{\mathcal{X}} ; \mathcal{S} \in[\mathcal{S}]\right.$ and $\left.\mathcal{X} \in[\mathcal{X}]\right\}$ is a Savage structure if:
(BP) For any $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, any $\phi \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$, any $\mathcal{X} \in[\mathcal{X}]$, and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{2}, \mathcal{X}\right)$, we have

$$
\left(\alpha \succeq_{\mathcal{X}}^{\mathcal{S}_{2}} \beta\right) \Longleftrightarrow\left(\alpha \circ \phi \succeq_{\mathcal{X}}^{\mathcal{S}_{1}} \beta \circ \phi\right) . \quad \text { (Idea: } \phi \text { is "belief-preserving".) }
$$

(TP) For any $\mathcal{X}_{1}, \mathcal{X}_{2} \in[\mathcal{X}]$, any $\phi \in \overrightarrow{\mathcal{X}}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$, any $\mathcal{S} \in[\mathcal{S}]$, and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}, \mathcal{X}_{1}\right)$, we have $\left(\alpha \succeq_{\mathcal{X}_{1}}^{\mathcal{S}} \beta\right) \Longleftrightarrow\left(\phi \circ \alpha \succeq_{\mathcal{X}_{2}}^{\mathcal{S}} \phi \circ \beta\right)$. (Idea: ϕ is "taste-preserving".)
Example. Let $\mathcal{C}:=$ Meas. Let \mathcal{S} be a collection of measurable spaces, each equipped with a probability measure.

Savage structures: Example:

The collection $\mathfrak{S}:=\left\{\succeq_{\mathcal{X}}^{\mathcal{X}} ; \mathcal{S} \in[\mathcal{S}]\right.$ and $\left.\mathcal{X} \in[\mathcal{X}]\right\}$ is a Savage structure if:
(BP) For any $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, any $\phi \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$, any $\mathcal{X} \in[\mathcal{X}]$, and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{2}, \mathcal{X}\right)$, we have

$$
\left(\alpha \succeq_{\mathcal{X}}^{\mathcal{S}_{2}} \beta\right) \Longleftrightarrow\left(\alpha \circ \phi \succeq_{\mathcal{X}}^{\mathcal{S}_{1}} \beta \circ \phi\right) . \quad \text { (Idea: } \phi \text { is "belief-preserving".) }
$$

(TP) For any $\mathcal{X}_{1}, \mathcal{X}_{2} \in[\mathcal{X}]$, any $\phi \in \overrightarrow{\mathcal{X}}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$, any $\mathcal{S} \in[\mathcal{S}]$, and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}, \mathcal{X}_{1}\right)$, we have $\left(\alpha \succeq_{\mathcal{X}_{1}}^{\mathcal{S}} \beta\right) \Longleftrightarrow\left(\phi \circ \alpha \succeq_{\mathcal{X}_{2}}^{\mathcal{S}} \phi \circ \beta\right)$. (Idea: ϕ is "taste-preserving".)
Example. Let $\mathcal{C}:=$ Meas. Let \mathcal{S} be a collection of measurable spaces, each equipped with a probability measure.
For any $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, let $\overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ be the set of all measure-preserving functions from \mathcal{S}_{1} into \mathcal{S}_{2}. Then \mathcal{S} is a subcategory of \mathcal{C}.

Savage structures: Example:

The collection $\mathfrak{S}:=\left\{\succeq_{\mathcal{X}}^{\mathcal{X}} ; \mathcal{S} \in[\mathcal{S}]\right.$ and $\left.\mathcal{X} \in[\mathcal{X}]\right\}$ is a Savage structure if:
(BP) For any $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, any $\phi \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$, any $\mathcal{X} \in[\mathcal{X}]$, and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{2}, \mathcal{X}\right)$, we have

$$
\left(\alpha \succeq_{\mathcal{X}}^{\mathcal{S}_{2}} \beta\right) \Longleftrightarrow\left(\alpha \circ \phi \succeq_{\mathcal{X}}^{\mathcal{S}_{1}} \beta \circ \phi\right) . \quad \text { (Idea: } \phi \text { is "belief-preserving".) }
$$

(TP) For any $\mathcal{X}_{1}, \mathcal{X}_{2} \in[\mathcal{X}]$, any $\phi \in \overrightarrow{\mathcal{X}}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$, any $\mathcal{S} \in[\mathcal{S}]$, and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}, \mathcal{X}_{1}\right)$, we have $\left(\alpha \succeq_{\mathcal{X}_{1}}^{\mathcal{S}} \beta\right) \Longleftrightarrow\left(\phi \circ \alpha \succeq_{\mathcal{X}_{2}}^{\mathcal{S}} \phi \circ \beta\right)$. (Idea: ϕ is "taste-preserving".)
Example. Let $\mathcal{C}:=$ Meas. Let \mathcal{S} be a collection of measurable spaces, each equipped with a probability measure.
For any $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, let $\overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ be the set of all measure-preserving functions from \mathcal{S}_{1} into \mathcal{S}_{2}. Then \mathcal{S} is a subcategory of \mathcal{C}.

Let \mathcal{X} be a set of m'ble spaces \mathcal{X}, each with a measurable $u: \mathcal{X} \longrightarrow \mathbb{R}$.

Savage structures: Example:

The collection $\mathfrak{S}:=\left\{\succeq_{\mathcal{X}}^{\mathcal{X}} ; \mathcal{S} \in[\mathcal{S}]\right.$ and $\left.\mathcal{X} \in[\mathcal{X}]\right\}$ is a Savage structure if:
(BP) For any $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, any $\phi \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$, any $\mathcal{X} \in[\mathcal{X}]$, and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{2}, \mathcal{X}\right)$, we have

$$
\left(\alpha \succeq_{\mathcal{X}}^{\mathcal{S}_{2}} \beta\right) \Longleftrightarrow\left(\alpha \circ \phi \succeq \succeq_{\mathcal{X}}^{\mathcal{S}_{1}} \beta \circ \phi\right) . \quad \text { (Idea: } \phi \text { is "belief-preserving".) }
$$

(TP) For any $\mathcal{X}_{1}, \mathcal{X}_{2} \in[\mathcal{X}]$, any $\phi \in \overrightarrow{\mathcal{X}}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$, any $\mathcal{S} \in[\mathcal{S}]$, and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}, \mathcal{X}_{1}\right)$, we have $\left(\alpha \succeq_{\mathcal{X}_{1}}^{\mathcal{S}} \beta\right) \Longleftrightarrow\left(\phi \circ \alpha \succeq_{\mathcal{X}_{2}}^{\mathcal{S}} \phi \circ \beta\right)$. (Idea: ϕ is "taste-preserving".)
Example. Let $\mathcal{C}:=$ Meas. Let \mathcal{S} be a collection of measurable spaces, each equipped with a probability measure.
For any $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, let $\overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ be the set of all measure-preserving functions from \mathcal{S}_{1} into \mathcal{S}_{2}. Then \mathcal{S} is a subcategory of \mathcal{C}.

Let \mathcal{X} be a set of m'ble spaces \mathcal{X}, each with a measurable $u: \mathcal{X} \longrightarrow \mathbb{R}$. For any $\left(\mathcal{X}_{1}, u_{1}\right),\left(\mathcal{X}_{2}, u_{2}\right) \in[\mathcal{X}]$, let $\overrightarrow{\mathcal{X}}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$ be all measurable functions $\phi: \mathcal{X}_{1} \longrightarrow \mathcal{X}_{2}$ such that $u_{2} \circ \phi$ is a positive affine transform of u_{1}. Then \mathcal{X} is another subcategory of \mathcal{C}.

Savage structures: Example:

The collection $\mathfrak{S}:=\left\{\succeq_{\mathcal{X}}^{\mathcal{X}} ; \mathcal{S} \in[\mathcal{S}]\right.$ and $\left.\mathcal{X} \in[\mathcal{X}]\right\}$ is a Savage structure if:
(BP) For any $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, any $\phi \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$, any $\mathcal{X} \in[\mathcal{X}]$, and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{2}, \mathcal{X}\right)$, we have

$$
\left(\alpha \succeq_{\mathcal{X}}^{\mathcal{S}_{2}} \beta\right) \Longleftrightarrow\left(\alpha \circ \phi \succeq_{\mathcal{X}}^{\mathcal{S}_{1}} \beta \circ \phi\right) . \quad \text { (Idea: } \phi \text { is "belief-preserving".) }
$$

(TP) For any $\mathcal{X}_{1}, \mathcal{X}_{2} \in[\mathcal{X}]$, any $\phi \in \overrightarrow{\mathcal{X}}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$, any $\mathcal{S} \in[\mathcal{S}]$, and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}, \mathcal{X}_{1}\right)$, we have $\left(\alpha \succeq_{\mathcal{X}_{1}}^{\mathcal{S}} \beta\right) \Longleftrightarrow\left(\phi \circ \alpha \succeq_{\mathcal{X}_{2}}^{\mathcal{S}} \phi \circ \beta\right)$. (Idea: ϕ is "taste-preserving".)
Example. Let $\mathcal{C}:=$ Meas. Let \mathcal{S} be a collection of measurable spaces, each equipped with a probability measure.
For any $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, let $\overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ be the set of all measure-preserving functions from \mathcal{S}_{1} into \mathcal{S}_{2}. Then \mathcal{S} is a subcategory of \mathcal{C}.

Let \mathcal{X} be a set of m'ble spaces \mathcal{X}, each with a measurable $u: \mathcal{X} \longrightarrow \mathbb{R}$. For any $\left(\mathcal{X}_{1}, u_{1}\right),\left(\mathcal{X}_{2}, u_{2}\right) \in[\mathcal{X}]$, let $\overrightarrow{\mathcal{X}}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$ be all measurable functions $\phi: \mathcal{X}_{1} \longrightarrow \mathcal{X}_{2}$ such that $u_{2} \circ \phi$ is a positive affine transform of u_{1}. Then \mathcal{X} is another subcategory of \mathcal{C}. Thus, $(\mathcal{S}, \mathcal{X})$ is a decision context.

Savage structures: Example:

The collection $\mathfrak{S}:=\left\{\succeq_{\mathcal{X}}^{\mathcal{S}} ; \mathcal{S} \in[\mathcal{S}]\right.$ and $\left.\mathcal{X} \in[\mathcal{X}]\right\}$ is a Savage structure if:
(BP) For any $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, any $\phi \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$, any $\mathcal{X} \in[\mathcal{X}]$, and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{2}, \mathcal{X}\right)$, we have

$$
\left(\alpha \succeq_{\mathcal{X}}^{\mathcal{S}_{2}} \beta\right) \Longleftrightarrow\left(\alpha \circ \phi \succeq \succeq_{\mathcal{X}}^{\mathcal{S}_{1}} \beta \circ \phi\right) . \quad \text { (Idea: } \phi \text { is "belief-preserving".) }
$$

(TP) For any $\mathcal{X}_{1}, \mathcal{X}_{2} \in[\mathcal{X}]$, any $\phi \in \overrightarrow{\mathcal{X}}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$, any $\mathcal{S} \in[\mathcal{S}]$, and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}, \mathcal{X}_{1}\right)$, we have $\left(\alpha \succeq_{\mathcal{X}_{1}}^{\mathcal{S}} \beta\right) \Longleftrightarrow\left(\phi \circ \alpha \succeq_{\mathcal{X}_{2}}^{\mathcal{S}} \phi \circ \beta\right)$. (Idea: ϕ is "taste-preserving".)
Example. Let $\mathcal{C}:=$ Meas. Let \mathcal{S} be a collection of measurable spaces, each equipped with a probability measure.
For any $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, let $\overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ be the set of all measure-preserving functions from \mathcal{S}_{1} into \mathcal{S}_{2}. Then \mathcal{S} is a subcategory of \mathcal{C}.

Let \mathcal{X} be a set of m'ble spaces \mathcal{X}, each with a measurable $u: \mathcal{X} \longrightarrow \mathbb{R}$. For any $\left(\mathcal{X}_{1}, u_{1}\right),\left(\mathcal{X}_{2}, u_{2}\right) \in[\mathcal{X}]$, let $\overrightarrow{\mathcal{X}}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$ be all measurable functions $\phi: \mathcal{X}_{1} \longrightarrow \mathcal{X}_{2}$ such that $u_{2} \circ \phi$ is a positive affine transform of u_{1}. Then \mathcal{X} is another subcategory of \mathcal{C}. Thus, $(\mathcal{S}, \mathcal{X})$ is a decision context.

For any \mathcal{S} in $[\mathcal{S}]$ and \mathcal{X} in $[\mathcal{X}]$, define $\succeq_{\mathcal{X}}^{\mathcal{S}}$ via the expected utility ranking induced by the probability measure on \mathcal{S} and the utility function on \mathcal{X}.

Savage structures: Example:

The collection $\mathfrak{S}:=\left\{\succeq_{\mathcal{X}}^{\mathcal{X}} ; \mathcal{S} \in[\mathcal{S}]\right.$ and $\left.\mathcal{X} \in[\mathcal{X}]\right\}$ is a Savage structure if:
(BP) For any $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, any $\phi \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$, any $\mathcal{X} \in[\mathcal{X}]$, and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{2}, \mathcal{X}\right)$, we have

$$
\left(\alpha \succeq_{\mathcal{X}}^{\mathcal{S}_{2}} \beta\right) \Longleftrightarrow\left(\alpha \circ \phi \succeq \succeq_{\mathcal{X}}^{\mathcal{S}_{1}} \beta \circ \phi\right) . \quad \text { (Idea: } \phi \text { is "belief-preserving".) }
$$

(TP) For any $\mathcal{X}_{1}, \mathcal{X}_{2} \in[\mathcal{X}]$, any $\phi \in \overrightarrow{\mathcal{X}}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$, any $\mathcal{S} \in[\mathcal{S}]$, and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}, \mathcal{X}_{1}\right)$, we have $\left(\alpha \succeq_{\mathcal{X}_{1}}^{\mathcal{S}} \beta\right) \Longleftrightarrow\left(\phi \circ \alpha \succeq_{\mathcal{X}_{2}}^{\mathcal{S}} \phi \circ \beta\right)$. (Idea: ϕ is "taste-preserving".)
Example. Let $\mathcal{C}:=$ Meas. Let \mathcal{S} be a collection of measurable spaces, each equipped with a probability measure.
For any $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, let $\overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ be the set of all measure-preserving functions from \mathcal{S}_{1} into \mathcal{S}_{2}. Then \mathcal{S} is a subcategory of \mathcal{C}.

Let \mathcal{X} be a set of m'ble spaces \mathcal{X}, each with a measurable $u: \mathcal{X} \longrightarrow \mathbb{R}$. For any $\left(\mathcal{X}_{1}, u_{1}\right),\left(\mathcal{X}_{2}, u_{2}\right) \in[\mathcal{X}]$, let $\overrightarrow{\mathcal{X}}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$ be all measurable functions $\phi: \mathcal{X}_{1} \longrightarrow \mathcal{X}_{2}$ such that $u_{2} \circ \phi$ is a positive affine transform of u_{1}. Then \mathcal{X} is another subcategory of \mathcal{C}. Thus, $(\mathcal{S}, \mathcal{X})$ is a decision context.

For any \mathcal{S} in $[\mathcal{S}]$ and \mathcal{X} in $[\mathcal{X}]$, define $\succeq_{\mathcal{X}}^{\mathcal{S}}$ via the expected utility ranking induced by the probability measure on \mathcal{S} and the utility function on \mathcal{X}. Then $\mathfrak{S}:=\left\{\succeq_{\mathcal{X}}^{\mathcal{S}} ; \mathcal{S} \in[\mathcal{S}]\right.$ and $\left.\mathcal{X} \in[\mathcal{X}]\right\}$ is Savage structure on $(\mathcal{S}, \mathcal{X})$.

Informal statement of axioms

Very informally, we require $(\mathcal{S}, \boldsymbol{\mathcal { X }})$ to satisfy three structural conditions:

Idea. $\mathcal{S}_{1} \times \mathcal{S}_{2}$ encodes a coupling of the random variables represented by \mathcal{S}_{1} and \mathcal{S}_{2} Any outcome places \mathcal{X}_{1} and \mathcal{X}_{ν} in \mathcal{X} have a coproduct (roughly: a disjoint union) $\mathcal{X}_{1} \amalg \mathcal{X}_{2}$ in \mathcal{X}. Given any three stateplaces $\mathcal{S}, \mathcal{S}_{1}$ and \mathcal{S}_{2} in $[\mathcal{S}]$, and any \mathcal{S}-morphisms ϕ_{1} and ϕ_{2} as shown in the left-hand diagram below, there exists a fourth state place \mathcal{S}_{0} in $[\mathcal{S}]$, and \mathcal{S}-morphisms ψ_{1} and ψ_{2} such that the right-hand diagram below commutes. Furthermore, \mathcal{S}_{0} is the Idea. \mathcal{S}_{0} represents a coupling of the random variables represented by \mathcal{S}_{1} and \mathcal{S}_{2} which are correlated throurh a "common oheerwable" in S

Informal statement of axioms

Very informally, we require $(\mathcal{S}, \mathcal{X})$ to satisfy three structural conditions: (S1) Any state places \mathcal{S}_{1} and \mathcal{S}_{2} in \mathcal{S} have a product $\mathcal{S}_{1} \times \mathcal{S}_{2}$ in \mathcal{S}.

Informal statement of axioms

Very informally, we require $(\mathcal{S}, \mathcal{X})$ to satisfy three structural conditions:
(S1) Any state places \mathcal{S}_{1} and \mathcal{S}_{2} in \mathcal{S} have a product $\mathcal{S}_{1} \times \mathcal{S}_{2}$ in \mathcal{S}.
Idea. $\mathcal{S}_{1} \times \mathcal{S}_{2}$ encodes a coupling of the random variables represented by \mathcal{S}_{1} and \mathcal{S}_{2}.

Idea. \mathcal{S}_{0} represents a coupling of the random variables represented by \mathcal{S}_{1} and \mathcal{S}_{2}
Which are corpetated :Hpough "common observa't

Informal statement of axioms

Very informally, we require $(\mathcal{S}, \mathcal{X})$ to satisfy three structural conditions:
(S1) Any state places \mathcal{S}_{1} and \mathcal{S}_{2} in \mathcal{S} have a product $\mathcal{S}_{1} \times \mathcal{S}_{2}$ in \mathcal{S}.
Idea. $\mathcal{S}_{1} \times \mathcal{S}_{2}$ encodes a coupling of the random variables represented by \mathcal{S}_{1} and \mathcal{S}_{2}.
(S2) Any outcome places \mathcal{X}_{1} and \mathcal{X}_{2} in \mathcal{X} have a coproduct (roughly: a disjoint union) $\mathcal{X}_{1} \amalg \mathcal{X}_{2}$ in \mathcal{X}.

Idea. S_{0} represents a coupling of the random variables represented by \mathcal{S}_{1} and \mathcal{S}_{2}

Informal statement of axioms

Very informally, we require $(\mathcal{S}, \mathcal{X})$ to satisfy three structural conditions:
(S1) Any state places \mathcal{S}_{1} and \mathcal{S}_{2} in \mathcal{S} have a product $\mathcal{S}_{1} \times \mathcal{S}_{2}$ in \mathcal{S}. Idea. $\mathcal{S}_{1} \times \mathcal{S}_{2}$ encodes a coupling of the random variables represented by \mathcal{S}_{1} and \mathcal{S}_{2}.
(S2) Any outcome places \mathcal{X}_{1} and \mathcal{X}_{2} in \mathcal{X} have a coproduct (roughly: a disjoint union) $\mathcal{X}_{1} \amalg \mathcal{X}_{2}$ in \mathcal{X}.
(S3) Given any three stateplaces $\mathcal{S}, \mathcal{S}_{1}$ and \mathcal{S}_{2} in [$\left.\mathcal{S}\right]$, and any \mathcal{S}-morphisms ϕ_{1} and ϕ_{2} as shown in the left-hand diagram below, there exists a fourth state place \mathcal{S}_{0} in [$\left.\mathcal{S}\right]$, and \mathcal{S}-morphisms ψ_{1} and ψ_{2} such that the right-hand diagram below commutes. Furthermore, \mathcal{S}_{0} is the "maximal" state place with this property (i.e. it is a pullback in \mathcal{C}).

Informal statement of axioms

Very informally, we require $(\mathcal{S}, \mathcal{X})$ to satisfy three structural conditions:
(S1) Any state places \mathcal{S}_{1} and \mathcal{S}_{2} in \mathcal{S} have a product $\mathcal{S}_{1} \times \mathcal{S}_{2}$ in \mathcal{S}. Idea. $\mathcal{S}_{1} \times \mathcal{S}_{2}$ encodes a coupling of the random variables represented by \mathcal{S}_{1} and \mathcal{S}_{2}.
(S2) Any outcome places \mathcal{X}_{1} and \mathcal{X}_{2} in \mathcal{X} have a coproduct (roughly: a disjoint union) $\mathcal{X}_{1} \amalg \mathcal{X}_{2}$ in \mathcal{X}.
(S3) Given any three stateplaces $\mathcal{S}, \mathcal{S}_{1}$ and \mathcal{S}_{2} in [$\left.\mathcal{S}\right]$, and any \mathcal{S}-morphisms ϕ_{1} and ϕ_{2} as shown in the left-hand diagram below, there exists a fourth state place \mathcal{S}_{0} in [$\left.\mathcal{S}\right]$, and \mathcal{S}-morphisms ψ_{1} and ψ_{2} such that the right-hand diagram below commutes. Furthermore, \mathcal{S}_{0} is the "maximal" state place with this property (i.e. it is a pullback in \mathcal{C}).

Idea. \mathcal{S}_{0} represents a coupling of the random variables represented by \mathcal{S}_{1} and \mathcal{S}_{2}, which are correlated through a "common observable" in \mathcal{S}.

Informal statement of axioms

We require the preferences defined by \mathfrak{S} to be solvable. Roughly speaking, this means that we can always find a compromise between two outcomes which is perfectly indifferent to some third alternative.

Informal statement of axioms

We require the preferences defined by \mathfrak{S} to be solvable. Roughly speaking, this means that we can always find a compromise between two outcomes which is perfectly indifferent to some third alternative.

We will also require \mathfrak{S} to satisfy five axioms (stated very informally):

Informal statement of axioms

We require the preferences defined by \mathfrak{S} to be solvable. Roughly speaking, this means that we can always find a compromise between two outcomes which is perfectly indifferent to some third alternative.

We will also require \mathfrak{S} to satisfy five axioms (stated very informally):
(A1) On every outcome place in \mathcal{X}, there is a nontrivial ex post preference order, which governs the agent's preferences over "constant" acts.

Tradeoffs between outcomes are consistent: if the agent is indifferent between "trading outcome w for x " and "trading outcome
\qquad
\qquad
\qquad
\qquad
\qquad

Informal statement of axioms

We require the preferences defined by \mathfrak{S} to be solvable. Roughly speaking, this means that we can always find a compromise between two outcomes which is perfectly indifferent to some third alternative.

We will also require \mathfrak{S} to satisfy five axioms (stated very informally):
(A1) On every outcome place in \mathcal{X}, there is a nontrivial ex post preference order, which governs the agent's preferences over "constant" acts.
(A2) If one act α "statewise dominates" another act β (in terms of the ex post preferences), then the agent prefers α to β.

Informal statement of axioms

We require the preferences defined by \mathfrak{S} to be solvable. Roughly speaking, this means that we can always find a compromise between two outcomes which is perfectly indifferent to some third alternative.

We will also require \mathfrak{S} to satisfy five axioms (stated very informally):
(A1) On every outcome place in \mathcal{X}, there is a nontrivial ex post preference order, which governs the agent's preferences over "constant" acts.
(A2) If one act α "statewise dominates" another act β (in terms of the ex post preferences), then the agent prefers α to β.
(A3) The set of "simple" acts is order-dense in the set of all acts.

Informal statement of axioms

We require the preferences defined by \mathfrak{S} to be solvable. Roughly speaking, this means that we can always find a compromise between two outcomes which is perfectly indifferent to some third alternative.

We will also require \mathfrak{S} to satisfy five axioms (stated very informally):
(A1) On every outcome place in \mathcal{X}, there is a nontrivial ex post preference order, which governs the agent's preferences over "constant" acts.
(A2) If one act α "statewise dominates" another act β (in terms of the ex post preferences), then the agent prefers α to β.
(A3) The set of "simple" acts is order-dense in the set of all acts.
(A4) Tradeoffs between outcomes are consistent: if the agent is indifferent between "trading outcome w for x " and "trading outcome y for z ", but strictly prefers outcome w^{\prime} to w, then the agent cannot be indifferent between "trading w^{\prime} for x " and "trading y for z ".

Informal statement of axioms

We require the preferences defined by \mathfrak{S} to be solvable. Roughly speaking, this means that we can always find a compromise between two outcomes which is perfectly indifferent to some third alternative.

We will also require \mathfrak{S} to satisfy five axioms (stated very informally):
(A1) On every outcome place in \mathcal{X}, there is a nontrivial ex post preference order, which governs the agent's preferences over "constant" acts.
(A2) If one act α "statewise dominates" another act β (in terms of the ex post preferences), then the agent prefers α to β.
(A3) The set of "simple" acts is order-dense in the set of all acts.
(A4) Tradeoffs between outcomes are consistent: if the agent is indifferent between "trading outcome w for x " and "trading outcome y for z ", but strictly prefers outcome w^{\prime} to w, then the agent cannot be indifferent between "trading w^{\prime} for x " and "trading y for z ".
(A5) Ex post preferences are Archimedean: the value difference between two outcomes w and x cannot be "infinitesimal" relative to the value difference between two other outcomes y and z.

Informal statement of main result

(S1) Any two state places in \mathcal{S} have a product in \mathcal{S}.
(S2) Any two outcome places in \mathcal{X} have a coproduct in \mathcal{X}.
(S3) Any pullback diagram in \mathcal{S} has a \mathcal{C}-pullback in \mathcal{S}.
(A1) On every outcome place in \mathcal{X}, there is an ex post preference relation, which governs the agent's preferences over "constant" acts.
(A2) If one act α "statewise dominates" another act β (in terms of the ex post preferences), then the agent prefers α to β.
(A3) The set of "simple" acts is order-dense in the set of all acts.
(A4) Tradeoffs between outcomes are consistent: if the agent is indifferent between "trading outcome w for x " and "trading outcome y for z ", but strictly prefers outcome w^{\prime} to w, then the agent cannot be indifferent between "trading w^{\prime} for x " and "trading y for z ".
(A5) Ex post preferences are Archimedean: the value difference between two outcomes w and x cannot be "infinitesimal" relative to the difference between two other outcomes y and z.

\qquad

Informal statement of main result

(S1) Any two state places in \mathcal{S} have a product in \mathcal{S}.
(S2) Any two outcome places in \mathcal{X} have a coproduct in \mathcal{X}.
(S3) Any pullback diagram in \mathcal{S} has a \mathcal{C}-pullback in \mathcal{S}.
(A1) On every outcome place in \mathcal{X}, there is an ex post preference relation, which governs the agent's preferences over "constant" acts.
(A2) If one act α "statewise dominates" another act β (in terms of the ex post preferences), then the agent prefers α to β.
(A3) The set of "simple" acts is order-dense in the set of all acts.
(A4) Tradeoffs between outcomes are consistent: if the agent is indifferent between "trading outcome w for x " and "trading outcome y for z ", but strictly prefers outcome w^{\prime} to w, then the agent cannot be indifferent between "trading w^{\prime} for x " and "trading y for z ".
(A5) Ex post preferences are Archimedean: the value difference between two outcomes w and x cannot be "infinitesimal" relative to the difference between two other outcomes y and z.

Theorem. (Informal statement) Let \mathcal{C} be any biconnected category.

Informal statement of main result

(S1) Any two state places in \mathcal{S} have a product in \mathcal{S}.
(S2) Any two outcome places in \mathcal{X} have a coproduct in \mathcal{X}.
(S3) Any pullback diagram in \mathcal{S} has a \mathcal{C}-pullback in \mathcal{S}.
(A1) On every outcome place in \mathcal{X}, there is an ex post preference relation, which governs the agent's preferences over "constant" acts.
(A2) If one act α "statewise dominates" another act β (in terms of the ex post preferences), then the agent prefers α to β.
(A3) The set of "simple" acts is order-dense in the set of all acts.
(A4) Tradeoffs between outcomes are consistent: if the agent is indifferent between "trading outcome w for x " and "trading outcome y for z ", but strictly prefers outcome w^{\prime} to w, then the agent cannot be indifferent between "trading w^{\prime} for x " and "trading y for z ".
(A5) Ex post preferences are Archimedean: the value difference between two outcomes w and x cannot be "infinitesimal" relative to the difference between two other outcomes y and z.
Theorem. (Informal statement) Let \mathcal{C} be any biconnected category. Let $(\mathcal{S}, \mathcal{X})$ be a decision context satisfying structural conditions (S1)-(S3).

Informal statement of main result

(S1) Any two state places in \mathcal{S} have a product in \mathcal{S}.
(S2) Any two outcome places in \mathcal{X} have a coproduct in \mathcal{X}.
(S3) Any pullback diagram in \mathcal{S} has a \mathcal{C}-pullback in \mathcal{S}.
(A1) On every outcome place in \mathcal{X}, there is an ex post preference relation, which governs the agent's preferences over "constant" acts.
(A2) If one act α "statewise dominates" another act β (in terms of the ex post preferences), then the agent prefers α to β.
(A3) The set of "simple" acts is order-dense in the set of all acts.
(A4) Tradeoffs between outcomes are consistent: if the agent is indifferent between "trading outcome w for x " and "trading outcome y for z ", but strictly prefers outcome w^{\prime} to w, then the agent cannot be indifferent between "trading w^{\prime} for x " and "trading y for z ".
(A5) Ex post preferences are Archimedean: the value difference between two outcomes w and x cannot be "infinitesimal" relative to the difference between two other outcomes y and z.
Theorem. (Informal statement) Let \mathcal{C} be any biconnected category. Let $(\mathcal{S}, \mathcal{X})$ be a decision context satisfying structural conditions (S1)-(S3). Let \mathfrak{S} be a solvable Savage structure on $(\mathcal{S}, \mathcal{X})$. Then:

Informal statement of main result

(S1) Any two state places in \mathcal{S} have a product in \mathcal{S}.
(S2) Any two outcome places in \mathcal{X} have a coproduct in \mathcal{X}.
(S3) Any pullback diagram in \mathcal{S} has a \mathcal{C}-pullback in \mathcal{S}.
(A1) On every outcome place in \mathcal{X}, there is an ex post preference relation, which governs the agent's preferences over "constant" acts.
(A2) If one act α "statewise dominates" another act β (in terms of the ex post preferences), then the agent prefers α to β.
(A3) The set of "simple" acts is order-dense in the set of all acts.
(A4) Tradeoffs between outcomes are consistent: if the agent is indifferent between "trading outcome w for x " and "trading outcome y for z ", but strictly prefers outcome w^{\prime} to w, then the agent cannot be indifferent between "trading w^{\prime} for x " and "trading y for z ".
(A5) Ex post preferences are Archimedean: the value difference between two outcomes w and x cannot be "infinitesimal" relative to the difference between two other outcomes y and z.
Theorem. (Informal statement) Let \mathcal{C} be any biconnected category. Let $(\mathcal{S}, \mathcal{X})$ be a decision context satisfying structural conditions (S1)-(S3). Let \mathfrak{S} be a solvable Savage structure on $(\mathcal{S}, \mathcal{X})$. Then:
\mathfrak{S} has a "subjective expected utility representation" if and only if it satisfies axioms (A1)-(A5).

Informal statement of main result

(S1) Any two state places in \mathcal{S} have a product in \mathcal{S}.
(S2) Any two outcome places in \mathcal{X} have a coproduct in \mathcal{X}.
(S3) Any pullback diagram in \mathcal{S} has a \mathcal{C}-pullback in \mathcal{S}.
(A1) On every outcome place in \mathcal{X}, there is an ex post preference relation, which governs the agent's preferences over "constant" acts.
(A2) If one act α "statewise dominates" another act β (in terms of the ex post preferences), then the agent prefers α to β.
(A3) The set of "simple" acts is order-dense in the set of all acts.
(A4) Tradeoffs between outcomes are consistent: if the agent is indifferent between "trading outcome w for x " and "trading outcome y for z ", but strictly prefers outcome w^{\prime} to w, then the agent cannot be indifferent between "trading w^{\prime} for x " and "trading y for z ".
(A5) Ex post preferences are Archimedean: the value difference between two outcomes w and x cannot be "infinitesimal" relative to the difference between two other outcomes y and z.
Theorem. (Informal statement) Let \mathcal{C} be any biconnected category. Let $(\mathcal{S}, \mathcal{X})$ be a decision context satisfying structural conditions (S1)-(S3). Let \mathfrak{S} be a solvable Savage structure on $(\mathcal{S}, \mathcal{X})$. Then:
\mathfrak{S} has a "subjective expected utility representation" if and only if it satisfies axioms (A1)-(A5).
In this representation, the "probabilistic beliefs" on each state place are unique.

Informal statement of main result

(S1) Any two state places in \mathcal{S} have a product in \mathcal{S}.
(S2) Any two outcome places in \mathcal{X} have a coproduct in \mathcal{X}.
(S3) Any pullback diagram in \mathcal{S} has a \mathcal{C}-pullback in \mathcal{S}.
(A1) On every outcome place in \mathcal{X}, there is an ex post preference relation, which governs the agent's preferences over "constant" acts.
(A2) If one act α "statewise dominates" another act β (in terms of the ex post preferences), then the agent prefers α to β.
(A3) The set of "simple" acts is order-dense in the set of all acts.
(A4) Tradeoffs between outcomes are consistent: if the agent is indifferent between "trading outcome w for x " and "trading outcome y for z ", but strictly prefers outcome w^{\prime} to w, then the agent cannot be indifferent between "trading w^{\prime} for x " and "trading y for z ".
(A5) Ex post preferences are Archimedean: the value difference between two outcomes w and x cannot be "infinitesimal" relative to the difference between two other outcomes y and z.
Theorem. (Informal statement) Let \mathcal{C} be any biconnected category. Let $(\mathcal{S}, \mathcal{X})$ be a decision context satisfying structural conditions (S1)-(S3). Let \mathfrak{S} be a solvable Savage structure on $(\mathcal{S}, \mathcal{X})$. Then:
\mathfrak{S} has a "subjective expected utility representation" if and only if it satisfies axioms (A1)-(A5).
In this representation, the "probabilistic beliefs" on each state place are unique. The "utility function" on each outcome place represents the agent's "ex post preferences", and is unique up to positive affine transform.

Informal statement of main result

Theorem. (Informal statement) Let \mathcal{C} be any biconnected category. Let $(\mathcal{S}, \mathcal{X})$ be a decision context satisfying structural conditions (S1)-(S3). Let \mathfrak{S} be a "solvable" Savage structure on $(\mathcal{S}, \mathcal{X})$. Then:
\mathfrak{S} has a "subjective expected utility representation" if and only if it satisfies axioms (A1)-(A5).
In this representation, the "probabilistic beliefs" on each state place are unique. The "utility function" on each outcome place represents the agent's "ex post preferences", and is unique up to positive affine transformations.

Informal statement of main result

Theorem. (Informal statement) Let \mathcal{C} be any biconnected category. Let $(\mathcal{S}, \mathcal{X})$ be a decision context satisfying structural conditions (S1)-(S3). Let \mathfrak{S} be a "solvable" Savage structure on $(\mathcal{S}, \mathcal{X})$. Then:
\mathfrak{S} has a "subjective expected utility representation" if and only if it satisfies axioms (A1)-(A5).
In this representation, the "probabilistic beliefs" on each state place are unique. The "utility function" on each outcome place represents the agent's "ex post preferences", and is unique up to positive affine transformations.

Many terms in the axioms and theorem appear in quotation marks, because they have not yet been formally defined.

Informal statement of main result

Theorem. (Informal statement) Let \mathcal{C} be any biconnected category. Let $(\mathcal{S}, \mathcal{X})$ be a decision context satisfying structural conditions (S1)-(S3). Let \mathfrak{S} be a "solvable" Savage structure on $(\mathcal{S}, \mathcal{X})$. Then:
\mathfrak{S} has a "subjective expected utility representation" if and only if it satisfies axioms (A1)-(A5).
In this representation, the "probabilistic beliefs" on each state place are unique. The "utility function" on each outcome place represents the agent's "ex post preferences", and is unique up to positive affine transformations.

Many terms in the axioms and theorem appear in quotation marks, because they have not yet been formally defined.

The meaning of these terms is fairly obvious in a concrete category like Set or Meas.... but it is not clear what they even mean in an abstract category.

Informal statement of main result

Theorem. (Informal statement) Let \mathcal{C} be any biconnected category. Let $(\mathcal{S}, \mathcal{X})$ be a decision context satisfying structural conditions (S1)-(S3). Let \mathfrak{S} be a "solvable" Savage structure on $(\mathcal{S}, \mathcal{X})$. Then:
\mathfrak{S} has a "subjective expected utility representation" if and only if it satisfies axioms (A1)-(A5).
In this representation, the "probabilistic beliefs" on each state place are unique. The "utility function" on each outcome place represents the agent's "ex post preferences", and is unique up to positive affine transformations.

Many terms in the axioms and theorem appear in quotation marks, because they have not yet been formally defined.

The meaning of these terms is fairly obvious in a concrete category like Set or Meas.... but it is not clear what they even mean in an abstract category.

Before we can formally state the theorem or the axioms, we must develop a theoretical framework in which these terms can be precisely defined....

Part II

Partitions and Probability

Isomorphisms and monomorphisms

Let \mathcal{X} and \mathcal{Y} be objects in a category \mathcal{C}, and let $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{X}, \mathcal{Y})$.

Isomorphisms and monomorphisms

Let \mathcal{X} and \mathcal{Y} be objects in a category \mathcal{C}, and let $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{X}, \mathcal{Y})$. ϕ is an isomorphism in \mathcal{C} if there is a morphism $\psi \in \overrightarrow{\mathcal{C}}(\mathcal{Y}, \mathcal{X})$ such that:

- $\psi \circ \phi=I_{\mathcal{X}}$ (the identity morphism on \mathcal{X}).
- $\phi \circ \psi=\mathscr{I}_{\mathcal{Y}}$ (the identity morphism on \mathcal{Y}).

Isomorphisms and monomorphisms

Let \mathcal{X} and \mathcal{Y} be objects in a category \mathcal{C}, and let $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{X}, \mathcal{Y})$. ϕ is an isomorphism in \mathcal{C} if there is a morphism $\psi \in \overrightarrow{\mathcal{C}}(\mathcal{Y}, \mathcal{X})$ such that:

- $\psi \circ \phi=I_{\mathcal{X}}$ (the identity morphism on \mathcal{X}).
- $\phi \circ \psi=I_{\mathcal{Y}}$ (the identity morphism on \mathcal{Y}).

Examples. - If $\mathcal{C}=$ Set, then isomorphisms are bijections.

Isomorphisms and monomorphisms

Let \mathcal{X} and \mathcal{Y} be objects in a category \mathcal{C}, and let $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{X}, \mathcal{Y})$. ϕ is an isomorphism in \mathcal{C} if there is a morphism $\psi \in \overrightarrow{\mathcal{C}}(\mathcal{Y}, \mathcal{X})$ such that:

- $\psi \circ \phi=I_{\mathcal{X}}$ (the identity morphism on \mathcal{X}).
- $\phi \circ \psi=I_{\mathcal{Y}}$ (the identity morphism on \mathcal{Y}).

Examples. - If $\mathcal{C}=$ Set, then isomorphisms are bijections.

- If $\mathcal{C}=$ Meas, then isomorphisms are bi-measurable bijections.

Isomorphisms and monomorphisms

Let \mathcal{X} and \mathcal{Y} be objects in a category \mathcal{C}, and let $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{X}, \mathcal{Y})$. ϕ is an isomorphism in \mathcal{C} if there is a morphism $\psi \in \overrightarrow{\mathcal{C}}(\mathcal{Y}, \mathcal{X})$ such that:

- $\psi \circ \phi=I_{\mathcal{X}}($ the identity morphism on $\mathcal{X})$.
- $\phi \circ \psi=I_{\mathcal{Y}}$ (the identity morphism on \mathcal{Y}).

Examples. - If $\mathcal{C}=\mathrm{Set}$, then isomorphisms are bijections.

- If $\mathcal{C}=$ Meas, then isomorphisms are bi-measurable bijections.
- If $\mathcal{C}=$ Top, then isomorphisms are homeomorphisms.

Isomorphisms and monomorphisms

Let \mathcal{X} and \mathcal{Y} be objects in a category \mathcal{C}, and let $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{X}, \mathcal{Y})$. ϕ is an isomorphism in \mathcal{C} if there is a morphism $\psi \in \overrightarrow{\mathcal{C}}(\mathcal{Y}, \mathcal{X})$ such that:

- $\psi \circ \phi=I_{\mathcal{X}}($ the identity morphism on $\mathcal{X})$.
- $\phi \circ \psi=I_{\mathcal{Y}}$ (the identity morphism on \mathcal{Y}).

Examples. - If $\mathcal{C}=\mathrm{Set}$, then isomorphisms are bijections.

- If $\mathcal{C}=$ Meas, then isomorphisms are bi-measurable bijections.
- If $\mathcal{C}=$ Top, then isomorphisms are homeomorphisms.
- If $\mathcal{C}=$ Diff, then isomorphisms are diffeomorphisms.

Isomorphisms and monomorphisms

Let \mathcal{X} and \mathcal{Y} be objects in a category \mathcal{C}, and let $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{X}, \mathcal{Y})$. ϕ is an isomorphism in \mathcal{C} if there is a morphism $\psi \in \overrightarrow{\mathcal{C}}(\mathcal{Y}, \mathcal{X})$ such that:

- $\psi \circ \phi=I_{\mathcal{X}}$ (the identity morphism on \mathcal{X}).
- $\phi \circ \psi=\mathcal{I}^{\prime}$ (the identity morphism on \mathcal{Y}).

Examples. - If $\mathcal{C}=$ Set, then isomorphisms are bijections.

- If $\mathcal{C}=$ Meas, then isomorphisms are bi-measurable bijections.
- If $\mathcal{C}=$ Top, then isomorphisms are homeomorphisms.
- If $\mathcal{C}=$ Diff, then isomorphisms are diffeomorphisms.

We say that ϕ is a monomorphism (or is monic) if, for any other object $\mathcal{W} \in \mathcal{C}$, and any morphisms $\psi_{1}, \psi_{2} \in \overrightarrow{\mathcal{C}}(\mathcal{W}, \mathcal{X})$, we have:

$$
\left(\phi \circ \psi_{1}=\phi \circ \psi_{2}\right) \Longleftrightarrow\left(\psi_{1}=\psi_{2}\right)
$$

Isomorphisms and monomorphisms

Let \mathcal{X} and \mathcal{Y} be objects in a category \mathcal{C}, and let $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{X}, \mathcal{Y})$. ϕ is an isomorphism in \mathcal{C} if there is a morphism $\psi \in \overrightarrow{\mathcal{C}}(\mathcal{Y}, \mathcal{X})$ such that:

- $\psi \circ \phi=I_{\mathcal{X}}($ the identity morphism on $\mathcal{X})$.
- $\phi \circ \psi=\mathcal{I}^{\prime}$ (the identity morphism on \mathcal{Y}).

Examples. - If $\mathcal{C}=$ Set, then isomorphisms are bijections.

- If $\mathcal{C}=$ Meas, then isomorphisms are bi-measurable bijections.
- If $\mathcal{C}=$ Top, then isomorphisms are homeomorphisms.
- If $\mathcal{C}=$ Diff, then isomorphisms are diffeomorphisms.

We say that ϕ is a monomorphism (or is monic) if, for any other object $\mathcal{W} \in \mathcal{C}$, and any morphisms $\psi_{1}, \psi_{2} \in \overrightarrow{\mathcal{C}}(\mathcal{W}, \mathcal{X})$, we have:

$$
\left(\phi \circ \psi_{1}=\phi \circ \psi_{2}\right) \Longleftrightarrow\left(\psi_{1}=\psi_{2}\right) .
$$

In most concrete categories, monomorphisms are injective morphisms.

Isomorphisms and monomorphisms

Let \mathcal{X} and \mathcal{Y} be objects in a category \mathcal{C}, and let $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{X}, \mathcal{Y})$. ϕ is an isomorphism in \mathcal{C} if there is a morphism $\psi \in \overrightarrow{\mathcal{C}}(\mathcal{Y}, \mathcal{X})$ such that:

- $\psi \circ \phi=I_{\mathcal{X}}($ the identity morphism on $\mathcal{X})$.
- $\phi \circ \psi=\mathcal{I}^{\prime}$ (the identity morphism on \mathcal{Y}).

Examples. - If $\mathcal{C}=$ Set, then isomorphisms are bijections.

- If $\mathcal{C}=$ Meas, then isomorphisms are bi-measurable bijections.
- If $\mathcal{C}=$ Top, then isomorphisms are homeomorphisms.
- If $\mathcal{C}=$ Diff, then isomorphisms are diffeomorphisms.

We say that ϕ is a monomorphism (or is monic) if, for any other object $\mathcal{W} \in \mathcal{C}$, and any morphisms $\psi_{1}, \psi_{2} \in \overrightarrow{\mathcal{C}}(\mathcal{W}, \mathcal{X})$, we have:

$$
\left(\phi \circ \psi_{1}=\phi \circ \psi_{2}\right) \Longleftrightarrow\left(\psi_{1}=\psi_{2}\right) .
$$

In most concrete categories, monomorphisms are injective morphisms. Example. Let \mathcal{X} be a subobject of \mathcal{Y} (e.g. subspace, submanifold, etc.). Then the inclusion morphism $\mathcal{X} \hookrightarrow \mathcal{Y}$ is usually a monomorphism.

Coproducts

Let $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$ be objects in category \mathcal{C}. \mathcal{C}, and $\iota_{n} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}_{n}, \mathcal{R}\right)$ for all $n \in[1 \ldots N]$, with the following property: For any other $\mathcal{X} \in[\mathcal{C}]$, and any morphisms $f_{n} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}_{n}, \mathcal{X}\right)$ (for all $n \in[1 \ldots N])$, there is a unique $F \in \overline{\mathcal{C}}(\mathcal{R}, \mathcal{X})$ such that the next diagram commutes:

Note. $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N}$ might not have a coproduct in a category \mathcal{C}. But if they do, then it is essentially unique up to canonical isomorphism. Example. In the categories Set, Meas, Top and Diff, the coproduct is just the disjoint union of the objects $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N}$ (with the appropriate measurable/topological/differentiable structure)

Coproducts

Let $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$ be objects in category \mathcal{C}. A coproduct of $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$ is a structure $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$, where \mathcal{R} is an object in \mathcal{C}, and $\iota_{n} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}_{n}, \mathcal{R}\right)$ for all $n \in[1 \ldots N]$, with the following property:

Coproducts

Let $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$ be objects in category \mathcal{C}. A coproduct of $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$ is a structure $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$, where \mathcal{R} is an object in \mathcal{C}, and $\iota_{n} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}_{n}, \mathcal{R}\right)$ for all $n \in[1 \ldots N]$, with the following property: For any other $\mathcal{X} \in[\mathcal{C}]$, and any morphisms $f_{n} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}_{n}, \mathcal{X}\right)$ (for all $n \in[1 \ldots N])$, there is a unique $F \in \overrightarrow{\mathcal{C}}(\mathcal{R}, \mathcal{X})$ such that the next diagram

Coproducts

Let $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$ be objects in category \mathcal{C}. A coproduct of $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$ is a structure $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$, where \mathcal{R} is an object in \mathcal{C}, and $\iota_{n} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}_{n}, \mathcal{R}\right)$ for all $n \in[1 \ldots N]$, with the following property: For any other $\mathcal{X} \in[\mathcal{C}]$, and any morphisms $f_{n} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}_{n}, \mathcal{X}\right)$ (for all $n \in[1 \ldots N])$, there is a unique $F \in \overrightarrow{\mathcal{C}}(\mathcal{R}, \mathcal{X})$ such that the next diagram commutes:

We then write $\mathcal{R}=\coprod_{n=1}^{N} \mathcal{R}_{n}$

$$
\text { and } F=\left[f_{1}\left|f_{2}\right| \cdots \mid f_{N}\right] .
$$

$$
\text { Note. } \mathcal{R}_{1}, \ldots, \mathcal{R}_{N} \text { might not }
$$

Coproducts

Let $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$ be objects in category \mathcal{C}. A coproduct of $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$ is a structure $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$, where \mathcal{R} is an object in \mathcal{C}, and $\iota_{n} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}_{n}, \mathcal{R}\right)$ for all $n \in[1 \ldots N]$, with the following property: For any other $\mathcal{X} \in[\mathcal{C}]$, and any morphisms $f_{n} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}_{n}, \mathcal{X}\right)$ (for all $n \in[1 \ldots N])$, there is a unique $F \in \overrightarrow{\mathcal{C}}(\mathcal{R}, \mathcal{X})$ such that the next diagram commutes:

$$
\begin{aligned}
& \text { We then write } \mathcal{R}=\coprod_{n=1}^{N} \mathcal{R}_{n} \\
& \text { and } F=\left[f_{1}\left|f_{2}\right| \cdots \mid f_{N}\right] \text {. }
\end{aligned}
$$

Note. $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N}$ might not have a coproduct in a category \mathcal{C}. But if they do, then it is essentially unique up to canonical isomorphism.

Coproducts

Let $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$ be objects in category \mathcal{C}. A coproduct of $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$ is a structure $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$, where \mathcal{R} is an object in \mathcal{C}, and $\iota_{n} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}_{n}, \mathcal{R}\right)$ for all $n \in[1 \ldots N]$, with the following property: For any other $\mathcal{X} \in[\mathcal{C}]$, and any morphisms $f_{n} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}_{n}, \mathcal{X}\right)$ (for all $n \in[1 \ldots N])$, there is a unique $F \in \overrightarrow{\mathcal{C}}(\mathcal{R}, \mathcal{X})$ such that the next diagram commutes:

$$
\text { We then write } \mathcal{R}=\coprod_{n=1}^{N} \mathcal{R}_{n}
$$

$$
\text { and } F=\left[f_{1}\left|f_{2}\right| \cdots \mid f_{N}\right]
$$

Note. $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N}$ might not have a coproduct in a category \mathcal{C}. But if they do, then it is essentially unique up to canonical isomorphism.
Example. In the categories Set, Meas, Top and Diff, the coproduct is just the disjoint union of the objects $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N}$ (with the appropriate measurable/topological/differentiable structure).

Partitions

Let \mathcal{S} be an stateplace in \mathcal{S}.

An N-cell partition of \mathcal{S} is a structure

$\mathcal{R}:=\left(\mathcal{R}_{1}, \iota_{1} ; \mathcal{R}_{2}, \iota_{2} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$, where:
$\Rightarrow \mathcal{R}$ is another stateplace in \mathcal{S}

- $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$ are other objects in \mathcal{C} (the cells of \mathcal{R});
- $\left(\mathcal{R} ; \iota_{1}, \iota_{2}, \ldots, \iota_{N}\right)$ is a coproduct of $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$;
$\overrightarrow{\mathcal{S}}(\mathcal{R}, \mathcal{S})$ is a \mathcal{C}-monomorphism, called the gluing morphism. Example 1 Suppose $\mathcal{C}-$ Cot, Mons, Ton, or Diff Let \mathcal{S} be an object in \mathcal{C}. Let $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N}$ be disjoint subsets of \mathcal{S} which are subobjects of \mathcal{S} in \mathcal{C} (measurable subsets, subspaces, submanifolds, etc.) Iet $\mathcal{R}:=\mathcal{R}_{1}| | \cdots| | \mathcal{R}_{N}$ (with eo disinint union tonology not subsnare topology). Let $\iota_{n}: \mathcal{R}_{n} \hookrightarrow \mathcal{R}$ and $\rho: \mathcal{R} \hookrightarrow \mathcal{S}$ be the inclusion maps. Then $\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$ is a partition of \mathcal{S}

Partitions

Let \mathcal{S} be an stateplace in \mathcal{S}.

An N-cell partition of \mathcal{S} is a structure
 $\mathcal{R}:=\left(\mathcal{R}_{1}, \iota_{1} ; \mathcal{R}_{2}, \iota_{2} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$, where:

\mathcal{R}_{N} are other objects in \mathcal{C} (the cells of \mathcal{R}):

$\overrightarrow{\mathcal{S}}(\mathcal{R}, \mathcal{S})$ is a \mathcal{C}-monomorphism, called the gluing morphism.

Partitions

Let \mathcal{S} be an stateplace in \mathcal{S}.

An N-cell partition of \mathcal{S} is a structure $\mathcal{R}:=\left(\mathcal{R}_{1}, \iota_{1} ; \mathcal{R}_{2}, \iota_{2} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$, where:

- \mathcal{R} is another stateplace in \mathcal{S}.

$\boldsymbol{S}(\mathcal{R}, \mathcal{S})$ is a \mathcal{C}-monomorphism, called the gluing morphism

Partitions

Let \mathcal{S} be an stateplace in \mathcal{S}.

An N-cell partition of \mathcal{S} is a structure
 $\mathcal{R}:=\left(\mathcal{R}_{1}, \iota_{1} ; \mathcal{R}_{2}, \iota_{2} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$, where:

- \mathcal{R} is another stateplace in \mathcal{S}. $\stackrel{\rho}{S}^{\rho}$
- $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$ are other objects in \mathcal{C} (the cells of \mathcal{R});

- $\rho \in \mathcal{S}(\mathcal{R}, \mathcal{S})$ is a \mathcal{C}-monomorphism, called the gluing morphism

 Example 1 Sunpose $\mathcal{C}=$ Cot, Mons, Ton, or Diff subobjects of \mathcal{S} in \mathcal{C} (measurable subsets, subspaces, submanifolds, etc.).
Partitions

Let \mathcal{S} be an stateplace in \mathcal{S}.

An N-cell partition of \mathcal{S} is a structure $\mathcal{R}:=\left(\mathcal{R}_{1}, \iota_{1} ; \mathcal{R}_{2}, \iota_{2} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$, where:

- \mathcal{R} is another stateplace in \mathcal{S}.

- $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$ are other objects in \mathcal{C} (the cells of \mathcal{R});
- $\left(\mathcal{R} ; \iota_{1}, \iota_{2}, \ldots, \iota_{N}\right)$ is a coproduct of $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$;

Partitions

Let \mathcal{S} be an stateplace in \mathcal{S}.

An N-cell partition of \mathcal{S} is a structure $\mathcal{R}:=\left(\mathcal{R}_{1}, \iota_{1} ; \mathcal{R}_{2}, \iota_{2} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$, where:

- \mathcal{R} is another stateplace in \mathcal{S}.

- $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$ are other objects in \mathcal{C} (the cells of \mathcal{R});
- $\left(\mathcal{R} ; \iota_{1}, \iota_{2}, \ldots, \iota_{N}\right)$ is a coproduct of $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$; and
- $\rho \in \overrightarrow{\mathcal{S}}(\mathcal{R}, \mathcal{S})$ is a \mathcal{C}-monomorphism, called the gluing morphism.

Partitions

Let \mathcal{S} be an stateplace in \mathcal{S}.

An N-cell partition of \mathcal{S} is a structure $\mathcal{R}:=\left(\mathcal{R}_{1}, \iota_{1} ; \mathcal{R}_{2}, \iota_{2} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$, where:

- \mathcal{R} is another stateplace in \mathcal{S}.

- $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$ are other objects in \mathcal{C} (the cells of \mathcal{R});
- $\left(\mathcal{R} ; \iota_{1}, \iota_{2}, \ldots, \iota_{N}\right)$ is a coproduct of $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$;
and
- $\rho \in \overrightarrow{\mathcal{S}}(\mathcal{R}, \mathcal{S})$ is a \mathcal{C}-monomorphism, called the gluing morphism.

Example 1. Suppose $\mathcal{C}=$ Set, Meas, Top, or Diff.

Partitions

Let \mathcal{S} be an stateplace in \mathcal{S}.

An N-cell partition of \mathcal{S} is a structure $\mathcal{R}:=\left(\mathcal{R}_{1}, \iota_{1} ; \mathcal{R}_{2}, \iota_{2} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$, where:

- \mathcal{R} is another stateplace in \mathcal{S}.

- $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$ are other objects in \mathcal{C} (the cells of \mathcal{R});
- $\left(\mathcal{R} ; \iota_{1}, \iota_{2}, \ldots, \iota_{N}\right)$ is a coproduct of $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$; and
- $\rho \in \overrightarrow{\mathcal{S}}(\mathcal{R}, \mathcal{S})$ is a \mathcal{C}-monomorphism, called the gluing morphism.

Example 1. Suppose $\mathcal{C}=$ Set, Meas, Top, or Diff.
Let \mathcal{S} be an object in \mathcal{C}.

Partitions

Let \mathcal{S} be an stateplace in \mathcal{S}.

An N-cell partition of \mathcal{S} is a structure $\mathcal{R}:=\left(\mathcal{R}_{1}, \iota_{1} ; \mathcal{R}_{2}, \iota_{2} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$, where:

- \mathcal{R} is another stateplace in \mathcal{S}.

- $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$ are other objects in \mathcal{C} (the cells of \mathcal{R});
- $\left(\mathcal{R} ; \iota_{1}, \iota_{2}, \ldots, \iota_{N}\right)$ is a coproduct of $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$; and
- $\rho \in \overrightarrow{\mathcal{S}}(\mathcal{R}, \mathcal{S})$ is a \mathcal{C}-monomorphism, called the gluing morphism.

Example 1. Suppose $\mathcal{C}=$ Set, Meas, Top, or Diff.
Let \mathcal{S} be an object in \mathcal{C}. Let $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N}$ be disjoint subsets of \mathcal{S} which are subobjects of \mathcal{S} in \mathcal{C} (measurable subsets, subspaces, submanifolds, etc.).

Partitions

Let \mathcal{S} be an stateplace in \mathcal{S}.

An N-cell partition of \mathcal{S} is a structure $\mathcal{R}:=\left(\mathcal{R}_{1}, \iota_{1} ; \mathcal{R}_{2}, \iota_{2} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$, where:

- \mathcal{R} is another stateplace in \mathcal{S}.

- $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$ are other objects in \mathcal{C} (the cells of \mathcal{R});
- $\left(\mathcal{R} ; \iota_{1}, \iota_{2}, \ldots, \iota_{N}\right)$ is a coproduct of $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$; and
- $\rho \in \overrightarrow{\mathcal{S}}(\mathcal{R}, \mathcal{S})$ is a \mathcal{C}-monomorphism, called the gluing morphism.

Example 1. Suppose $\mathcal{C}=$ Set, Meas, Top, or Diff.
Let \mathcal{S} be an object in \mathcal{C}. Let $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N}$ be disjoint subsets of \mathcal{S} which are subobjects of \mathcal{S} in \mathcal{C} (measurable subsets, subspaces, submanifolds, etc.).

Let $\mathcal{R}:=\mathcal{R}_{1} \sqcup \cdots \sqcup \mathcal{R}_{N}$ (with e.g. disjoint union topology, not subspace topology).

Partitions

Let \mathcal{S} be an stateplace in \mathcal{S}.

An N-cell partition of \mathcal{S} is a structure $\mathcal{R}:=\left(\mathcal{R}_{1}, \iota_{1} ; \mathcal{R}_{2}, \iota_{2} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$, where:

- \mathcal{R} is another stateplace in \mathcal{S}.

- $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$ are other objects in \mathcal{C} (the cells of \mathcal{R});
- $\left(\mathcal{R} ; \iota_{1}, \iota_{2}, \ldots, \iota_{N}\right)$ is a coproduct of $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$; and
- $\rho \in \overrightarrow{\mathcal{S}}(\mathcal{R}, \mathcal{S})$ is a \mathcal{C}-monomorphism, called the gluing morphism.

Example 1. Suppose $\mathcal{C}=$ Set, Meas, Top, or Diff.
Let \mathcal{S} be an object in \mathcal{C}. Let $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N}$ be disjoint subsets of \mathcal{S} which are subobjects of \mathcal{S} in \mathcal{C} (measurable subsets, subspaces, submanifolds, etc.).

Let $\mathcal{R}:=\mathcal{R}_{1} \sqcup \cdots \sqcup \mathcal{R}_{N}$ (with e.g. disjoint union topology, not subspace topology). Let $\iota_{n}: \mathcal{R}_{n} \hookrightarrow \mathcal{R}$ and $\rho: \mathcal{R} \hookrightarrow \mathcal{S}$ be the inclusion maps.

Partitions

Let \mathcal{S} be an stateplace in \mathcal{S}.

An N-cell partition of \mathcal{S} is a structure $\mathcal{R}:=\left(\mathcal{R}_{1}, \iota_{1} ; \mathcal{R}_{2}, \iota_{2} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$, where:

- \mathcal{R} is another stateplace in \mathcal{S}.

- $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$ are other objects in \mathcal{C} (the cells of \mathcal{R});
- $\left(\mathcal{R} ; \iota_{1}, \iota_{2}, \ldots, \iota_{N}\right)$ is a coproduct of $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots, \mathcal{R}_{N}$; and
- $\rho \in \overrightarrow{\mathcal{S}}(\mathcal{R}, \mathcal{S})$ is a \mathcal{C}-monomorphism, called the gluing morphism.

Example 1. Suppose $\mathcal{C}=$ Set, Meas, Top, or Diff.
Let \mathcal{S} be an object in \mathcal{C}. Let $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N}$ be disjoint subsets of \mathcal{S} which are subobjects of \mathcal{S} in \mathcal{C} (measurable subsets, subspaces, submanifolds, etc.).

Let $\mathcal{R}:=\mathcal{R}_{1} \sqcup \cdots \sqcup \mathcal{R}_{N}$ (with e.g. disjoint union topology, not subspace topology). Let $\iota_{n}: \mathcal{R}_{n} \hookrightarrow \mathcal{R}$ and $\rho: \mathcal{R} \hookrightarrow \mathcal{S}$ be the inclusion maps.

Then $\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$ is a partition of \mathcal{S}.

Partition refinements

Let $\mathcal{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$ and $\mathcal{R}^{\prime}=\left(\mathcal{R}_{1}^{\prime}, \iota_{1}^{\prime} ; \ldots ; \mathcal{R}_{N^{\prime}}^{\prime}, \iota_{N^{\prime}}^{\prime} ; \mathcal{R}^{\prime}, \rho^{\prime}\right)$ be two partitions of \mathcal{S}, with $N^{\prime} \geq N$.

An adhesive from \mathcal{R}^{\prime} to \mathcal{R} is an ordered pair (η, ν), where:

$\overrightarrow{\mathcal{S}}\left(\mathcal{R}^{\prime}, \mathcal{R}\right)$ is an \mathcal{S}-morphism such that

 this diagram commutes:- For any $m \in\left[1 \ldots N^{\prime}\right]$, if $n=\nu(m)$, then there is a morphism $\eta_{m} \in \mathcal{C}\left(\mathcal{R}_{m}^{\prime}, \mathcal{R}_{n}\right)$ such that this diagram commutes

Heuristically, (η, ν) describes the way in which the cells of \mathcal{R}^{\prime} are "glued torether" to make the cells of \mathcal{R}. Note that $(n, 1$,$) is unidue$ We say that \mathcal{R}^{\prime} is a refinement of \mathcal{R}, and write $\mathcal{R}^{\prime} \subset \mathcal{R}$.

Partition refinements

Let $\boldsymbol{\mathcal { R }}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$ and $\mathcal{R}^{\prime}=\left(\mathcal{R}_{1}^{\prime}, \iota_{1}^{\prime} ; \ldots ; \mathcal{R}_{N^{\prime}}^{\prime}, \iota_{N^{\prime}}^{\prime} ; \mathcal{R}^{\prime}, \rho^{\prime}\right)$ be two partitions of \mathcal{S}, with $N^{\prime} \geq N$.
An adhesive from $\boldsymbol{\mathcal { R }}^{\prime}$ to $\boldsymbol{\mathcal { R }}$ is an ordered pair (η, ν), where:

Partition refinements

Let $\boldsymbol{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$ and $\mathcal{R}^{\prime}=\left(\mathcal{R}_{1}^{\prime}, \iota_{1}^{\prime} ; \ldots ; \mathcal{R}_{N^{\prime}}^{\prime}, \iota_{N^{\prime}}^{\prime} ; \mathcal{R}^{\prime}, \rho^{\prime}\right)$ be two partitions of \mathcal{S}, with $N^{\prime} \geq N$.

An adhesive from $\boldsymbol{\mathcal { R }}^{\prime}$ to $\boldsymbol{\mathcal { R }}$ is an ordered pair (η, ν), where:

- $\eta \in \overrightarrow{\mathcal{S}}\left(\mathcal{R}^{\prime}, \mathcal{R}\right)$ is an \mathcal{S}-morphism such that this diagram commutes:
\mathcal{R}^{\prime}

Partition refinements

Let $\boldsymbol{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$ and $\mathcal{R}^{\prime}=\left(\mathcal{R}_{1}^{\prime}, \iota_{1}^{\prime} ; \ldots ; \mathcal{R}_{N^{\prime}}^{\prime}, \iota_{N^{\prime}}^{\prime} ; \mathcal{R}^{\prime}, \rho^{\prime}\right)$ be two partitions of \mathcal{S}, with $N^{\prime} \geq N$.

An adhesive from $\boldsymbol{\mathcal { R }}^{\prime}$ to $\boldsymbol{\mathcal { R }}$ is an ordered pair (η, ν), where:

- $\eta \in \overrightarrow{\mathcal{S}}\left(\mathcal{R}^{\prime}, \mathcal{R}\right)$ is an \mathcal{S}-morphism such that this diagram commutes:
\mathcal{R}^{\prime}
- $\nu:\left[1 \ldots N^{\prime}\right] \longrightarrow[1 \ldots N]$ is a surjection.

Partition refinements

Let $\boldsymbol{\mathcal { R }}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$ and $\mathcal{R}^{\prime}=\left(\mathcal{R}_{1}^{\prime}, \iota_{1}^{\prime} ; \ldots ; \mathcal{R}_{N^{\prime}}^{\prime}, \iota_{N^{\prime}}^{\prime} ; \mathcal{R}^{\prime}, \rho^{\prime}\right)$ be two partitions of \mathcal{S}, with $N^{\prime} \geq N$.

An adhesive from \mathcal{R}^{\prime} to $\boldsymbol{\mathcal { R }}$ is an ordered pair (η, ν), where:

- $\eta \in \overrightarrow{\mathcal{S}}\left(\mathcal{R}^{\prime}, \mathcal{R}\right)$ is an \mathcal{S}-morphism such that this diagram commutes:

- $\nu:\left[1 \ldots N^{\prime}\right] \longrightarrow[1 \ldots N]$ is a surjection.
- For any $m \in\left[1 \ldots N^{\prime}\right]$, if $n=\nu(m)$, then there is a morphism $\eta_{m} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}_{m}^{\prime}, \mathcal{R}_{n}\right)$ such that this diagram commutes:

Partition refinements

Let $\mathcal{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$ and $\mathcal{R}^{\prime}=\left(\mathcal{R}_{1}^{\prime}, \iota_{1}^{\prime} ; \ldots ; \mathcal{R}_{N^{\prime}}^{\prime}, \iota_{N^{\prime}}^{\prime} ; \mathcal{R}^{\prime}, \rho^{\prime}\right)$ be two partitions of \mathcal{S}, with $N^{\prime} \geq N$.
An adhesive from \mathcal{R}^{\prime} to $\boldsymbol{\mathcal { R }}$ is an ordered pair (η, ν), where:

- $\eta \in \overrightarrow{\mathcal{S}}\left(\mathcal{R}^{\prime}, \mathcal{R}\right)$ is an \mathcal{S}-morphism such that this diagram commutes:

- $\nu:\left[1 \ldots N^{\prime}\right] \longrightarrow[1 \ldots N]$ is a surjection.
- For any $m \in\left[1 \ldots N^{\prime}\right]$, if $n=\nu(m)$, then there is a morphism $\eta_{m} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}_{m}^{\prime}, \mathcal{R}_{n}\right)$ such that this diagram commutes:

Heuristically, (η, ν) describes the way in which the cells of $\boldsymbol{\mathcal { R }}^{\prime}$ are "glued together" to make the cells of $\boldsymbol{\mathcal { R }}$. Note that (η, ν) is unique.

Partition refinements

Let $\mathcal{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$ and $\mathcal{R}^{\prime}=\left(\mathcal{R}_{1}^{\prime}, \iota_{1}^{\prime} ; \ldots ; \mathcal{R}_{N^{\prime}}^{\prime}, \iota_{N^{\prime}}^{\prime} ; \mathcal{R}^{\prime}, \rho^{\prime}\right)$ be two partitions of \mathcal{S}, with $N^{\prime} \geq N$.
An adhesive from \mathcal{R}^{\prime} to $\boldsymbol{\mathcal { R }}$ is an ordered pair (η, ν), where:

- $\eta \in \overrightarrow{\mathcal{S}}\left(\mathcal{R}^{\prime}, \mathcal{R}\right)$ is an \mathcal{S}-morphism such that this diagram commutes:

- $\nu:\left[1 \ldots N^{\prime}\right] \longrightarrow[1 \ldots N]$ is a surjection.
- For any $m \in\left[1 \ldots N^{\prime}\right]$, if $n=\nu(m)$, then there is a morphism $\eta_{m} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}_{m}^{\prime}, \mathcal{R}_{n}\right)$ such that this diagram commutes:

Heuristically, (η, ν) describes the way in which the cells of $\boldsymbol{\mathcal { R }}^{\prime}$ are "glued together" to make the cells of $\boldsymbol{\mathcal { R }}$. Note that (η, ν) is unique. We say that \mathcal{R}^{\prime} is a refinement of $\boldsymbol{\mathcal { R }}$, and write $\mathcal{R}^{\prime} \unlhd \mathcal{R}$.

Partition refinements (an illustrative example)

Here are two partitions $\mathcal{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \mathcal{R}_{2}, \iota_{2} ; \mathcal{R}_{3}, \iota_{3} ; \mathcal{R}, \rho\right)$ and $\mathcal{R}^{\prime}=\left(\mathcal{R}_{1}^{\prime}, \iota_{1}^{\prime} ; \mathcal{R}_{2}^{\prime}, \iota_{2}^{\prime} ; \mathcal{R}_{3}^{\prime}, \iota_{3}^{\prime} ; \mathcal{R}_{4}^{\prime}, \iota_{4}^{\prime} ; \mathcal{R}_{5}^{\prime}, \iota_{5}^{\prime} ; \mathcal{R}_{6}^{\prime}, \iota_{6}^{\prime} ; \mathcal{R}_{7}^{\prime}, \iota_{7}^{\prime} ; \mathcal{R}^{\prime}, \rho^{\prime}\right)$.

Partition refinements (an illustrative example)

Here is an adhesive (η, ν) making $\boldsymbol{\mathcal { R }}^{\prime}$ a refinement of $\boldsymbol{\mathcal { R }}$. In this case, $\nu(1)=\nu(2)=1, \quad \nu(3)=\nu(4)=2$, and $\nu(5)=\nu(6)=\nu(7)=3$.

Partition categories and common refinement

Let $\mathcal{R}, \mathcal{R}^{\prime}$ and $\mathcal{R}^{\prime \prime}$ be three partitions an object \mathcal{S} in the category \mathcal{C}.
\square adhesive $\left(\eta_{2}, \nu_{2}\right)$, then $\mathcal{R}^{\prime \prime}$ refines $\boldsymbol{\mathcal { R }}$ via the adhesive $\left(\eta_{1} \circ \eta_{2}, \nu_{1} \circ \nu_{2}\right)$ Thus, the set of all nartitions of S forms a cateonory $\mathfrak{R}_{\mathcal{S}}(S)$ where the objects are the partitions and the morphisms are the adhesives. We will need $\Re_{\mathcal{S}}(\mathcal{S})$ to satisfy the Common Refinement Property: For any $\mathcal{R}_{1}, \mathcal{R}_{2} \in \mathfrak{R}_{\mathcal{S}}(\mathcal{S})$, there exists $\mathcal{R} \in \mathfrak{R}_{\mathcal{S}}(\mathcal{S})$ with $\mathcal{R} \unlhd \mathcal{R}_{1}$ and $\mathcal{R} \unlhd \mathcal{R}_{2}$ Example 2. Suppose $\mathcal{S}=\mathcal{C}=$ Set, Meas, Top, or Diff Then for any $\mathcal{S} \in[\mathcal{S}]$ the category $\mathfrak{R}_{\mathcal{S}}(\mathcal{S})$ contains the partitions described in Example 1 (with adhesives defined via inclusion maps) In all cases, $\Re_{\mathcal{S}}(\mathcal{S})$ satisfies the Common Refinement Property.

Partition categories and common refinement

Let $\boldsymbol{\mathcal { R }}, \boldsymbol{\mathcal { R }}^{\prime}$ and $\mathcal{R}^{\prime \prime}$ be three partitions an object \mathcal{S} in the category \mathcal{C}. If $\boldsymbol{\mathcal { R }}^{\prime}$ refines $\boldsymbol{\mathcal { R }}$ via the adhesive (η_{1}, ν_{1}), and $\boldsymbol{\mathcal { R }}^{\prime \prime}$ refines $\boldsymbol{\mathcal { R }}^{\prime}$ via the adhesive (η_{2}, ν_{2}), then $\boldsymbol{\mathcal { R }}^{\prime \prime}$ refines $\boldsymbol{\mathcal { R }}$ via the adhesive $\left(\eta_{1} \circ \eta_{2}, \nu_{1} \circ \nu_{2}\right)$.
objects are the partitions and the morphisms are the adhesives.
\qquad
\qquad
\qquad

Partition categories and common refinement

Let $\boldsymbol{\mathcal { R }}, \boldsymbol{\mathcal { R }}^{\prime}$ and $\mathcal{R}^{\prime \prime}$ be three partitions an object \mathcal{S} in the category \mathcal{C}. If $\boldsymbol{\mathcal { R }}^{\prime}$ refines $\boldsymbol{\mathcal { R }}$ via the adhesive (η_{1}, ν_{1}), and $\boldsymbol{\mathcal { R }}^{\prime \prime}$ refines $\boldsymbol{\mathcal { R }}^{\prime}$ via the adhesive (η_{2}, ν_{2}), then $\boldsymbol{\mathcal { R }}^{\prime \prime}$ refines $\boldsymbol{\mathcal { R }}$ via the adhesive $\left(\eta_{1} \circ \eta_{2}, \nu_{1} \circ \nu_{2}\right)$.
Thus, the set of all partitions of \mathcal{S} forms a category, $\Re_{\mathcal{S}}(\mathcal{S})$, where the objects are the partitions and the morphisms are the adhesives.

Example 2. Suppose $\mathcal{S}=\mathcal{C}=$ Set, Meas, Top, or Diff
\qquad
\qquad

Partition categories and common refinement

Let $\boldsymbol{\mathcal { R }}, \boldsymbol{\mathcal { R }}^{\prime}$ and $\mathcal{R}^{\prime \prime}$ be three partitions an object \mathcal{S} in the category \mathcal{C}. If $\boldsymbol{\mathcal { R }}^{\prime}$ refines $\boldsymbol{\mathcal { R }}$ via the adhesive (η_{1}, ν_{1}), and $\boldsymbol{\mathcal { R }}^{\prime \prime}$ refines $\boldsymbol{\mathcal { R }}^{\prime}$ via the adhesive (η_{2}, ν_{2}), then $\boldsymbol{\mathcal { R }}^{\prime \prime}$ refines $\boldsymbol{\mathcal { R }}$ via the adhesive $\left(\eta_{1} \circ \eta_{2}, \nu_{1} \circ \nu_{2}\right)$.
Thus, the set of all partitions of \mathcal{S} forms a category, $\mathfrak{R}_{\mathcal{S}}(\mathcal{S})$, where the objects are the partitions and the morphisms are the adhesives.

We will need $\Re_{\mathcal{S}}(\mathcal{S})$ to satisfy the Common Refinement Property: For any $\boldsymbol{R}_{1}, \boldsymbol{R}_{2} \in \mathfrak{R}_{\mathcal{S}}(\mathcal{S})$, there exists $\boldsymbol{\mathcal { R }} \in \mathfrak{R}_{\mathcal{S}}(\mathcal{S})$ with $\boldsymbol{\mathcal { R }} \unlhd \boldsymbol{\mathcal { R }}_{1}$ and $\boldsymbol{\mathcal { R }} \unlhd \boldsymbol{\mathcal { R }}_{2}$.

Partition categories and common refinement

Let $\boldsymbol{\mathcal { R }}, \boldsymbol{\mathcal { R }}^{\prime}$ and $\mathcal{R}^{\prime \prime}$ be three partitions an object \mathcal{S} in the category \mathcal{C}. If \mathcal{R}^{\prime} refines \mathcal{R} via the adhesive $\left(\eta_{1}, \nu_{1}\right)$, and $\mathcal{R}^{\prime \prime}$ refines $\boldsymbol{\mathcal { R }}^{\prime}$ via the adhesive $\left(\eta_{2}, \nu_{2}\right)$, then $\boldsymbol{\mathcal { R }}^{\prime \prime}$ refines $\boldsymbol{\mathcal { R }}$ via the adhesive $\left(\eta_{1} \circ \eta_{2}, \nu_{1} \circ \nu_{2}\right)$.

Thus, the set of all partitions of \mathcal{S} forms a category, $\mathfrak{R}_{\mathcal{S}}(\mathcal{S})$, where the objects are the partitions and the morphisms are the adhesives.

We will need $\Re_{\mathcal{S}}(\mathcal{S})$ to satisfy the Common Refinement Property: For any $\boldsymbol{\mathcal { R }}_{1}, \boldsymbol{R}_{2} \in \mathfrak{R}_{\mathcal{S}}(\mathcal{S})$, there exists $\boldsymbol{\mathcal { R }} \in \mathfrak{R}_{\mathcal{S}}(\mathcal{S})$ with $\boldsymbol{\mathcal { R }} \unlhd \boldsymbol{\mathcal { R }}_{1}$ and $\boldsymbol{\mathcal { R }} \unlhd \boldsymbol{\mathcal { R }}_{2}$.

Example 2. Suppose $\mathcal{S}=\mathcal{C}=$ Set, Meas, Top, or Diff.
Then for any $\mathcal{S} \in[\mathcal{S}]$, the category $\mathfrak{R}_{\mathcal{S}}(\mathcal{S})$ contains the partitions described in Example 1 (with adhesives defined via inclusion maps).

In all cases, $\Re_{\mathcal{S}}(\mathcal{S})$ satisfies the Common Refinement Property.

Probability structures

For all $N \in \mathbb{N}$, let $\Delta^{N}:=\left\{\mathbf{p} \in \mathbb{R}_{+}^{N} ; p_{1}+\cdots+p_{N}=1\right\}$ be the N-dimensional probability simplex. Let $\mathcal{S} \in \mathcal{S}$.

Probability structures

For all $N \in \mathbb{N}$, let $\Delta^{N}:=\left\{\mathbf{p} \in \mathbb{R}_{+}^{N} ; p_{1}+\cdots+p_{N}=1\right\}$ be the N-dimensional probability simplex. Let $\mathcal{S} \in \mathcal{S}$.

A probability structure on \mathcal{S} is a system $\mathbf{P}:=\left\{\mathbf{p}^{\mathcal{R}} ; \mathcal{R} \in \mathfrak{R}_{\mathcal{S}}(\mathcal{S})\right\}$, where

Probability structures

For all $N \in \mathbb{N}$, let $\Delta^{N}:=\left\{\mathbf{p} \in \mathbb{R}_{+}^{N} ; \quad p_{1}+\cdots+p_{N}=1\right\}$ be the N-dimensional probability simplex. Let $\mathcal{S} \in \mathcal{S}$.

A probability structure on \mathcal{S} is a system $\mathbf{P}:=\left\{\mathbf{p}^{\mathcal{R}} ; \mathcal{R} \in \mathfrak{R}_{\mathcal{S}}(\mathcal{S})\right\}$, where

- For each N-cell partition \mathcal{R} in $\Re_{\mathcal{S}}(\mathcal{S})$, we have $\mathbf{p}^{\mathcal{R}} \in \Delta^{N}$; and

Probability structures

For all $N \in \mathbb{N}$, let $\Delta^{N}:=\left\{\mathbf{p} \in \mathbb{R}_{+}^{N} ; p_{1}+\cdots+p_{N}=1\right\}$ be the N-dimensional probability simplex. Let $\mathcal{S} \in \mathcal{S}$.

A probability structure on \mathcal{S} is a system $\mathbf{P}:=\left\{\mathbf{p}^{\mathcal{R}} ; \mathcal{R} \in \mathfrak{R}_{\mathcal{S}}(\mathcal{S})\right\}$, where

- For each N-cell partition \mathcal{R} in $\Re_{\mathcal{S}}(\mathcal{S})$, we have $\mathbf{p}^{\mathcal{R}} \in \Delta^{N}$; and
- For any partitions $\mathcal{R}^{\prime} \unlhd \mathcal{R}$ in $\mathfrak{R}_{\mathcal{S}}$, if (η, ν) is the (unique) adhesive from \mathcal{R}^{\prime} to \mathcal{R}, and $\mathbf{p}^{\mathcal{R}}=\left(p_{1}, \ldots, p_{N}\right)$ and $\mathbf{p}^{\mathcal{R}^{\prime}}=\left(p_{1}^{\prime}, \ldots, p_{N^{\prime}}^{\prime}\right)$, then

$$
p_{n}=\sum_{m \in \nu^{-1}\{n\}} p_{m}^{\prime}, \quad \text { for all } n \in[1 \ldots N] . \quad \text { (Additivity) }
$$

Example 3. Let $\mathcal{S} \in[$ Meas $]$, and define $\Re_{\mathcal{S}}(\mathcal{S})$ as in Example 2.

Probability structures

For all $N \in \mathbb{N}$, let $\Delta^{N}:=\left\{\mathbf{p} \in \mathbb{R}_{+}^{N} ; p_{1}+\cdots+p_{N}=1\right\}$ be the N-dimensional probability simplex. Let $\mathcal{S} \in \mathcal{S}$.

A probability structure on \mathcal{S} is a system $\mathbf{P}:=\left\{\mathbf{p}^{\mathcal{R}} ; \mathcal{R} \in \mathfrak{R}_{\mathcal{S}}(\mathcal{S})\right\}$, where

- For each N-cell partition \mathcal{R} in $\mathfrak{R}_{\mathcal{S}}(\mathcal{S})$, we have $\mathbf{p}^{\mathcal{R}} \in \Delta^{N}$; and
- For any partitions $\mathcal{R}^{\prime} \unlhd \mathcal{R}$ in $\mathfrak{R}_{\mathcal{S}}$, if (η, ν) is the (unique) adhesive from \mathcal{R}^{\prime} to \mathcal{R}, and $\mathbf{p}^{\overline{\mathcal{R}}}=\left(p_{1}, \ldots, p_{N}\right)$ and $\mathbf{p}^{\mathcal{R}^{\prime}}=\left(p_{1}^{\prime}, \ldots, p_{N^{\prime}}^{\prime}\right)$, then

$$
p_{n}=\sum_{m \in \nu^{-1}\{n\}} p_{m}^{\prime}, \quad \text { for all } n \in[1 \ldots N] . \quad \text { (Additivity) }
$$

Idea: \mathbf{P} assigns an additive "probability" to subobjects of \mathcal{S}, but only if they appear as a cell of some partition in $\mathfrak{R}_{\mathcal{S}}(\mathcal{S})$.

Probability structures

For all $N \in \mathbb{N}$, let $\Delta^{N}:=\left\{\mathbf{p} \in \mathbb{R}_{+}^{N} ; p_{1}+\cdots+p_{N}=1\right\}$ be the N-dimensional probability simplex. Let $\mathcal{S} \in \mathcal{S}$.
A probability structure on \mathcal{S} is a system $\mathbf{P}:=\left\{\mathbf{p}^{\mathcal{R}} ; \mathcal{R} \in \mathfrak{R}_{\mathcal{S}}(\mathcal{S})\right\}$, where

- For each N-cell partition \mathcal{R} in $\mathfrak{R}_{\mathcal{S}}(\mathcal{S})$, we have $\mathbf{p}^{\mathcal{R}} \in \Delta^{N}$; and
- For any partitions $\mathcal{R}^{\prime} \unlhd \mathcal{R}$ in $\mathfrak{R}_{\mathcal{S}}$, if (η, ν) is the (unique) adhesive from \mathcal{R}^{\prime} to \mathcal{R}, and $\mathbf{p}^{\overline{\mathcal{R}}}=\left(p_{1}, \ldots, p_{N}\right)$ and $\mathbf{p}^{\mathcal{R}^{\prime}}=\left(p_{1}^{\prime}, \ldots, p_{N^{\prime}}^{\prime}\right)$, then

$$
p_{n}=\sum_{m \in \nu^{-1}\{n\}} p_{m}^{\prime}, \quad \text { for all } n \in[1 \ldots N] . \quad \text { (Additivity) }
$$

Idea: \mathbf{P} assigns an additive "probability" to subobjects of \mathcal{S}, but only if they appear as a cell of some partition in $\mathfrak{R}_{\mathcal{S}}(\mathcal{S})$.

Example 3. Let $\mathcal{S} \in[\mathrm{Meas}]$, and define $\mathfrak{R}_{\mathcal{S}}(\mathcal{S})$ as in Example 2.
Then any probability measure μ on \mathcal{S} induces a probability structure on $\Re_{\mathcal{S}}(\mathcal{S})$, in the obvious way.
(For every $\boldsymbol{\mathcal { R }}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$ in $\mathfrak{R}_{\mathcal{S}}(\mathcal{S})$, let $\mathbf{p}^{\mathcal{R}}:=\left(\mu\left[\mathcal{R}_{1}\right], \ldots, \mu\left[\mathcal{R}_{N}\right]\right)$.)

Measurability in a nutshell

- A pullback is a categorical construction which plays the role of an inverse image.

Using pullbacks, we can define the preimage of any partition in $\Re_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$ under any morphism $\phi \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ We then define ϕ to be measurable if every partition in $\Re_{\mathcal{S}}\left(S_{2}\right)$ has a ϕ-preimage in $\Re_{\mathcal{S}}\left(\mathcal{S}_{1}\right)$ Suppose P_{1} is a probability structure on S_{1}, and P_{2} is a probability structure on \mathcal{S}_{2}.

The morphism ϕ is probability-preserving if the probability vector assigned to a partition by \mathbf{P}_{2} agrees with the probability vector assigned to its ϕ-preimage by P_{1}

Measurability in a nutshell

- A pullback is a categorical construction which plays the role of an inverse image.
- Using pullbacks, we can define the preimage of any partition in $\mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$ under any morphism $\phi \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$.
\square

The morphism ϕ is probability-preserving if the probability vector ascigned to a nartition hy P_{2} agrees with the nrohahility vector assigned to its ϕ-preimage by P_{1}

Measurability in a nutshell

- A pullback is a categorical construction which plays the role of an inverse image.
- Using pullbacks, we can define the preimage of any partition in $\mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$ under any morphism $\phi \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$.
- We then define ϕ to be measurable if every partition in $\Re_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$ has a ϕ-preimage in $\mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{1}\right)$.

The morphism ϕ is probability-preserving if the probability vector assigned to a partition by \mathbf{P}_{2} agrees with the probability vector assigned to its ϕ-preimage by P_{1}
\qquad

Measurability in a nutshell

- A pullback is a categorical construction which plays the role of an inverse image.
- Using pullbacks, we can define the preimage of any partition in $\mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$ under any morphism $\phi \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$.
- We then define ϕ to be measurable if every partition in $\Re_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$ has a ϕ-preimage in $\mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{1}\right)$.
- Suppose \mathbf{P}_{1} is a probability structure on \mathcal{S}_{1}, and \mathbf{P}_{2} is a probability structure on \mathcal{S}_{2}.

\qquad

Measurability in a nutshell

- A pullback is a categorical construction which plays the role of an inverse image.
- Using pullbacks, we can define the preimage of any partition in $\mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$ under any morphism $\phi \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$.
- We then define ϕ to be measurable if every partition in $\Re_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$ has a ϕ-preimage in $\mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{1}\right)$.
- Suppose \mathbf{P}_{1} is a probability structure on \mathcal{S}_{1}, and \mathbf{P}_{2} is a probability structure on \mathcal{S}_{2}.
- The morphism ϕ is probability-preserving if the probability vector assigned to a partition by \mathbf{P}_{2} agrees with the probability vector assigned to its ϕ-preimage by \mathbf{P}_{1}.

Measurability in a nutshell

- A pullback is a categorical construction which plays the role of an inverse image.
- Using pullbacks, we can define the preimage of any partition in $\mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$ under any morphism $\phi \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$.
- We then define ϕ to be measurable if every partition in $\Re_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$ has a ϕ-preimage in $\mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{1}\right)$.
- Suppose \mathbf{P}_{1} is a probability structure on \mathcal{S}_{1}, and \mathbf{P}_{2} is a probability structure on \mathcal{S}_{2}.
- The morphism ϕ is probability-preserving if the probability vector assigned to a partition by \mathbf{P}_{2} agrees with the probability vector assigned to its ϕ-preimage by \mathbf{P}_{1}.
- However, to save time, we will skip the details....

Partial preimages

Let \mathcal{R}, \mathcal{S} and \mathcal{S}^{\prime} be objects in \mathcal{C}. Consider the diagram on the left below.

Question. Does there exist an object \mathcal{R}^{\prime}, and morphisms $\rho^{\prime} \in \vec{C}\left(\mathcal{R}^{\prime}, \mathcal{S}^{\prime}\right)$ and $o / \in \in \mathcal{C}\left(\mathcal{R}^{\prime} \mathcal{D}\right)$ such that the right hand diagram commutes? Example. Suppose \mathcal{R} is a subobject of \mathcal{S}, and ρ is the inclusion morphism. morphism. Then the right-hand diagram commutes
ror this reasom, we call (R', \boldsymbol{N}^{\prime}, () a partia' preimage of the left diagram
Problem. The left-hand diagram might admit many such "partial" nreimages. Not all of them count as "true" nreimaces Idea. A pullback is a "maximal" partial preimage..

Partial preimages

Let \mathcal{R}, \mathcal{S} and \mathcal{S}^{\prime} be objects in \mathcal{C}. Consider the diagram on the left below.

Question. Does there exist an object \mathcal{R}^{\prime}, and morphisms $\rho^{\prime} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}^{\prime}, \mathcal{S}^{\prime}\right)$ and $\psi \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}^{\prime}, \mathcal{R}\right)$, such that the right-hand diagram commutes?

Partial preimages

Let \mathcal{R}, \mathcal{S} and \mathcal{S}^{\prime} be objects in \mathcal{C}. Consider the diagram on the left below.

Question. Does there exist an object \mathcal{R}^{\prime}, and morphisms $\rho^{\prime} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}^{\prime}, \mathcal{S}^{\prime}\right)$ and $\psi \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}^{\prime}, \mathcal{R}\right)$, such that the right-hand diagram commutes?

Example. Suppose \mathcal{R} is a subobject of \mathcal{S}, and ρ is the inclusion morphism.
morphism. Then the right-hand diagram commutes.
For this reason, we call $\left(\mathcal{R}^{\prime}, n^{\prime}, v\right)$ a partial preimage of the left diagram
Problem.
preimages.
The left-hand diagram might admit many such

Partial preimages

Let \mathcal{R}, \mathcal{S} and \mathcal{S}^{\prime} be objects in \mathcal{C}. Consider the diagram on the left below.

Question. Does there exist an object \mathcal{R}^{\prime}, and morphisms $\rho^{\prime} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}^{\prime}, \mathcal{S}^{\prime}\right)$ and $\psi \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}^{\prime}, \mathcal{R}\right)$, such that the right-hand diagram commutes?
Example. Suppose \mathcal{R} is a subobject of \mathcal{S}, and ρ is the inclusion morphism. Let $\mathcal{R}^{\prime}:=\phi^{-1}(\mathcal{R})$ be the ϕ-preimage of \mathcal{R} in \mathcal{S}^{\prime}. Let ρ^{\prime} be the inclusion morphism. Then the right-hand diagram commutes.

Partial preimages

Let \mathcal{R}, \mathcal{S} and \mathcal{S}^{\prime} be objects in \mathcal{C}. Consider the diagram on the left below.

Question. Does there exist an object \mathcal{R}^{\prime}, and morphisms $\rho^{\prime} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}^{\prime}, \mathcal{S}^{\prime}\right)$ and $\psi \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}^{\prime}, \mathcal{R}\right)$, such that the right-hand diagram commutes?
Example. Suppose \mathcal{R} is a subobject of \mathcal{S}, and ρ is the inclusion morphism. Let $\mathcal{R}^{\prime}:=\phi^{-1}(\mathcal{R})$ be the ϕ-preimage of \mathcal{R} in \mathcal{S}^{\prime}. Let ρ^{\prime} be the inclusion morphism. Then the right-hand diagram commutes.
For this reason, we call $\left(\mathcal{R}^{\prime}, \rho^{\prime}, \psi\right)$ a partial preimage of the left diagram.

Partial preimages

Let \mathcal{R}, \mathcal{S} and \mathcal{S}^{\prime} be objects in \mathcal{C}. Consider the diagram on the left below.

Question. Does there exist an object \mathcal{R}^{\prime}, and morphisms $\rho^{\prime} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}^{\prime}, \mathcal{S}^{\prime}\right)$ and $\psi \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}^{\prime}, \mathcal{R}\right)$, such that the right-hand diagram commutes?
Example. Suppose \mathcal{R} is a subobject of \mathcal{S}, and ρ is the inclusion morphism. Let $\mathcal{R}^{\prime}:=\phi^{-1}(\mathcal{R})$ be the ϕ-preimage of \mathcal{R} in \mathcal{S}^{\prime}. Let ρ^{\prime} be the inclusion morphism. Then the right-hand diagram commutes.
For this reason, we call $\left(\mathcal{R}^{\prime}, \rho^{\prime}, \psi\right)$ a partial preimage of the left diagram.
Problem. The left-hand diagram might admit many such "partial" preimages. Not all of them count as "true" preimages....

Partial preimages

Let \mathcal{R}, \mathcal{S} and \mathcal{S}^{\prime} be objects in \mathcal{C}. Consider the diagram on the left below.

Question. Does there exist an object \mathcal{R}^{\prime}, and morphisms $\rho^{\prime} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}^{\prime}, \mathcal{S}^{\prime}\right)$ and $\psi \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}^{\prime}, \mathcal{R}\right)$, such that the right-hand diagram commutes?

Example. Suppose \mathcal{R} is a subobject of \mathcal{S}, and ρ is the inclusion morphism. Let $\mathcal{R}^{\prime}:=\phi^{-1}(\mathcal{R})$ be the ϕ-preimage of \mathcal{R} in \mathcal{S}^{\prime}. Let ρ^{\prime} be the inclusion morphism. Then the right-hand diagram commutes.
For this reason, we call $\left(\mathcal{R}^{\prime}, \rho^{\prime}, \psi\right)$ a partial preimage of the left diagram.
Problem. The left-hand diagram might admit many such "partial" preimages. Not all of them count as "true" preimages....
Idea. A pullback is a "maximal" partial preimage....

Pullbacks

A pullback of the left diagram is partial preimage $\left(\mathcal{R}_{0}^{\prime}, \rho_{0}^{\prime}, \psi_{0}\right)$ which is a maximal in the following sense.

Pullbacks

A pullback of the left diagram is partial preimage $\left(\mathcal{R}_{0}^{\prime}, \rho_{0}^{\prime}, \psi_{0}\right)$ which is a maximal in the following sense. Given any other partial preimage $\left(\mathcal{R}^{\prime}, \rho^{\prime}, \psi\right)$,

Pullbacks

A pullback of the left diagram is partial preimage $\left(\mathcal{R}_{0}^{\prime}, \rho_{0}^{\prime}, \psi_{0}\right)$ which is a maximal in the following sense. Given any other partial preimage ($\left.\mathcal{R}^{\prime}, \rho^{\prime}, \psi\right)$, there is a unique morphism $\xi \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}^{\prime}, \mathcal{R}_{0}^{\prime}\right)$ making the centre diagram commute:

Pullbacks

A pullback of the left diagram is partial preimage $\left(\mathcal{R}_{0}^{\prime}, \rho_{0}^{\prime}, \psi_{0}\right)$ which is a maximal in the following sense. Given any other partial preimage ($\left.\mathcal{R}^{\prime}, \rho^{\prime}, \psi\right)$, there is a unique morphism $\xi \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}^{\prime}, \mathcal{R}_{0}^{\prime}\right)$ making the centre diagram commute:

Such a maximal preimage might not exist, but if it does, then it is unique up to isomorphism. Thus, we say $\left(\mathcal{R}_{0}^{\prime}, \rho_{0}^{\prime}, \psi_{0}\right)$ is "the" pullback of the left diagram. This is indicated by the symbol " \lrcorner " in the right diagram.

Pullbacks

A pullback of the left diagram is partial preimage $\left(\mathcal{R}_{0}^{\prime}, \rho_{0}^{\prime}, \psi_{0}\right)$ which is a maximal in the following sense. Given any other partial preimage ($\left.\mathcal{R}^{\prime}, \rho^{\prime}, \psi\right)$, there is a unique morphism $\xi \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}^{\prime}, \mathcal{R}_{0}^{\prime}\right)$ making the centre diagram commute:

Such a maximal preimage might not exist, but if it does, then it is unique up to isomorphism. Thus, we say $\left(\mathcal{R}_{0}^{\prime}, \rho_{0}^{\prime}, \psi_{0}\right)$ is "the" pullback of the left diagram. This is indicated by the symbol " \lrcorner " in the right diagram.
Examples. Suppose $\mathcal{C}=$ Set, Meas, Top, or Diff,

Pullbacks

A pullback of the left diagram is partial preimage $\left(\mathcal{R}_{0}^{\prime}, \rho_{0}^{\prime}, \psi_{0}\right)$ which is a maximal in the following sense. Given any other partial preimage ($\left.\mathcal{R}^{\prime}, \rho^{\prime}, \psi\right)$, there is a unique morphism $\xi \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}^{\prime}, \mathcal{R}_{0}^{\prime}\right)$ making the centre diagram commute:

Such a maximal preimage might not exist, but if it does, then it is unique up to isomorphism. Thus, we say $\left(\mathcal{R}_{0}^{\prime}, \rho_{0}^{\prime}, \psi_{0}\right)$ is "the" pullback of the left diagram. This is indicated by the symbol " \lrcorner " in the right diagram.
Examples. Suppose $\mathcal{C}=$ Set, Meas, Top, or Diff,
(a) If $\mathcal{R} \stackrel{\rho}{\hookrightarrow} \mathcal{S}$ is a subobject, then $\phi^{-1}(\mathcal{R}) \hookrightarrow \mathcal{S}^{\prime}$ yields a pullback.

Pullbacks

A pullback of the left diagram is partial preimage $\left(\mathcal{R}_{0}^{\prime}, \rho_{0}^{\prime}, \psi_{0}\right)$ which is a maximal in the following sense. Given any other partial preimage ($\mathcal{R}^{\prime}, \rho^{\prime}, \psi$), there is a unique morphism $\xi \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}^{\prime}, \mathcal{R}_{0}^{\prime}\right)$ making the centre diagram commute:

Such a maximal preimage might not exist, but if it does, then it is unique up to isomorphism. Thus, we say $\left(\mathcal{R}_{0}^{\prime}, \rho_{0}^{\prime}, \psi_{0}\right)$ is "the" pullback of the left diagram. This is indicated by the symbol " \lrcorner " in the right diagram.
Examples. Suppose $\mathcal{C}=$ Set, Meas, Top, or Diff,
(a) If $\mathcal{R} \stackrel{\rho}{\hookrightarrow} \mathcal{S}$ is a subobject, then $\phi^{-1}(\mathcal{R}) \hookrightarrow \mathcal{S}^{\prime}$ yields a pullback.
(b) If \mathcal{S} is a one-point space; then the pullback is just the Cartesian product $\mathcal{R} \times \mathcal{S}^{\prime}$, with the appropriate product structure.

Partition preimages :Definition

Let \mathcal{S} and \mathcal{S}^{\prime} be two state places in \mathcal{S}, and let $\phi \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}^{\prime}, \mathcal{S}\right)$. morphism satisfying the left-hand pullback diagram below. commuting diagram:

Partition preimages :Definition

Let \mathcal{S} and \mathcal{S}^{\prime} be two state places in \mathcal{S}, and let $\phi \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}^{\prime}, \mathcal{S}\right)$. Let $\mathcal{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$ be a partition of \mathcal{S}.

Partition preimages :Definition

Let \mathcal{S} and \mathcal{S}^{\prime} be two state places in \mathcal{S}, and let $\phi \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}^{\prime}, \mathcal{S}\right)$. Let $\mathcal{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$ be a partition of \mathcal{S}.
A ϕ-preimage of the partition \mathcal{R} (if it exists) is constructed as follows.

Partition preimages :Definition

Let \mathcal{S} and \mathcal{S}^{\prime} be two state places in \mathcal{S}, and let $\phi \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}^{\prime}, \mathcal{S}\right)$. Let $\mathcal{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$ be a partition of \mathcal{S}.
A ϕ-preimage of the partition \mathcal{R} (if it exists) is constructed as follows.

1. Let $\mathcal{R}^{\prime} \in[\mathcal{S}]$ and $\rho^{\prime} \in \overrightarrow{\mathcal{S}}\left(\mathcal{R}^{\prime}, \mathcal{S}^{\prime}\right)$ satisfy the pullback diagram below.
commuting diagram:

Partition preimages :Definition

Let \mathcal{S} and \mathcal{S}^{\prime} be two state places in \mathcal{S}, and let $\phi \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}^{\prime}, \mathcal{S}\right)$. Let $\mathcal{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$ be a partition of \mathcal{S}.
A ϕ-preimage of the partition \mathcal{R} (if it exists) is constructed as follows.

1. Let $\mathcal{R}^{\prime} \in[\mathcal{S}]$ and $\rho^{\prime} \in \overrightarrow{\mathcal{S}}\left(\mathcal{R}^{\prime}, \mathcal{S}^{\prime}\right)$ satisfy the pullback diagram below.
2. For all $n \in[1 \ldots N]$, let \mathcal{R}_{n}^{\prime} be an object and let $\iota_{n}^{\prime} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}_{n}^{\prime}, \mathcal{R}^{\prime}\right)$ be a morphism satisfying the left-hand pullback diagram below.

Partition preimages :Definition

Let \mathcal{S} and \mathcal{S}^{\prime} be two state places in \mathcal{S}, and let $\phi \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}^{\prime}, \mathcal{S}\right)$. Let $\mathcal{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$ be a partition of \mathcal{S}.
A ϕ-preimage of the partition \mathcal{R} (if it exists) is constructed as follows.

1. Let $\mathcal{R}^{\prime} \in[\mathcal{S}]$ and $\rho^{\prime} \in \overrightarrow{\mathcal{S}}\left(\mathcal{R}^{\prime}, \mathcal{S}^{\prime}\right)$ satisfy the pullback diagram below.
2. For all $n \in[1 \ldots N]$, let \mathcal{R}_{n}^{\prime} be an object and let $\iota_{n}^{\prime} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}_{n}^{\prime}, \mathcal{R}^{\prime}\right)$ be a morphism satisfying the left-hand pullback diagram below.
3. Suppose that $\left(\mathcal{R}^{\prime} ; \iota_{1}^{\prime}, \ldots, \iota_{N}^{\prime}\right)$ is a coproduct of $\mathcal{R}_{1}^{\prime}, \ldots, \mathcal{R}_{N}^{\prime}$.

Partition preimages :Definition

Let \mathcal{S} and \mathcal{S}^{\prime} be two state places in \mathcal{S}, and let $\phi \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}^{\prime}, \mathcal{S}\right)$. Let $\mathcal{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$ be a partition of \mathcal{S}.
A ϕ-preimage of the partition \mathcal{R} (if it exists) is constructed as follows.

1. Let $\mathcal{R}^{\prime} \in[\mathcal{S}]$ and $\rho^{\prime} \in \overrightarrow{\mathcal{S}}\left(\mathcal{R}^{\prime}, \mathcal{S}^{\prime}\right)$ satisfy the pullback diagram below.
2. For all $n \in[1 \ldots N]$, let \mathcal{R}_{n}^{\prime} be an object and let $\iota_{n}^{\prime} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}_{n}^{\prime}, \mathcal{R}^{\prime}\right)$ be a morphism satisfying the left-hand pullback diagram below.
3. Suppose that $\left(\mathcal{R}^{\prime} ; \iota_{1}^{\prime}, \ldots, \iota_{N}^{\prime}\right)$ is a coproduct of $\mathcal{R}_{1}^{\prime}, \ldots, \mathcal{R}_{N}^{\prime}$. Let $\mathcal{R}^{\prime}:=\left(\mathcal{R}_{1}^{\prime}, \iota_{1}^{\prime} ; \ldots ; \mathcal{R}_{N}^{\prime}, \iota_{N}^{\prime} ; \mathcal{R}^{\prime}, \rho^{\prime}\right)$. Then $\mathcal{R}^{\prime} \in \mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}^{\prime}\right)$, and we get a commuting diagram:

Partition preimages: example

Example 4. Suppose $\mathcal{C}=$ Set, Meas, or Top.

Partition preimages: example

Example 4. Suppose $\mathcal{C}=$ Set, Meas, or Top. Let $\mathcal{S} \in \mathcal{C}$.

Partition preimages: example

Example 4. Suppose $\mathcal{C}=$ Set, Meas, or Top. Let $\mathcal{S} \in \mathcal{C}$. Let $\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right) \in \mathfrak{R}_{\mathcal{S}}(\mathcal{S})$, as in Example 1. (i.e. $\mathcal{R}_{n} \stackrel{\iota_{n}}{\longrightarrow} \mathcal{R}$ and $\mathcal{R} \stackrel{\rho}{\hookrightarrow} \mathcal{S}$ are inclusion morphisms).

Partition preimages: example

Example 4. Suppose $\mathcal{C}=$ Set, Meas, or Top. Let $\mathcal{S} \in \mathcal{C}$. Let $\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right) \in \mathfrak{R}_{\mathcal{S}}(\mathcal{S})$, as in Example 1. (i.e. $\mathcal{R}_{n} \stackrel{\iota_{n}}{\longrightarrow} \mathcal{R}$ and $\mathcal{R} \stackrel{\rho}{\hookrightarrow} \mathcal{S}$ are inclusion morphisms). Let $\phi: \mathcal{S}^{\prime} \longrightarrow \mathcal{S}$ be a \mathcal{C}-morphism.

Partition preimages: example

Example 4. Suppose $\mathcal{C}=$ Set, Meas, or Top. Let $\mathcal{S} \in \mathcal{C}$.
Let $\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right) \in \mathfrak{R}_{\mathcal{S}}(\mathcal{S})$, as in Example 1. (i.e. $\mathcal{R}_{n} \stackrel{\iota_{n}}{\longrightarrow} \mathcal{R}$ and $\mathcal{R} \stackrel{\rho}{\hookrightarrow} \mathcal{S}$ are inclusion morphisms). Let $\phi: \mathcal{S}^{\prime} \longrightarrow \mathcal{S}$ be a \mathcal{C}-morphism. Define $\mathcal{R}_{n}^{\prime}:=\phi^{-1}\left(\mathcal{R}_{n}\right) \subseteq \mathcal{S}^{\prime}($ for all $n \in[1 \ldots N])$ and $\mathcal{R}^{\prime}:=\phi^{-1}(\mathcal{R})=$ $\mathcal{R}_{1}^{\prime} \sqcup \ldots \sqcup \mathcal{R}_{N}^{\prime} \subseteq \mathcal{S}^{\prime}$.

Partition preimages: example

Example 4. Suppose $\mathcal{C}=$ Set, Meas, or Top. Let $\mathcal{S} \in \mathcal{C}$.
Let $\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right) \in \mathfrak{R}_{\mathcal{S}}(\mathcal{S})$, as in Example 1. (i.e. $\mathcal{R}_{n} \stackrel{\iota_{n}}{\longrightarrow} \mathcal{R}$ and $\mathcal{R} \stackrel{\rho}{\hookrightarrow} \mathcal{S}$ are inclusion morphisms). Let $\phi: \mathcal{S}^{\prime} \longrightarrow \mathcal{S}$ be a \mathcal{C}-morphism. Define $\mathcal{R}_{n}^{\prime}:=\phi^{-1}\left(\mathcal{R}_{n}\right) \subseteq \mathcal{S}^{\prime}($ for all $n \in[1 \ldots N])$ and $\mathcal{R}^{\prime}:=\phi^{-1}(\mathcal{R})=$ $\mathcal{R}_{1}^{\prime} \sqcup \ldots \sqcup \mathcal{R}_{N}^{\prime} \subseteq \mathcal{S}^{\prime}$. Let $\mathcal{R}_{n}^{\prime} \stackrel{\ell^{\prime}}{\leftrightarrows} \mathcal{R}^{\prime}$ and $\mathcal{R}^{\prime} \stackrel{\rho^{\prime}}{\longrightarrow} \mathcal{S}^{\prime}$ be inclusion morphisms.

Partition preimages: example

Example 4. Suppose $\mathcal{C}=$ Set, Meas, or Top. Let $\mathcal{S} \in \mathcal{C}$.
Let $\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right) \in \mathfrak{R}_{\mathcal{S}}(\mathcal{S})$, as in Example 1. (i.e. $\mathcal{R}_{n} \stackrel{\iota_{n}}{\longrightarrow} \mathcal{R}$ and $\mathcal{R} \stackrel{\rho}{\hookrightarrow} \mathcal{S}$ are inclusion morphisms). Let $\phi: \mathcal{S}^{\prime} \longrightarrow \mathcal{S}$ be a \mathcal{C}-morphism. Define $\mathcal{R}_{n}^{\prime}:=\phi^{-1}\left(\mathcal{R}_{n}\right) \subseteq \mathcal{S}^{\prime}$ (for all $n \in[1 \ldots N]$) and $\mathcal{R}^{\prime}:=\phi^{-1}(\mathcal{R})=$ $\mathcal{R}_{1}^{\prime} \sqcup \ldots \sqcup \mathcal{R}_{N}^{\prime} \subseteq \mathcal{S}^{\prime}$. Let $\mathcal{R}_{n}^{\prime} \stackrel{\iota_{n}^{\prime}}{\longrightarrow} \mathcal{R}^{\prime}$ and $\mathcal{R}^{\prime} \stackrel{\rho^{\prime}}{\longrightarrow} \mathcal{S}^{\prime}$ be inclusion morphisms. Then $\mathcal{R}^{\prime}:=\left(\mathcal{R}_{1}^{\prime}, \iota_{1}^{\prime} ; \ldots ; \mathcal{R}_{N}^{\prime}, \iota_{N}^{\prime} ; \mathcal{R}^{\prime}, \rho^{\prime}\right)$ is a ϕ-preimage of \mathcal{R}.

Partition preimages: example

Example 4. Suppose $\mathcal{C}=$ Set, Meas, or Top. Let $\mathcal{S} \in \mathcal{C}$.
Let $\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right) \in \mathfrak{R}_{\mathcal{S}}(\mathcal{S})$, as in Example 1. (i.e. $\mathcal{R}_{n} \stackrel{\iota_{n}}{\longrightarrow} \mathcal{R}$ and $\mathcal{R} \stackrel{\rho}{\hookrightarrow} \mathcal{S}$ are inclusion morphisms). Let $\phi: \mathcal{S}^{\prime} \longrightarrow \mathcal{S}$ be a \mathcal{C}-morphism. Define $\mathcal{R}_{n}^{\prime}:=\phi^{-1}\left(\mathcal{R}_{n}\right) \subseteq \mathcal{S}^{\prime}($ for all $n \in[1 \ldots N])$ and $\mathcal{R}^{\prime}:=\phi^{-1}(\mathcal{R})=$ $\mathcal{R}_{1}^{\prime} \sqcup \ldots \sqcup \mathcal{R}_{N}^{\prime} \subseteq \mathcal{S}^{\prime}$. Let $\mathcal{R}_{n}^{\prime} \stackrel{\iota_{n}^{\prime}}{\longrightarrow} \mathcal{R}^{\prime}$ and $\mathcal{R}^{\prime} \stackrel{\rho^{\prime}}{\longrightarrow} \mathcal{S}^{\prime}$ be inclusion morphisms. Then $\mathcal{R}^{\prime}:=\left(\mathcal{R}_{1}^{\prime}, \iota_{1}^{\prime} ; \ldots ; \mathcal{R}_{N}^{\prime}, \iota_{N}^{\prime} ; \mathcal{R}^{\prime}, \rho^{\prime}\right)$ is a ϕ-preimage of \mathcal{R}. Proof. Let $\psi_{n}:=\phi_{1 \mathcal{R}_{n}^{\prime}}: \mathcal{R}_{n}^{\prime} \longrightarrow \mathcal{R}_{n}(\forall n \in[1 \ldots N])$ and $\psi:=\phi_{\mid \mathcal{R}^{\prime}}: \mathcal{R}^{\prime} \rightarrow \mathcal{R}$.

Measurable and probability-preserving morphisms.

Let \mathcal{S} be a subcategory of \mathcal{C}. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, and let $\phi \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$.
We will say that ϕ is \mathcal{S}-measur
ϕ-preimage $\phi^{-1}(\mathcal{R})$ in $\Re_{\mathcal{S}}\left(\mathcal{S}_{1}\right)$

Measurable and probability-preserving morphisms.

Let \mathcal{S} be a subcategory of \mathcal{C}. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, and let $\phi \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$.
We will say that ϕ is \mathcal{S}-measurable if every \mathcal{S}-partition $\mathcal{R} \in \mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$ has a ϕ-preimage $\phi^{-1}(\mathcal{R})$ in $\Re_{\mathcal{S}}\left(\mathcal{S}_{1}\right)$.

Measurable and probability-preserving morphisms.

Let \mathcal{S} be a subcategory of \mathcal{C}. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, and let $\phi \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$.
We will say that ϕ is \mathcal{S}-measurable if every \mathcal{S}-partition $\mathcal{R} \in \mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$ has a ϕ-preimage $\phi^{-1}(\mathcal{R})$ in $\Re_{\mathcal{S}}\left(\mathcal{S}_{1}\right)$.
Let \mathbf{P}_{1} and \mathbf{P}_{2} be probability structures on $\Re_{\mathcal{S}}\left(\mathcal{S}_{1}\right)$ and $\Re_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$. We say ϕ is probability-preserving with respect to \mathbf{P}_{1} and \mathbf{P}_{2} if ϕ is measurable and, for every $\boldsymbol{R}_{2} \in \mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$, if $\mathcal{R}_{1}:=\phi^{-1}\left(\mathcal{R}_{2}\right)$, then $\mathbf{p}_{1}^{\boldsymbol{\mathcal { R }}_{1}}=\mathbf{p}_{2}^{\mathcal{R}_{2}}$.

Measurable and probability-preserving morphisms.

Let \mathcal{S} be a subcategory of \mathcal{C}. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, and let $\phi \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$.
We will say that ϕ is \mathcal{S}-measurable if every \mathcal{S}-partition $\mathcal{R} \in \Re_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$ has a ϕ-preimage $\phi^{-1}(\mathcal{R})$ in $\mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{1}\right)$.
Let \mathbf{P}_{1} and \mathbf{P}_{2} be probability structures on $\Re_{\mathcal{S}}\left(\mathcal{S}_{1}\right)$ and $\mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$. We say ϕ is probability-preserving with respect to \mathbf{P}_{1} and \mathbf{P}_{2} if ϕ is measurable and, for every $\boldsymbol{\mathcal { R }}_{2} \in \mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$, if $\boldsymbol{\mathcal { R }}_{1}:=\phi^{-1}\left(\boldsymbol{\mathcal { R }}_{2}\right)$, then $\mathbf{p}_{1}^{\boldsymbol{\mathcal { R }}_{1}}=\mathbf{p}_{2}^{\boldsymbol{\mathcal { R }}_{2}}$.
Example 5. Let \mathcal{S} be a subcategory of Meas. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, and let $\phi: \mathcal{S}_{1} \longrightarrow \mathcal{S}_{2}$ be a measurable function.

Measurable and probability-preserving morphisms.

Let \mathcal{S} be a subcategory of \mathcal{C}. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, and let $\phi \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$.
We will say that ϕ is \mathcal{S}-measurable if every \mathcal{S}-partition $\mathcal{R} \in \Re_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$ has a ϕ-preimage $\phi^{-1}(\mathcal{R})$ in $\mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{1}\right)$.
Let \mathbf{P}_{1} and \mathbf{P}_{2} be probability structures on $\Re_{\mathcal{S}}\left(\mathcal{S}_{1}\right)$ and $\mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$. We say ϕ is probability-preserving with respect to \mathbf{P}_{1} and \mathbf{P}_{2} if ϕ is measurable and, for every $\boldsymbol{\mathcal { R }}_{2} \in \mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$, if $\boldsymbol{\mathcal { R }}_{1}:=\phi^{-1}\left(\boldsymbol{\mathcal { R }}_{2}\right)$, then $\mathbf{p}_{1}^{\boldsymbol{\mathcal { R }}_{1}}=\mathbf{p}_{2}^{\mathcal{R}_{2}}$.
Example 5. Let \mathcal{S} be a subcategory of Meas. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, and let $\phi: \mathcal{S}_{1} \longrightarrow \mathcal{S}_{2}$ be a measurable function.
For any \mathcal{S}-partition $\mathcal{R} \in \mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$, define the preimage $\phi^{-1}(\mathcal{R})$ as in Example 4; then $\phi^{-1}(\mathcal{R}) \in \mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{1}\right)$. Thus, ϕ is \mathcal{S}-measurable.

Measurable and probability-preserving morphisms.

Let \mathcal{S} be a subcategory of \mathcal{C}. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, and let $\phi \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$.
We will say that ϕ is \mathcal{S}-measurable if every \mathcal{S}-partition $\mathcal{R} \in \mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$ has a ϕ-preimage $\phi^{-1}(\mathcal{R})$ in $\mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{1}\right)$.
Let \mathbf{P}_{1} and \mathbf{P}_{2} be probability structures on $\Re_{\mathcal{S}}\left(\mathcal{S}_{1}\right)$ and $\mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$. We say ϕ is probability-preserving with respect to \mathbf{P}_{1} and \mathbf{P}_{2} if ϕ is measurable and, for every $\boldsymbol{R}_{2} \in \mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$, if $\boldsymbol{\mathcal { R }}_{1}:=\phi^{-1}\left(\boldsymbol{\mathcal { R }}_{2}\right)$, then $\mathbf{p}_{1}^{\boldsymbol{\mathcal { R }}_{1}}=\mathbf{p}_{2}^{\boldsymbol{\mathcal { R }}_{2}}$.
Example 5. Let \mathcal{S} be a subcategory of Meas. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, and let $\phi: \mathcal{S}_{1} \longrightarrow \mathcal{S}_{2}$ be a measurable function.
For any \mathcal{S}-partition $\mathcal{R} \in \mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$, define the preimage $\phi^{-1}(\mathcal{R})$ as in Example 4; then $\phi^{-1}(\mathcal{R}) \in \mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{1}\right)$. Thus, ϕ is \mathcal{S}-measurable.

Let μ_{1} and μ_{2} be probability measures on \mathcal{S}_{1} and \mathcal{S}_{2}; and use these to define probability structures \mathbf{P}_{1} and \mathbf{P}_{2} on $\mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{1}\right)$ and $\mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$ as in Example 3.

Measurable and probability-preserving morphisms.

Let \mathcal{S} be a subcategory of \mathcal{C}. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, and let $\phi \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$.
We will say that ϕ is \mathcal{S}-measurable if every \mathcal{S}-partition $\mathcal{R} \in \mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$ has a ϕ-preimage $\phi^{-1}(\mathcal{R})$ in $\mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{1}\right)$.
Let \mathbf{P}_{1} and \mathbf{P}_{2} be probability structures on $\Re_{\mathcal{S}}\left(\mathcal{S}_{1}\right)$ and $\mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$. We say ϕ is probability-preserving with respect to \mathbf{P}_{1} and \mathbf{P}_{2} if ϕ is measurable and, for every $\boldsymbol{R}_{2} \in \mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$, if $\boldsymbol{\mathcal { R }}_{1}:=\phi^{-1}\left(\boldsymbol{\mathcal { R }}_{2}\right)$, then $\mathbf{p}_{1}^{\boldsymbol{\mathcal { R }}_{1}}=\mathbf{p}_{2}^{\boldsymbol{\mathcal { R }}_{2}}$.
Example 5. Let \mathcal{S} be a subcategory of Meas. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, and let $\phi: \mathcal{S}_{1} \longrightarrow \mathcal{S}_{2}$ be a measurable function.
For any \mathcal{S}-partition $\mathcal{R} \in \mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$, define the preimage $\phi^{-1}(\mathcal{R})$ as in Example 4; then $\phi^{-1}(\mathcal{R}) \in \mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{1}\right)$. Thus, ϕ is \mathcal{S}-measurable.

Let μ_{1} and μ_{2} be probability measures on \mathcal{S}_{1} and \mathcal{S}_{2}; and use these to define probability structures \mathbf{P}_{1} and \mathbf{P}_{2} on $\mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{1}\right)$ and $\mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$ as in Example 3. Suppose ϕ is measure-preserving with respect to μ_{1} and μ_{2} (i.e. $\mu_{1}\left[\phi^{-1}(\mathcal{R})\right]=\mu_{2}[\mathcal{R}]$ for every measurable subset $\mathcal{R} \subseteq \mathcal{S}_{2}$).

Measurable and probability-preserving morphisms.

Let \mathcal{S} be a subcategory of \mathcal{C}. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, and let $\phi \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$.
We will say that ϕ is \mathcal{S}-measurable if every \mathcal{S}-partition $\mathcal{R} \in \mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$ has a ϕ-preimage $\phi^{-1}(\mathcal{R})$ in $\Re_{\mathcal{S}}\left(\mathcal{S}_{1}\right)$.
Let \mathbf{P}_{1} and \mathbf{P}_{2} be probability structures on $\Re_{\mathcal{S}}\left(\mathcal{S}_{1}\right)$ and $\Re_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$. We say ϕ is probability-preserving with respect to \mathbf{P}_{1} and \mathbf{P}_{2} if ϕ is measurable and, for every $\boldsymbol{R}_{2} \in \mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$, if $\mathcal{R}_{1}:=\phi^{-1}\left(\mathcal{R}_{2}\right)$, then $\mathbf{p}_{1}^{\boldsymbol{\mathcal { R }}_{1}}=\mathbf{p}_{2}^{\boldsymbol{R}_{2}}$.
Example 5. Let \mathcal{S} be a subcategory of Meas. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, and let $\phi: \mathcal{S}_{1} \longrightarrow \mathcal{S}_{2}$ be a measurable function.
For any \mathcal{S}-partition $\mathcal{R} \in \mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$, define the preimage $\phi^{-1}(\mathcal{R})$ as in Example 4; then $\phi^{-1}(\mathcal{R}) \in \mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{1}\right)$. Thus, ϕ is \mathcal{S}-measurable.
Let μ_{1} and μ_{2} be probability measures on \mathcal{S}_{1} and \mathcal{S}_{2}; and use these to define probability structures \mathbf{P}_{1} and \mathbf{P}_{2} on $\mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{1}\right)$ and $\mathfrak{R}_{\mathcal{S}}\left(\mathcal{S}_{2}\right)$ as in Example 3. Suppose ϕ is measure-preserving with respect to μ_{1} and μ_{2} (i.e. $\mu_{1}\left[\phi^{-1}(\mathcal{R})\right]=\mu_{2}[\mathcal{R}]$ for every measurable subset $\left.\mathcal{R} \subseteq \mathcal{S}_{2}\right)$.
Then ϕ is a probability-preserving morphism with respect to \mathbf{P}_{1} and \mathbf{P}_{2}.

Part III

Concretization

Quasiconstant morphisms

Let \mathcal{C} be a category. An object B in \mathcal{C} is null if $C(A, B)=0$ for all $A \in[C]$
Example. The empty set \emptyset is the unique null object in the category Set
Let $\mathcal{B}, \mathcal{C} \in[\mathcal{C}]$ be non-null, and let $\kappa \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$
Sav that κ is quasiconstant if for anv other obiect $A \in[C]$, and any $f_{1}, f_{2} \in \mathcal{C}(\mathcal{A}, \mathcal{B})$ we have $\kappa \circ f_{1}=\kappa \circ f_{2}$

Examples.

(a) In a concrete category, any constant morphism is quasiconstant (b) If \mathcal{C} has a terminal object, then a morphism is quasiconstant if and only if it can be factored through a terminal morphism
\qquad
\qquad is a morphism $g^{\prime} \in \overrightarrow{\mathcal{C}}(\mathcal{Z}, \mathcal{C})$ making this diagram commute: Let $\mathbb{K}(B, \mathcal{C})$ denote the set of all quasiconstant morphisms from B into \mathcal{C} We will use these quasiconstant morphisms to construct a "concrete" representation of \mathcal{C}

Quasiconstant morphisms

Let \mathcal{C} be a category. An object \mathcal{B} in \mathcal{C} is null if $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})=\emptyset$ for all $\mathcal{A} \in[\mathcal{C}]$.

Examples.

Quasiconstant morphisms

Let \mathcal{C} be a category. An object \mathcal{B} in \mathcal{C} is null if $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})=\emptyset$ for all $\mathcal{A} \in[\mathcal{C}]$. Example. The empty set \emptyset is the unique null object in the category Set.

Quasiconstant morphisms

Let \mathcal{C} be a category. An object \mathcal{B} in \mathcal{C} is null if $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})=\emptyset$ for all $\mathcal{A} \in[\mathcal{C}]$. Example. The empty set \emptyset is the unique null object in the category Set. Let $\mathcal{B}, \mathcal{C} \in[\mathcal{C}]$ be non-null, and let $\kappa \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$.

Quasiconstant morphisms

Let \mathcal{C} be a category. An object \mathcal{B} in \mathcal{C} is null if $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})=\emptyset$ for all $\mathcal{A} \in[\mathcal{C}]$. Example. The empty set \emptyset is the unique null object in the category Set. Let $\mathcal{B}, \mathcal{C} \in[\mathcal{C}]$ be non-null, and let $\kappa \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$.
Say that κ is quasiconstant if for any other object $\mathcal{A} \in[\mathcal{C}]$, and any $f_{1}, f_{2} \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ we have $\kappa \circ f_{1}=\kappa \circ f_{2}$.

Quasiconstant morphisms

Let \mathcal{C} be a category. An object \mathcal{B} in \mathcal{C} is null if $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})=\emptyset$ for all $\mathcal{A} \in[\mathcal{C}]$. Example. The empty set \emptyset is the unique null object in the category Set. Let $\mathcal{B}, \mathcal{C} \in[\mathcal{C}]$ be non-null, and let $\kappa \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$.
Say that κ is quasiconstant if for any other object $\mathcal{A} \in[\mathcal{C}]$, and any $f_{1}, f_{2} \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ we have $\kappa \circ f_{1}=\kappa \circ f_{2}$.

Examples.

(a) In a concrete category, any constant morphism is quasiconstant.

Quasiconstant morphisms

Let \mathcal{C} be a category. An object \mathcal{B} in \mathcal{C} is null if $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})=\emptyset$ for all $\mathcal{A} \in[\mathcal{C}]$. Example. The empty set \emptyset is the unique null object in the category Set. Let $\mathcal{B}, \mathcal{C} \in[\mathcal{C}]$ be non-null, and let $\kappa \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$.
Say that κ is quasiconstant if for any other object $\mathcal{A} \in[\mathcal{C}]$, and any $f_{1}, f_{2} \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ we have $\kappa \circ f_{1}=\kappa \circ f_{2}$.

Examples.

(a) In a concrete category, any constant morphism is quasiconstant.
(b) If \mathcal{C} has a terminal object, then a morphism is quasiconstant if and only if it can be factored through a terminal morphism.

Quasiconstant morphisms

Let \mathcal{C} be a category. An object \mathcal{B} in \mathcal{C} is null if $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})=\emptyset$ for all $\mathcal{A} \in[\mathcal{C}]$. Example. The empty set \emptyset is the unique null object in the category Set.
Let $\mathcal{B}, \mathcal{C} \in[\mathcal{C}]$ be non-null, and let $\kappa \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$.
Say that κ is quasiconstant if for any other object $\mathcal{A} \in[\mathcal{C}]$, and any $f_{1}, f_{2} \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ we have $\kappa \circ f_{1}=\kappa \circ f_{2}$.

Examples.

(a) In a concrete category, any constant morphism is quasiconstant.
(b) If \mathcal{C} has a terminal object, then a morphism is quasiconstant if and only if it can be factored through a terminal morphism.
Formally, let \mathcal{Z} be the terminal object, and suppose $\overrightarrow{\mathcal{C}}(\mathcal{Z}, \mathcal{B}) \neq \emptyset$.
Then a morphism $g \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$ is quasiconstant if and only if there is a morphism $g^{\prime} \in \overrightarrow{\mathcal{C}}(\mathcal{Z}, \mathcal{C})$ making this diagram commute:

Quasiconstant morphisms

Let \mathcal{C} be a category. An object \mathcal{B} in \mathcal{C} is null if $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})=\emptyset$ for all $\mathcal{A} \in[\mathcal{C}]$. Example. The empty set \emptyset is the unique null object in the category Set.
Let $\mathcal{B}, \mathcal{C} \in[\mathcal{C}]$ be non-null, and let $\kappa \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$.
Say that κ is quasiconstant if for any other object $\mathcal{A} \in[\mathcal{C}]$, and any $f_{1}, f_{2} \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ we have $\kappa \circ f_{1}=\kappa \circ f_{2}$.

Examples.

(a) In a concrete category, any constant morphism is quasiconstant.
(b) If \mathcal{C} has a terminal object, then a morphism is quasiconstant if and only if it can be factored through a terminal morphism.
Formally, let \mathcal{Z} be the terminal object, and suppose $\overrightarrow{\mathcal{C}}(\mathcal{Z}, \mathcal{B}) \neq \emptyset$.
Then a morphism $g \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$ is quasiconstant if and only if there is a morphism $g^{\prime} \in \overrightarrow{\mathcal{C}}(\mathcal{Z}, \mathcal{C})$ making this diagram commute:

Let $\mathcal{K}(\mathcal{B}, \mathcal{C})$ denote the set of all quasiconstant morphisms from \mathcal{B} into \mathcal{C}.

Quasiconstant morphisms

Let \mathcal{C} be a category. An object \mathcal{B} in \mathcal{C} is null if $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})=\emptyset$ for all $\mathcal{A} \in[\mathcal{C}]$. Example. The empty set \emptyset is the unique null object in the category Set.
Let $\mathcal{B}, \mathcal{C} \in[\mathcal{C}]$ be non-null, and let $\kappa \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$.
Say that κ is quasiconstant if for any other object $\mathcal{A} \in[\mathcal{C}]$, and any $f_{1}, f_{2} \in \overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ we have $\kappa \circ f_{1}=\kappa \circ f_{2}$.

Examples.

(a) In a concrete category, any constant morphism is quasiconstant.
(b) If \mathcal{C} has a terminal object, then a morphism is quasiconstant if and only if it can be factored through a terminal morphism.
Formally, let \mathcal{Z} be the terminal object, and suppose $\overrightarrow{\mathcal{C}}(\mathcal{Z}, \mathcal{B}) \neq \emptyset$.
Then a morphism $g \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$ is quasiconstant if and only if there is a morphism $g^{\prime} \in \overrightarrow{\mathcal{C}}(\mathcal{Z}, \mathcal{C})$ making this diagram commute:

Let $\mathcal{K}(\mathcal{B}, \mathcal{C})$ denote the set of all quasiconstant morphisms from \mathcal{B} into \mathcal{C}.
We will use these quasiconstant morphisms to construct a "concrete" representation of $\mathcal{C} \ldots$

The concretization functor (informal treatment)

We say \mathcal{C} is biconnected if $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ is nonempty for all non-null $\mathcal{A}, \mathcal{B} \in \mathcal{C}$.

The concretization functor (informal treatment)

We say \mathcal{C} is biconnected if $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ is nonempty for all non-null $\mathcal{A}, \mathcal{B} \in \mathcal{C}$.
Example. Set, Meas, Top, Diff, etc. are biconnected.

The concretization functor (informal treatment)

We say \mathcal{C} is biconnected if $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ is nonempty for all non-null $\mathcal{A}, \mathcal{B} \in \mathcal{C}$.
Example. Set, Meas, Top, Diff, etc. are biconnected.
Suppose \mathcal{C} is a biconnected category.

The concretization functor (informal treatment)

We say \mathcal{C} is biconnected if $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ is nonempty for all non-null $\mathcal{A}, \mathcal{B} \in \mathcal{C}$. Example. Set, Meas, Top, Diff, etc. are biconnected. Suppose \mathcal{C} is a biconnected category. We can use quasiconstant morphisms to define a concretization functor from \mathcal{C} into Set, as follows...

The concretization functor (informal treatment)

We say \mathcal{C} is biconnected if $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ is nonempty for all non-null $\mathcal{A}, \mathcal{B} \in \mathcal{C}$.
Example. Set, Meas, Top, Diff, etc. are biconnected.
Suppose \mathcal{C} is a biconnected category. We can use quasiconstant morphisms to define a concretization functor from \mathcal{C} into Set, as follows...

For any object \mathcal{B} in $[\mathcal{C}]$, let $\mathcal{K}(\mathcal{B})$ be the set of all quasiconstant morphisms into \mathcal{B} from any other object in $[\mathcal{C}]$.

The concretization functor (informal treatment)

We say \mathcal{C} is biconnected if $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ is nonempty for all non-null $\mathcal{A}, \mathcal{B} \in \mathcal{C}$.
Example. Set, Meas, Top, Diff, etc. are biconnected.
Suppose \mathcal{C} is a biconnected category. We can use quasiconstant morphisms to define a concretization functor from \mathcal{C} into Set, as follows...

For any object \mathcal{B} in $[\mathcal{C}]$, let $\mathcal{K}(\mathcal{B})$ be the set of all quasiconstant morphisms into \mathcal{B} from any other object in $[\mathcal{C}]$.

There is an equivalence relation \sim on $\mathcal{K}(\mathcal{B})$ with the following properties:

The concretization functor (informal treatment)

We say \mathcal{C} is biconnected if $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ is nonempty for all non-null $\mathcal{A}, \mathcal{B} \in \mathcal{C}$.
Example. Set, Meas, Top, Diff, etc. are biconnected.
Suppose \mathcal{C} is a biconnected category. We can use quasiconstant morphisms to define a concretization functor from \mathcal{C} into Set, as follows...

For any object \mathcal{B} in $[\mathcal{C}]$, let $\mathcal{K}(\mathcal{B})$ be the set of all quasiconstant morphisms into \mathcal{B} from any other object in $[\mathcal{C}]$.
There is an equivalence relation \sim on $\mathcal{K}(\mathcal{B})$ with the following properties:

- For any objects $\mathcal{A}, \mathcal{B} \in[\mathcal{C}]$, if $\widetilde{\mathcal{A}}$ is the set of \sim-equivalence classes of $\mathcal{K}(\mathcal{A})$ and $\widetilde{\mathcal{B}}$ is the set of \sim-equivalence classes of $\mathcal{K}(\mathcal{B})$, then any morphism $\phi \in \widetilde{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ induces a function $\widetilde{\phi}: \widetilde{\mathcal{A}} \longrightarrow \widetilde{\mathcal{B}}$.

The concretization functor (informal treatment)

We say \mathcal{C} is biconnected if $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ is nonempty for all non-null $\mathcal{A}, \mathcal{B} \in \mathcal{C}$.
Example. Set, Meas, Top, Diff, etc. are biconnected.
Suppose \mathcal{C} is a biconnected category. We can use quasiconstant morphisms to define a concretization functor from \mathcal{C} into Set, as follows...

For any object \mathcal{B} in $[\mathcal{C}]$, let $\mathcal{K}(\mathcal{B})$ be the set of all quasiconstant morphisms into \mathcal{B} from any other object in $[\mathcal{C}]$.
There is an equivalence relation \sim on $\mathcal{K}(\mathcal{B})$ with the following properties:

- For any objects $\mathcal{A}, \mathcal{B} \in[\mathcal{C}]$, if $\widetilde{\mathcal{A}}$ is the set of \sim-equivalence classes of $\mathcal{K}(\mathcal{A})$ and $\widetilde{\mathcal{B}}$ is the set of \sim-equivalence classes of $\mathcal{K}(\mathcal{B})$, then any morphism $\phi \in \widetilde{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ induces a function $\widetilde{\phi}: \widetilde{\mathcal{A}} \longrightarrow \widetilde{\mathcal{B}}$.
- The transformation $\mathcal{B} \mapsto \widetilde{\mathcal{B}}$ and $\phi \mapsto \widetilde{\phi}$ is a functor from \mathcal{C} into Set.

The concretization functor (informal treatment)

(33/62)
We say \mathcal{C} is biconnected if $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ is nonempty for all non-null $\mathcal{A}, \mathcal{B} \in \mathcal{C}$.
Example. Set, Meas, Top, Diff, etc. are biconnected.
Suppose \mathcal{C} is a biconnected category. We can use quasiconstant morphisms to define a concretization functor from \mathcal{C} into Set, as follows...

For any object \mathcal{B} in $[\mathcal{C}]$, let $\mathcal{K}(\mathcal{B})$ be the set of all quasiconstant morphisms into \mathcal{B} from any other object in $[\mathcal{C}]$.
There is an equivalence relation \sim on $\mathcal{K}(\mathcal{B})$ with the following properties:

- For any objects $\mathcal{A}, \mathcal{B} \in[\mathcal{C}]$, if $\widetilde{\mathcal{A}}$ is the set of \sim-equivalence classes of $\mathcal{K}(\mathcal{A})$ and $\widetilde{\mathcal{B}}$ is the set of \sim-equivalence classes of $\mathcal{K}(\mathcal{B})$, then any morphism $\phi \in \widetilde{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ induces a function $\widetilde{\phi}: \widetilde{\mathcal{A}} \longrightarrow \widetilde{\mathcal{B}}$.
- The transformation $\mathcal{B} \mapsto \widetilde{\mathcal{B}}$ and $\phi \mapsto \widetilde{\phi}$ is a functor from \mathcal{C} into Set. If $\mathcal{C}=$ Set, Meas, Top or Diff, then this is just the forgetful functor.* (* This is not the case in some other concrete categories.)

The concretization functor (informal treatment)

We say \mathcal{C} is biconnected if $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ is nonempty for all non-null $\mathcal{A}, \mathcal{B} \in \mathcal{C}$. Example. Set, Meas, Top, Diff, etc. are biconnected. Suppose \mathcal{C} is a biconnected category. We can use quasiconstant morphisms to define a concretization functor from \mathcal{C} into Set, as follows... For any object \mathcal{B} in $[\mathcal{C}]$, let $\mathcal{K}(\mathcal{B})$ be the set of all quasiconstant morphisms into \mathcal{B} from any other object in $[\mathcal{C}]$.

There is an equivalence relation \sim on $\mathcal{K}(\mathcal{B})$ with the following properties:

- For any objects $\mathcal{A}, \mathcal{B} \in[\mathcal{C}]$, if $\widetilde{\mathcal{A}}$ is the set of \sim-equivalence classes of $\mathcal{K}(\mathcal{A})$ and $\widetilde{\mathcal{B}}$ is the set of \sim-equivalence classes of $\mathcal{K}(\mathcal{B})$, then any morphism $\phi \in \widetilde{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ induces a function $\widetilde{\phi}: \widetilde{\mathcal{A}} \longrightarrow \widetilde{\mathcal{B}}$.
- The transformation $\mathcal{B} \mapsto \widetilde{\mathcal{B}}$ and $\phi \mapsto \widetilde{\phi}$ is a functor from \mathcal{C} into Set.

If $\mathcal{C}=$ Set, Meas, Top or Diff, then this is just the forgetful functor.*
(* This is not the case in some other concrete categories.)
But the concretization functor is well-defined even in an abstract category.

The concretization functor (informal treatment)

We say \mathcal{C} is biconnected if $\overrightarrow{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ is nonempty for all non-null $\mathcal{A}, \mathcal{B} \in \mathcal{C}$.
Example. Set, Meas, Top, Diff, etc. are biconnected.
Suppose \mathcal{C} is a biconnected category. We can use quasiconstant morphisms to define a concretization functor from \mathcal{C} into Set, as follows...

For any object \mathcal{B} in $[\mathcal{C}]$, let $\mathcal{K}(\mathcal{B})$ be the set of all quasiconstant morphisms into \mathcal{B} from any other object in $[\mathcal{C}]$.

There is an equivalence relation \sim on $\mathcal{K}(\mathcal{B})$ with the following properties:

- For any objects $\mathcal{A}, \mathcal{B} \in[\mathcal{C}]$, if $\widetilde{\mathcal{A}}$ is the set of \sim-equivalence classes of $\mathcal{K}(\mathcal{A})$ and $\widetilde{\mathcal{B}}$ is the set of \sim-equivalence classes of $\mathcal{K}(\mathcal{B})$, then any morphism $\phi \in \widetilde{\mathcal{C}}(\mathcal{A}, \mathcal{B})$ induces a function $\widetilde{\phi}: \widetilde{\mathcal{A}} \longrightarrow \widetilde{\mathcal{B}}$.
- The transformation $\mathcal{B} \mapsto \widetilde{\mathcal{B}}$ and $\phi \mapsto \widetilde{\phi}$ is a functor from \mathcal{C} into Set.

If $\mathcal{C}=$ Set, Meas, Top or Diff, then this is just the forgetful functor.*
(* This is not the case in some other concrete categories.)
But the concretization functor is well-defined even in an abstract category. We will refer to the elements of $\widetilde{\mathcal{B}}$ as the quasi-elements of \mathcal{B}.

The concretization functor (formal treatm Proposition 1. Let \mathcal{C} be any biconnected category.

The concretization functor (formal treatment) [skipl $_{(34 / 62)}$

Proposition 1. Let \mathcal{C} be any biconnected category.

- For any object \mathcal{B} in $[\mathcal{C}]$, let $\mathcal{K}(\mathcal{B})$ be the set of all quasiconstant morphisms into \mathcal{B} from any other object in $[\mathcal{C}]$.

The concretization functor (formal treatment) ${ }_{\left[s s_{0} /[]\right.}$

Proposition 1. Let \mathcal{C} be any biconnected category.

- For any object \mathcal{B} in $[\mathcal{C}]$, let $\mathcal{K}(\mathcal{B})$ be the set of all quasiconstant morphisms into \mathcal{B} from any other object in $[\mathcal{C}]$. For any $\kappa_{1}, \kappa_{2} \in \mathcal{K}(\mathcal{B})$, write " $\kappa_{1} \sim \kappa_{2}$ " if $\kappa_{2}=\kappa_{1} \circ \phi$ for some morphism in \mathcal{C}.

The concretization functor (formal treatment) ${ }_{\left[s s_{0} /[]\right.}$

Proposition 1. Let \mathcal{C} be any biconnected category.

- For any object \mathcal{B} in $[\mathcal{C}]$, let $\mathcal{K}(\mathcal{B})$ be the set of all quasiconstant morphisms into \mathcal{B} from any other object in $[\mathcal{C}]$.
For any $\kappa_{1}, \kappa_{2} \in \mathcal{K}(\mathcal{B})$, write " $\kappa_{1} \sim \kappa_{2}$ " if $\kappa_{2}=\kappa_{1} \circ \phi$ for some morphism in \mathcal{C}. Then \sim is an equivalence relation on $\mathcal{K}(\mathcal{B})$.

Proposition 1. Let \mathcal{C} be any biconnected category.

- For any object \mathcal{B} in $[\mathcal{C}]$, let $\mathcal{K}(\mathcal{B})$ be the set of all quasiconstant morphisms into \mathcal{B} from any other object in $[\mathcal{C}]$. For any $\kappa_{1}, \kappa_{2} \in \mathcal{K}(\mathcal{B})$, write " $\kappa_{1} \sim \kappa_{2}$ " if $\kappa_{2}=\kappa_{1} \circ \phi$ for some morphism in \mathcal{C}. Then \sim is an equivalence relation on $\mathcal{K}(\mathcal{B})$.
For any $\kappa \in \mathcal{K}(\mathcal{B})$, let $\bar{\kappa}$ be its equivalence class.

Proposition 1. Let \mathcal{C} be any biconnected category.

- For any object \mathcal{B} in $[\mathcal{C}]$, let $\mathcal{K}(\mathcal{B})$ be the set of all quasiconstant morphisms into \mathcal{B} from any other object in $[\mathcal{C}]$. For any $\kappa_{1}, \kappa_{2} \in \mathcal{K}(\mathcal{B})$, write " $\kappa_{1} \sim \kappa_{2}$ " if $\kappa_{2}=\kappa_{1} \circ \phi$ for some morphism in \mathcal{C}. Then \sim is an equivalence relation on $\mathcal{K}(\mathcal{B})$.
For any $\kappa \in \mathcal{K}(\mathcal{B})$, let $\bar{\kappa}$ be its equivalence class. Let $\widetilde{\mathcal{B}}:=\{\bar{\kappa} ; \kappa \in \mathcal{K}(\mathcal{B})\}$.

Proposition 1. Let \mathcal{C} be any biconnected category.

- For any object \mathcal{B} in $[\mathcal{C}]$, let $\mathcal{K}(\mathcal{B})$ be the set of all quasiconstant morphisms into \mathcal{B} from any other object in $[\mathcal{C}]$. For any $\kappa_{1}, \kappa_{2} \in \mathcal{K}(\mathcal{B})$, write " $\kappa_{1} \sim \kappa_{2}$ " if $\kappa_{2}=\kappa_{1} \circ \phi$ for some morphism in \mathcal{C}. Then \sim is an equivalence relation on $\mathcal{K}(\mathcal{B})$.
For any $\kappa \in \mathcal{K}(\mathcal{B})$, let $\bar{\kappa}$ be its equivalence class. Let $\widetilde{\mathcal{B}}:=\{\bar{\kappa} ; \kappa \in \mathcal{K}(\mathcal{B})\}$.
- For any $b \in \widetilde{\mathcal{B}}$ and \mathcal{A} in $[\mathcal{C}]$, there is a unique $\kappa \in \mathcal{K}(\mathcal{A}, \mathcal{B})$ with $\bar{\kappa}=b$.

Proposition 1. Let \mathcal{C} be any biconnected category.

- For any object \mathcal{B} in $[\mathcal{C}]$, let $\mathcal{K}(\mathcal{B})$ be the set of all quasiconstant morphisms into \mathcal{B} from any other object in $[\mathcal{C}]$. For any $\kappa_{1}, \kappa_{2} \in \mathcal{K}(\mathcal{B})$, write " $\kappa_{1} \sim \kappa_{2}$ " if $\kappa_{2}=\kappa_{1} \circ \phi$ for some morphism in \mathcal{C}. Then \sim is an equivalence relation on $\mathcal{K}(\mathcal{B})$.
For any $\kappa \in \mathcal{K}(\mathcal{B})$, let $\bar{\kappa}$ be its equivalence class. Let $\widetilde{\mathcal{B}}:=\{\bar{\kappa} ; \kappa \in \mathcal{K}(\mathcal{B})\}$.
- For any $b \in \widetilde{\mathcal{B}}$ and \mathcal{A} in $[\mathcal{C}]$, there is a unique $\kappa \in \mathcal{K}(\mathcal{A}, \mathcal{B})$ with $\bar{\kappa}=b$.
- Let \mathcal{C} be a non-null object in $[\mathcal{C}]$, and let $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$.

The concretization functor (formal treatm Proposition 1. Let \mathcal{C} be any biconnected category.

- For any object \mathcal{B} in $[\mathcal{C}]$, let $\mathcal{K}(\mathcal{B})$ be the set of all quasiconstant morphisms into \mathcal{B} from any other object in $[\mathcal{C}]$. For any $\kappa_{1}, \kappa_{2} \in \mathcal{K}(\mathcal{B})$, write " $\kappa_{1} \sim \kappa_{2}$ " if $\kappa_{2}=\kappa_{1} \circ \phi$ for some morphism in \mathcal{C}. Then \sim is an equivalence relation on $\mathcal{K}(\mathcal{B})$.
For any $\kappa \in \mathcal{K}(\mathcal{B})$, let $\bar{\kappa}$ be its equivalence class. Let $\widetilde{\mathcal{B}}:=\{\bar{\kappa} ; \kappa \in \mathcal{K}(\mathcal{B})\}$.
- For any $b \in \widetilde{\mathcal{B}}$ and \mathcal{A} in $[\mathcal{C}]$, there is a unique $\kappa \in \mathcal{K}(\mathcal{A}, \mathcal{B})$ with $\bar{\kappa}=b$.
- Let \mathcal{C} be a non-null object in $[\mathcal{C}]$, and let $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$.

For any $b \in \widetilde{\mathcal{B}}$, if $b=\bar{\kappa}$ for some quasiconstant morphism $\kappa \in \mathcal{K}(\mathcal{A}, \mathcal{B})$ (for some $\mathcal{A} \in[\mathcal{C}]$), then define

$$
\widetilde{\phi}(b):=\overline{\phi \circ \kappa} .
$$

The concretization functor (formal treatm Proposition 1. Let \mathcal{C} be any biconnected category.

- For any object \mathcal{B} in $[\mathcal{C}]$, let $\mathcal{K}(\mathcal{B})$ be the set of all quasiconstant morphisms into \mathcal{B} from any other object in $[\mathcal{C}]$. For any $\kappa_{1}, \kappa_{2} \in \mathcal{K}(\mathcal{B})$, write " $\kappa_{1} \sim \kappa_{2}$ " if $\kappa_{2}=\kappa_{1} \circ \phi$ for some morphism in \mathcal{C}. Then \sim is an equivalence relation on $\mathcal{K}(\mathcal{B})$.
For any $\kappa \in \mathcal{K}(\mathcal{B})$, let $\bar{\kappa}$ be its equivalence class. Let $\widetilde{\mathcal{B}}:=\{\bar{\kappa} ; \kappa \in \mathcal{K}(\mathcal{B})\}$.
- For any $b \in \widetilde{\mathcal{B}}$ and \mathcal{A} in $[\mathcal{C}]$, there is a unique $\kappa \in \mathcal{K}(\mathcal{A}, \mathcal{B})$ with $\bar{\kappa}=b$.
- Let \mathcal{C} be a non-null object in $[\mathcal{C}]$, and let $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$. For any $b \in \widetilde{\mathcal{B}}$, if $b=\bar{\kappa}$ for some quasiconstant morphism $\kappa \in \mathcal{K}(\mathcal{A}, \mathcal{B})$ (for some $\mathcal{A} \in[\mathcal{C}]$), then define

$$
\widetilde{\phi}(b):=\overline{\phi \circ \kappa} .
$$

Then $\widetilde{\phi}(b)$ is a well-defined element of $\widetilde{\mathcal{C}}$. Thus, we obtain a function $\widetilde{\phi}: \widetilde{\mathcal{B}} \longrightarrow \widetilde{\mathcal{C}}$.

The concretization functor (formal treatment)

[Skip] $(34 / 62)$
Proposition 1. Let \mathcal{C} be any biconnected category.

- For any object \mathcal{B} in $[\mathcal{C}]$, let $\mathcal{K}(\mathcal{B})$ be the set of all quasiconstant morphisms into \mathcal{B} from any other object in $[\mathcal{C}]$.
For any $\kappa_{1}, \kappa_{2} \in \mathcal{K}(\mathcal{B})$, write " $\kappa_{1} \sim \kappa_{2}$ " if $\kappa_{2}=\kappa_{1} \circ \phi$ for some morphism in \mathcal{C}. Then \sim is an equivalence relation on $\mathcal{K}(\mathcal{B})$.
For any $\kappa \in \mathcal{K}(\mathcal{B})$, let $\bar{\kappa}$ be its equivalence class. Let $\widetilde{\mathcal{B}}:=\{\bar{\kappa} ; \kappa \in \mathcal{K}(\mathcal{B})\}$.
- For any $b \in \widetilde{\mathcal{B}}$ and \mathcal{A} in $[\mathcal{C}]$, there is a unique $\kappa \in \mathcal{K}(\mathcal{A}, \mathcal{B})$ with $\bar{\kappa}=b$.
- Let \mathcal{C} be a non-null object in $[\mathcal{C}]$, and let $\phi \in \overrightarrow{\mathcal{C}}(\mathcal{B}, \mathcal{C})$.

For any $b \in \widetilde{\mathcal{B}}$, if $b=\bar{\kappa}$ for some quasiconstant morphism $\kappa \in \mathcal{K}(\mathcal{A}, \mathcal{B})$ (for some $\mathcal{A} \in[\mathcal{C}]$), then define

$$
\widetilde{\phi}(b):=\overline{\phi \circ \kappa}
$$

Then $\widetilde{\phi}(b)$ is a well-defined element of $\widetilde{\mathcal{C}}$. Thus, we obtain a function $\widetilde{\phi}: \widetilde{\mathcal{B}} \longrightarrow \widetilde{\mathcal{C}}$.

- The transformation $\mathcal{B} \mapsto \widetilde{\mathcal{B}}$ and $\phi \mapsto \widetilde{\phi}$ is a functor from \mathcal{C} into Set.

Part IV

Products, spans,

and
quasipreferences

Spans: executive summary

- Let \mathcal{X} be an outcome place in $[\mathcal{X}]$.

A span on \mathcal{X} is a categorical construction which plays the role of a binary relation on \mathcal{X}
\square For us, $\mathbb{\unrhd}$ will play the role of the ex post preferences order
\square

\geq will play the role of the statewise dominance order induced by $\mathbb{\unrhd}$ If $[\triangleright]$ satisfies reasonable conditions, then \triangleright and $\mathbb{\square}$ are reflexive and transitive, and $\widetilde{\triangleright}$ is also complete (i.e. it is a preference order on \mathcal{X}) In this case, we say that $[\Delta]$ is a quasipreference on χ However, to save time, we will

Spans: executive summary

- Let \mathcal{X} be an outcome place in $[\mathcal{X}]$.
- A span on \mathcal{X} is a categorical construction which plays the role of a binary relation on \mathcal{X}.

\square trancitive and \mathbb{S} is also comnlete (ie it is a nreference order on \mathcal{X}) In this case, we say that $[\Sigma]$ is a quasipreference on \mathcal{X} However, to save time, we will

Spans: executive summary

- Let \mathcal{X} be an outcome place in $[\mathcal{X}]$.
- A span on \mathcal{X} is a categorical construction which plays the role of a binary relation on \mathcal{X}.
- Let $[\unrhd]$ be a span on \mathcal{X}. Then we can define a binary relation $\widetilde{\unrhd}$ on $\widetilde{\mathcal{X}}$.
 \geq will play the role of the statewise dominance order induced by \geq If $[\Delta]$ satisfies reasonable conditions, then Δ and Δ are reflexive and transitive, and Δ is also complete (i.e it is a preference order on In this case, we say that $[\Sigma]$ is a quasipreference on \mathcal{X} However, to save time, we will

Spans: executive summary

- Let \mathcal{X} be an outcome place in $[\mathcal{X}]$.
- A span on \mathcal{X} is a categorical construction which plays the role of a binary relation on \mathcal{X}.
- Let $[\unrhd]$ be a span on \mathcal{X}. Then we can define a binary relation $\widetilde{\unrhd}$ on $\widetilde{\mathcal{X}}$. For us, \unrhd will play the role of the ex post preferences order.

\geq will play the role of the statewise dominance order induced by \geqIf [D] Satisfies reasonable conditions, then D and \mathbb{D} are reflexive and transitive, and \widetilde{D} is also complete (i.e. it is a preference order on \mathcal{X}). In this case, we say that $[\Delta]$ is a quasipreference on \mathcal{X} However, to save time, we will

Spans: executive summary

- Let \mathcal{X} be an outcome place in $[\mathcal{X}]$.
- A span on \mathcal{X} is a categorical construction which plays the role of a binary relation on \mathcal{X}.
- Let $[\unrhd]$ be a span on \mathcal{X}. Then we can define a binary relation $\widetilde{\unrhd}$ on $\widetilde{\mathcal{X}}$. For us, \unrhd will play the role of the ex post preferences order.
- For any state place $\mathcal{S} \in[\mathcal{S}]$, the span $[\triangleright]$ induces a binary relation \unrhd on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$.

If $[\square]$ satisfies reasonable conditions, then \unrhd and $\widetilde{\unrhd}$ are reflexive and transitive, and \triangleright is also complete (i.e. it is a preference order on \mathcal{X}) In this case, we say that $[\nabla]$ is a quasipreference on \mathcal{X} However, to save time, we will

Spans: executive summary

- Let \mathcal{X} be an outcome place in $[\mathcal{X}]$.
- A span on \mathcal{X} is a categorical construction which plays the role of a binary relation on \mathcal{X}.
- Let $[\unrhd]$ be a span on \mathcal{X}. Then we can define a binary relation $\widetilde{\unrhd}$ on $\widetilde{\mathcal{X}}$. For us, \unrhd will play the role of the ex post preferences order.
- For any state place $\mathcal{S} \in[\mathcal{S}]$, the span $[\square]$ induces a binary relation \unrhd on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$.
\unrhd will play the role of the statewise dominance order induced by $\widetilde{\unrhd}$.
\qquad
\qquad

Spans: executive summary

- Let \mathcal{X} be an outcome place in $[\mathcal{X}]$.
- A span on \mathcal{X} is a categorical construction which plays the role of a binary relation on \mathcal{X}.
- Let $[\unrhd]$ be a span on \mathcal{X}. Then we can define a binary relation $\widetilde{\unrhd}$ on $\widetilde{\mathcal{X}}$. For us, \unrhd will play the role of the ex post preferences order.
- For any state place $\mathcal{S} \in[\mathcal{S}]$, the span $[\square]$ induces a binary relation \unrhd on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$.
\unrhd will play the role of the statewise dominance order induced by $\widetilde{\unrhd}$.
- If $[\triangleright]$ satisfies reasonable conditions, then \unrhd and $\widetilde{\unrhd}$ are reflexive and transitive, and $\widetilde{\unrhd}$ is also complete (i.e. it is a preference order on $\widetilde{\mathcal{X}}$).

Spans: executive summary

- Let \mathcal{X} be an outcome place in $[\mathcal{X}]$.
- A span on \mathcal{X} is a categorical construction which plays the role of a binary relation on \mathcal{X}.
- Let $[\unrhd]$ be a span on \mathcal{X}. Then we can define a binary relation $\widetilde{\unrhd}$ on $\widetilde{\mathcal{X}}$. For us, $\mathbb{\unrhd}$ will play the role of the ex post preferences order.
- For any state place $\mathcal{S} \in[\mathcal{S}]$, the span $[\square]$ induces a binary relation \unrhd on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$.
\unrhd will play the role of the statewise dominance order induced by $\widetilde{\unrhd}$.
- If $[\unrhd]$ satisfies reasonable conditions, then \unrhd and $\widetilde{\unrhd}$ are reflexive and transitive, and $\widetilde{\unrhd}$ is also complete (i.e. it is a preference order on $\widetilde{\mathcal{X}}$).
- In this case, we say that $[\triangleright]$ is a quasipreference on \mathcal{X}.

Spans: executive summary

- Let \mathcal{X} be an outcome place in $[\mathcal{X}]$.
- A span on \mathcal{X} is a categorical construction which plays the role of a binary relation on \mathcal{X}.
- Let $[\unrhd]$ be a span on \mathcal{X}. Then we can define a binary relation $\widetilde{\unrhd}$ on $\widetilde{\mathcal{X}}$. For us, $\mathbb{\unrhd}$ will play the role of the ex post preferences order.
- For any state place $\mathcal{S} \in[\mathcal{S}]$, the span $[\square]$ induces a binary relation \unrhd on $\overrightarrow{\boldsymbol{C}}(\mathcal{S}, \mathcal{X})$.
\unrhd will play the role of the statewise dominance order induced by $\widetilde{\unrhd}$.
- If $[\unrhd]$ satisfies reasonable conditions, then \unrhd and $\widetilde{\unrhd}$ are reflexive and transitive, and $\widetilde{\unrhd}$ is also complete (i.e. it is a preference order on $\widetilde{\mathcal{X}}$).
- In this case, we say that $[\triangleright]$ is a quasipreference on \mathcal{X}.
- However, to save time, we will skip the details....

Products

Let \mathcal{C} be a category, and let \mathcal{S}_{1} and \mathcal{S}_{2} be objects in \mathcal{C}. \mathcal{C}, and where $\pi_{1} \in \mathcal{C}\left(\mathcal{S}, \mathcal{S}_{1}\right)$ and $\pi_{2} \in \mathcal{C}\left(\mathcal{S}, \mathcal{S}_{2}\right)$ are morphisms (called projections) with the following property: for any other object \mathcal{R} in \mathcal{C}, anc any morphisms $f_{1} \in \mathcal{C}\left(\mathcal{R}, \mathcal{S}_{1}\right)$ and $f_{2} \in \mathcal{C}\left(\mathcal{R}, \mathcal{S}_{2}\right)$, there is a unique morphism $F \in \mathcal{C}(\mathcal{R}, \mathcal{S})$ such that the following diagram commutes Example. In most concrete categories, \mathcal{S} is the Cartesian product $\mathcal{S}_{1} \times \mathcal{S}_{2}$ (equipped with the suitable "product" structure), while π_{1} and π_{2} are the coordinate projection maps (i.e. $\pi_{1}\left(s_{1}, s_{2}\right)=s_{1}$ and $\left.\pi_{2}\left(s_{1}, s_{2}\right)=s_{2}\right)$ $\mathcal{C}\left(\mathcal{R}, \mathcal{S}_{2}\right)$, we get a function

Products

Let \mathcal{C} be a category, and let \mathcal{S}_{1} and \mathcal{S}_{2} be objects in \mathcal{C}.
A product of \mathcal{S}_{1} and \mathcal{S}_{2} is a triple $\left(\mathcal{S} ; \pi_{1}, \pi_{2}\right)$, where \mathcal{S} is another object in
\mathcal{C}, and where $\pi_{1} \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}, \mathcal{S}_{1}\right)$ and $\pi_{2} \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}, \mathcal{S}_{2}\right)$ are morphisms (called projections) with the following property:

Products

Let \mathcal{C} be a category, and let \mathcal{S}_{1} and \mathcal{S}_{2} be objects in \mathcal{C}.
A product of \mathcal{S}_{1} and \mathcal{S}_{2} is a triple $\left(\mathcal{S} ; \pi_{1}, \pi_{2}\right)$, where \mathcal{S} is another object in \mathcal{C}, and where $\pi_{1} \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}, \mathcal{S}_{1}\right)$ and $\pi_{2} \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}, \mathcal{S}_{2}\right)$ are morphisms (called projections) with the following property: for any other object \mathcal{R} in \mathcal{C}, and any morphisms $f_{1} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}, \mathcal{S}_{1}\right)$ and $f_{2} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}, \mathcal{S}_{2}\right)$, there is a unique morphism $F \in \overrightarrow{\mathcal{C}}(\mathcal{R}, \mathcal{S})$ such that the following diagram commutes:

Example. In most concrete categories, S is the Cartesian pro
(equipped with the suitable "product" structure), while π_{1} and
coordinate projection maps (i.e. $\pi_{1}\left(S_{1}, S_{2}\right)=S_{1}$ and $\pi_{2}\left(S_{1}, S_{2}\right)$
For any $f_{1} \in \vec{C}\left(R, S_{1}\right)$ and $f_{2} \in \vec{C}\left(R, S_{2}\right)$, we get a function

Products

Let \mathcal{C} be a category, and let \mathcal{S}_{1} and \mathcal{S}_{2} be objects in \mathcal{C}.
A product of \mathcal{S}_{1} and \mathcal{S}_{2} is a triple $\left(\mathcal{S} ; \pi_{1}, \pi_{2}\right)$, where \mathcal{S} is another object in \mathcal{C}, and where $\pi_{1} \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}, \mathcal{S}_{1}\right)$ and $\pi_{2} \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}, \mathcal{S}_{2}\right)$ are morphisms (called projections) with the following property: for any other object \mathcal{R} in \mathcal{C}, and any morphisms $f_{1} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}, \mathcal{S}_{1}\right)$ and $f_{2} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}, \mathcal{S}_{2}\right)$, there is a unique morphism $F \in \overrightarrow{\mathcal{C}}(\mathcal{R}, \mathcal{S})$ such that the following diagram commutes:

Example. In most concrete categories, \mathcal{S} is the Cartesian product $\mathcal{S}_{1} \times \mathcal{S}_{2}$ (equipped with the suitable "product" structure), while π_{1} and π_{2} are the coordinate projection maps (i.e. $\pi_{1}\left(s_{1}, s_{2}\right)=s_{1}$ and $\pi_{2}\left(s_{1}, s_{2}\right)=s_{2}$).

Products

Let \mathcal{C} be a category, and let \mathcal{S}_{1} and \mathcal{S}_{2} be objects in \mathcal{C}.
A product of \mathcal{S}_{1} and \mathcal{S}_{2} is a triple $\left(\mathcal{S} ; \pi_{1}, \pi_{2}\right)$, where \mathcal{S} is another object in \mathcal{C}, and where $\pi_{1} \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}, \mathcal{S}_{1}\right)$ and $\pi_{2} \in \overrightarrow{\mathcal{C}}\left(\mathcal{S}, \mathcal{S}_{2}\right)$ are morphisms (called projections) with the following property: for any other object \mathcal{R} in \mathcal{C}, and any morphisms $f_{1} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}, \mathcal{S}_{1}\right)$ and $f_{2} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}, \mathcal{S}_{2}\right)$, there is a unique morphism $F \in \overrightarrow{\mathcal{C}}(\mathcal{R}, \mathcal{S})$ such that the following diagram commutes:

Example. In most concrete categories, \mathcal{S} is the Cartesian product $\mathcal{S}_{1} \times \mathcal{S}_{2}$ (equipped with the suitable "product" structure), while π_{1} and π_{2} are the coordinate projection maps (i.e. $\pi_{1}\left(s_{1}, s_{2}\right)=s_{1}$ and $\pi_{2}\left(s_{1}, s_{2}\right)=s_{2}$). For any $f_{1} \in \overrightarrow{\mathcal{C}}\left(\mathcal{R}, \mathcal{S}_{1}\right)$ and $f_{2} \in \overrightarrow{\boldsymbol{\mathcal { C }}}\left(\mathcal{R}, \mathcal{S}_{2}\right)$, we get a function $F: \mathcal{R} \longrightarrow \mathcal{S}_{1} \times \mathcal{S}_{2}$ defined by $F(r):=\left(f_{1}(r), f_{2}(r)\right)$, for all $r \in \mathcal{R}$.

Spans

Let $\mathcal{X} \in[\mathcal{C}]$. A span on \mathcal{X} is a structure $\langle\unrhd\rangle=\left(\mathcal{Q} ; q_{1}, q_{2}\right)$, where \mathcal{Q} is another object in \mathcal{C}, and where $q_{1}, q_{2} \in \overrightarrow{\mathcal{C}}(\mathcal{Q}, \mathcal{X})$.

Prototypical example. Suppose the product object $\mathcal{X} \times \mathcal{X}$ existec
Let $\mathcal{Q} \stackrel{\iota}{\hookrightarrow} \mathcal{X} \times \mathcal{X}$ be a subobject of $\mathcal{X} \times \mathcal{X}$ (e.g. a binary relation).Construct the following commuting diagram: As this example shows, spans generalize binary relations. Indeed, if $\mathcal{C}=$ Set, then spans are equivalent to binary relations In other categories, the link from spans to relations on \mathcal{X} is more subtle. However, each span determines binary relations on morphisms and quasielements, as we now explain.

Spans

Let $\mathcal{X} \in[\mathcal{C}]$. A span on \mathcal{X} is a structure $\langle\triangleright\rangle=\left(\mathcal{Q} ; q_{1}, q_{2}\right)$, where \mathcal{Q} is another object in \mathcal{C}, and where $q_{1}, q_{2} \in \overline{\mathcal{C}}(\mathcal{Q}, \mathcal{X})$.
Prototypical example. Suppose the product object $\mathcal{X} \times \mathcal{X}$ existed in \mathcal{C}.

As this example shows, spans generalize binary relations.Indeed, if $\mathcal{C}=$ Set, then spans are equivalent to binary relations In other categories, the 'in'k from spans to relations on $\overrightarrow{ }$ ' is more subtle. However, each span determines binary relations on morphisms and quasielements. as we now explain.

Spans

Let $\mathcal{X} \in[\mathcal{C}]$. A span on \mathcal{X} is a structure $\langle\unrhd\rangle=\left(\mathcal{Q} ; q_{1}, q_{2}\right)$, where \mathcal{Q} is another object in \mathcal{C}, and where $q_{1}, q_{2} \in \overrightarrow{\mathcal{C}}(\mathcal{Q}, \mathcal{X})$.

Prototypical example. Suppose the product object $\mathcal{X} \times \mathcal{X}$ existed in \mathcal{C}. Let $\mathcal{Q} \stackrel{\iota}{\hookrightarrow} \mathcal{X} \times \mathcal{X}$ be a subobject of $\mathcal{X} \times \mathcal{X}$ (e.g. a binary relation).

Spans

Let $\mathcal{X} \in[\mathcal{C}]$. A span on \mathcal{X} is a structure $\langle\mathbb{D}\rangle=\left(\mathcal{Q} ; q_{1}, q_{2}\right)$, where \mathcal{Q} is another object in \mathcal{C}, and where $q_{1}, q_{2} \in \overrightarrow{\mathcal{C}}(\mathcal{Q}, \mathcal{X})$.

Prototypical example. Suppose the product object $\mathcal{X} \times \mathcal{X}$ existed in \mathcal{C}. Let $\mathcal{Q} \stackrel{\iota}{\hookrightarrow} \mathcal{X} \times \mathcal{X}$ be a subobject of $\mathcal{X} \times \mathcal{X}$ (e.g. a binary relation). Construct the following commuting diagram:

Then $\left(\mathcal{Q} ; q_{1}, q_{2}\right)$ is a span on \mathcal{X}.

As this example shows, spans generalize binary relations. Indeed, if $C=$ Set, then spans are equivalent to binary relations.

However, each span determines binary relations on morphisms and
quasinlements, as we now explain

Spans

Let $\mathcal{X} \in[\mathcal{C}]$. A span on \mathcal{X} is a structure $\langle\mathbb{D}\rangle=\left(\mathcal{Q} ; q_{1}, q_{2}\right)$, where \mathcal{Q} is another object in \mathcal{C}, and where $q_{1}, q_{2} \in \overline{\mathcal{C}}(\mathcal{Q}, \mathcal{X})$.
Prototypical example. Suppose the product object $\mathcal{X} \times \mathcal{X}$ existed in \mathcal{C}. Let $\mathcal{Q} \stackrel{\iota}{\hookrightarrow} \mathcal{X} \times \mathcal{X}$ be a subobject of $\mathcal{X} \times \mathcal{X}$ (e.g. a binary relation). Construct the following commuting diagram:

Then $\left(\mathcal{Q} ; q_{1}, q_{2}\right)$ is a span on \mathcal{X}.

As this example shows, spans generalize binary relations.

However, each span determines binary relations on morphisms and
quasielementr, as we now explain

Spans

Let $\mathcal{X} \in[\mathcal{C}]$. A span on \mathcal{X} is a structure $\langle\underline{\unrhd}\rangle=\left(\mathcal{Q} ; q_{1}, q_{2}\right)$, where \mathcal{Q} is another object in \mathcal{C}, and where $q_{1}, q_{2} \in \overrightarrow{\mathcal{C}}(\mathcal{Q}, \mathcal{X})$.
Prototypical example. Suppose the product object $\mathcal{X} \times \mathcal{X}$ existed in \mathcal{C}. Let $\mathcal{Q} \stackrel{\iota}{\hookrightarrow} \mathcal{X} \times \mathcal{X}$ be a subobject of $\mathcal{X} \times \mathcal{X}$ (e.g. a binary relation). Construct the following commuting diagram:

Then $\left(\mathcal{Q} ; q_{1}, q_{2}\right)$ is a span on \mathcal{X}.

As this example shows, spans generalize binary relations.
Indeed, if $\mathcal{C}=$ Set, then spans are equivalent to binary relations.

However, each span determines binary relations on morphisms and
quasiolements, as we now oxnlain

Spans

Let $\mathcal{X} \in[\mathcal{C}]$. A span on \mathcal{X} is a structure $\langle\underline{\unrhd}\rangle=\left(\mathcal{Q} ; q_{1}, q_{2}\right)$, where \mathcal{Q} is another object in \mathcal{C}, and where $q_{1}, q_{2} \in \overline{\mathcal{C}}(\mathcal{Q}, \mathcal{X})$.
Prototypical example. Suppose the product object $\mathcal{X} \times \mathcal{X}$ existed in \mathcal{C}. Let $\mathcal{Q} \stackrel{\iota}{\hookrightarrow} \mathcal{X} \times \mathcal{X}$ be a subobject of $\mathcal{X} \times \mathcal{X}$ (e.g. a binary relation). Construct the following commuting diagram:

Then $\left(\mathcal{Q} ; q_{1}, q_{2}\right)$ is a span on \mathcal{X}.

As this example shows, spans generalize binary relations. Indeed, if $\mathcal{C}=$ Set, then spans are equivalent to binary relations. In other categories, the link from spans to relations on \mathcal{X} is more subtle.
\qquad
\qquad

Spans

Let $\mathcal{X} \in[\mathcal{C}]$. A span on \mathcal{X} is a structure $\langle\underline{\perp}\rangle=\left(\mathcal{Q} ; q_{1}, q_{2}\right)$, where \mathcal{Q} is another object in \mathcal{C}, and where $q_{1}, q_{2} \in \overline{\mathcal{C}}(\mathcal{Q}, \mathcal{X})$.
Prototypical example. Suppose the product object $\mathcal{X} \times \mathcal{X}$ existed in \mathcal{C}. Let $\mathcal{Q} \stackrel{\iota}{\hookrightarrow} \mathcal{X} \times \mathcal{X}$ be a subobject of $\mathcal{X} \times \mathcal{X}$ (e.g. a binary relation). Construct the following commuting diagram:

Then $\left(\mathcal{Q} ; q_{1}, q_{2}\right)$ is a span on \mathcal{X}.

As this example shows, spans generalize binary relations. Indeed, if $\mathcal{C}=$ Set, then spans are equivalent to binary relations. In other categories, the link from spans to relations on \mathcal{X} is more subtle.

However, each span determines binary relations on morphisms and quasielements, as we now explain....

Spans define binary relations on morphisms

Let $\langle\underline{\unrhd}\rangle=\left(\mathcal{Q} ; q_{1}, q_{2}\right)$ be a span on \mathcal{X}, and let \mathcal{S} be another object in \mathcal{C}.

Spans define binary relations on morphisms

Let $\langle\underline{\unrhd}\rangle=\left(\underline{Q} ; q_{1}, q_{2}\right)$ be a span on \mathcal{X}, and let \mathcal{S} be another object in \mathcal{C}. Let $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$. Define $\alpha \unrhd \beta$ if there is a morphism $r \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{Q})$
which makes this diagram commute:

Spans define binary relations on morphisms

Let $\langle\underline{\unrhd}\rangle=\left(\mathcal{Q} ; q_{1}, q_{2}\right)$ be a span on \mathcal{X}, and let \mathcal{S} be another object in \mathcal{C}. Let $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$. Define $\alpha \unrhd \beta$ if there is a morphism $r \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{Q})$
which makes this diagram commute:

Example. Suppose $\mathcal{C}=$ Set, and $\langle\underline{\unrhd}\rangle$ represents a binary relation \unrhd on \mathcal{X}.

Spans define binary relations on morphisms

Let $\langle\underline{\unrhd}\rangle=\left(\underline{Q} ; q_{1}, q_{2}\right)$ be a span on \mathcal{X}, and let \mathcal{S} be another object in \mathcal{C}. Let $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$. Define $\alpha \unrhd \beta$ if there is a morphism $r \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{Q})$
which makes this diagram commute:

Example. Suppose $\mathcal{C}=$ Set, and $\langle\unrhd\rangle$ represents a binary relation \unrhd on \mathcal{X}. If $\alpha, \beta: \mathcal{S} \longrightarrow \mathcal{X}$ are functions, then $(\alpha \unrhd \beta) \Leftrightarrow(\alpha(s) \unrhd \beta(s)$ for all $s \in \mathcal{S})$.

Spans define binary relations on morphisms

Let $\langle\underline{\unrhd}\rangle=\left(\underline{Q} ; q_{1}, q_{2}\right)$ be a span on \mathcal{X}, and let \mathcal{S} be another object in \mathcal{C}. Let $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$. Define $\alpha \unrhd \beta$ if there is a morphism $r \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{Q})$
which makes this diagram commute:

Example. Suppose $\mathcal{C}=$ Set, and $\langle\unrhd\rangle$ represents a binary relation \unrhd on \mathcal{X}. If $\alpha, \beta: \mathcal{S} \longrightarrow \mathcal{X}$ are functions, then $(\alpha \unrhd \beta) \Leftrightarrow(\alpha(s) \unrhd \beta(s)$ for all $s \in \mathcal{S})$. If \unrhd is a preference order on \mathcal{X}, this says that α statewise dominates β.

Spans define binary relations on morphisms

Let $\langle\underline{\unrhd}\rangle=\left(\mathcal{Q} ; q_{1}, q_{2}\right)$ be a span on \mathcal{X}, and let \mathcal{S} be another object in \mathcal{C}. Let $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$. Define $\alpha \unrhd \beta$ if there is a morphism $r \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{Q})$
which makes this diagram commute:

Example. Suppose $\mathcal{C}=$ Set, and $\langle\unrhd\rangle$ represents a binary relation \unrhd on \mathcal{X}. If $\alpha, \beta: \mathcal{S} \longrightarrow \mathcal{X}$ are functions, then $(\alpha \unrhd \beta) \Leftrightarrow(\alpha(s) \unrhd \beta(s)$ for all $s \in \mathcal{S})$. If \unrhd is a preference order on \mathcal{X}, this says that α statewise dominates β. Given any quasielements $x_{1}, x_{2} \in \widetilde{\mathcal{X}}$, and any $\mathcal{S} \in[\mathcal{C}]_{+}$, we define $\left(x_{1} \widetilde{\unrhd} x_{2}\right) \Longleftrightarrow\left(\exists \kappa_{1}, \kappa_{2} \in \mathcal{K}(\mathcal{S}, \mathcal{X})\right.$ with $x_{1}=\bar{\kappa}_{1}, \quad x_{2}=\bar{\kappa}_{2}$, and $\left.\kappa_{1} \unrhd \kappa_{2}\right)$
This defines a relation $\mathbb{\unrhd}$ on $\widetilde{\mathcal{X}}$ (independent of the choice of \mathcal{S}).

Spans define binary relations on morphisms

Let $\langle\underline{\unrhd}\rangle=\left(\mathcal{Q} ; q_{1}, q_{2}\right)$ be a span on \mathcal{X}, and let \mathcal{S} be another object in \mathcal{C}. Let $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$. Define $\alpha \unrhd \beta$ if there is a morphism $r \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{Q})$
which makes this diagram commute:

Example. Suppose $\mathcal{C}=$ Set, and $\langle\unrhd\rangle$ represents a binary relation \unrhd on \mathcal{X}. If $\alpha, \beta: \mathcal{S} \longrightarrow \mathcal{X}$ are functions, then $(\alpha \unrhd \beta) \Leftrightarrow(\alpha(s) \unrhd \beta(s)$ for all $s \in \mathcal{S})$. If \unrhd is a preference order on \mathcal{X}, this says that α statewise dominates β. Given any quasielements $x_{1}, x_{2} \in \tilde{\mathcal{X}}$, and any $\mathcal{S} \in[\mathcal{C}]_{+}$, we define $\left(x_{1} \widetilde{\unrhd} x_{2}\right) \Longleftrightarrow\left(\exists \kappa_{1}, \kappa_{2} \in \mathcal{K}(\mathcal{S}, \mathcal{X})\right.$ with $x_{1}=\bar{\kappa}_{1}, \quad x_{2}=\bar{\kappa}_{2}$, and $\left.\kappa_{1} \unrhd \kappa_{2}\right)$
This defines a relation $\widetilde{\unrhd}$ on $\widetilde{\mathcal{X}}$ (independent of the choice of \mathcal{S}). If $\mathcal{C}=$ Set, then every binary relation on $\widetilde{\mathcal{X}}$ comes from a span in this way.

Spans define binary relations on morphisms

Let $\langle\underline{\unrhd}\rangle=\left(\mathcal{Q} ; q_{1}, q_{2}\right)$ be a span on \mathcal{X}, and let \mathcal{S} be another object in \mathcal{C}. Let $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$. Define $\alpha \unrhd \beta$ if there is a morphism $r \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{Q})$
which makes this diagram commute:

Example. Suppose $\mathcal{C}=$ Set, and $\langle\unrhd\rangle$ represents a binary relation \unrhd on \mathcal{X}. If $\alpha, \beta: \mathcal{S} \longrightarrow \mathcal{X}$ are functions, then $(\alpha \unrhd \beta) \Leftrightarrow(\alpha(s) \unrhd \beta(s)$ for all $s \in \mathcal{S})$. If \unrhd is a preference order on \mathcal{X}, this says that α statewise dominates β. Given any quasielements $x_{1}, x_{2} \in \widetilde{\mathcal{X}}$, and any $\mathcal{S} \in[\mathcal{C}]_{+}$, we define $\left(x_{1} \widetilde{\unrhd} x_{2}\right) \Longleftrightarrow\left(\exists \kappa_{1}, \kappa_{2} \in \mathcal{K}(\mathcal{S}, \mathcal{X})\right.$ with $x_{1}=\bar{\kappa}_{1}, \quad x_{2}=\bar{\kappa}_{2}$, and $\left.\kappa_{1} \unrhd \kappa_{2}\right)$
This defines a relation $\widetilde{\unrhd}$ on $\widetilde{\mathcal{X}}$ (independent of the choice of \mathcal{S}). If $\mathcal{C}=$ Set, then every binary relation on $\widetilde{\mathcal{X}}$ comes from a span in this way. For us, $\mathbb{\unrhd}$ will play the role of the ex post preference relation, and \unrhd will be the "statewise dominance" relation induced by $\widetilde{\unrhd}$.

Quasirelations and quasipreferences

Let $\langle\underline{\Delta}\rangle=\left(\mathcal{Q} ; q_{1}, q_{2}\right)$ and $\left\langle\underline{\Delta}^{\prime}\right\rangle=\left(\mathcal{Q}^{\prime} ; q_{1}^{\prime}, q_{2}^{\prime}\right)$ be two spans on \mathcal{X}.

If two spans are equivalent, then they induce the same relation \geq on $\mathcal{C}(S, \mathcal{V})$ and the same ralation \triangle on \mathcal{V} Thus, Δ and $\widetilde{\square}$ can be associated to the entire quasirelation $[\square]$
 transitive, and $\widetilde{\Delta}$ is also complete (i.e. it is a preference order on \mathcal{X}). In this case, we say that ${ }^{\mathbf{r}}{ }^{\boldsymbol{1}}$ is a quasipreference on $\boldsymbol{\chi}$

Quasirelations and quasipreferences

Let $\langle\underline{\unrhd}\rangle=\left(\mathcal{Q} ; q_{1}, q_{2}\right)$ and $\left\langle\underline{\underline{D}}^{\prime}\right\rangle=\left(\mathcal{Q}^{\prime} ; q_{1}^{\prime}, q_{2}^{\prime}\right)$ be two spans on \mathcal{X}. We say that $\langle\underline{\underline{D}}\rangle$ and $\langle\underline{\underline{D}}\rangle$ are equivalent if there are morphisms $f \in \overrightarrow{\mathcal{C}}\left(\mathcal{Q}^{\prime}, \mathcal{Q}\right)$ and $g \in \overrightarrow{\mathcal{C}}\left(\mathcal{Q}, \mathcal{Q}^{\prime}\right)$ such that this diagram commutes:

Quasirelations and quasipreferences

Let $\langle\underline{\unrhd}\rangle=\left(\mathcal{Q} ; q_{1}, q_{2}\right)$ and $\left\langle\underline{\underline{~}}^{\prime}\right\rangle=\left(\mathcal{Q}^{\prime} ; q_{1}^{\prime}, q_{2}^{\prime}\right)$ be two spans on \mathcal{X}. We say that $\langle\underline{\underline{Q}}\rangle$ and $\langle\underline{\underline{\Delta}}\rangle$ are equivalent if there are morphisms $f \in \overrightarrow{\mathcal{C}}\left(\mathcal{Q}^{\prime}, \mathcal{Q}\right)$ and $g \in \overrightarrow{\mathcal{C}}\left(\mathcal{Q}, \mathcal{Q}^{\prime}\right)$ such that this diagram commutes:

Let $[\triangleright]$ denote the equivalence class of $\langle\underline{ }\rangle$. We call $[\triangleright]$ a quasirelation.

Quasirelations and quasipreferences

Let $\langle\underline{\underline{ }}\rangle=\left(\mathcal{Q} ; q_{1}, q_{2}\right)$ and $\left\langle\underline{\Delta}^{\prime}\right\rangle=\left(\mathcal{Q}^{\prime} ; q_{1}^{\prime}, q_{2}^{\prime}\right)$ be two spans on \mathcal{X}. We say that $\langle\underline{\underline{D}}\rangle$ and $\langle\underline{\underline{D}}\rangle$ are equivalent if there are morphisms $f \in \overrightarrow{\mathcal{C}}\left(\mathcal{Q}^{\prime}, \mathcal{Q}\right)$ and $g \in \overrightarrow{\mathcal{C}}\left(\mathcal{Q}, \mathcal{Q}^{\prime}\right)$ such that this diagram commutes:

Let $[\square]$ denote the equivalence class of $\langle\unrhd\rangle$. We call $[\triangleright]$ a quasirelation. If two spans are equivalent, then they induce the same relation \unrhd on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, and the same relation $\widetilde{\unrhd}$ on $\widetilde{\mathcal{X}}$.
Thus, \unrhd and $\widetilde{\unrhd}$ can be associated to the entire quasirelation $[\square]$.

Quasirelations and quasipreferences

Let $\langle\underline{\unrhd}\rangle=\left(\mathcal{Q} ; q_{1}, q_{2}\right)$ and $\left\langle\underline{\underline{D}}^{\prime}\right\rangle=\left(\mathcal{Q}^{\prime} ; q_{1}^{\prime}, q_{2}^{\prime}\right)$ be two spans on \mathcal{X}. We say that $\langle\underline{\underline{D}}\rangle$ and $\langle\underline{\underline{D}}\rangle$ are equivalent if there are morphisms $f \in \overrightarrow{\mathcal{C}}\left(\mathcal{Q}^{\prime}, \mathcal{Q}\right)$ and $g \in \overrightarrow{\boldsymbol{\mathcal { C }}}\left(\mathcal{Q}, \mathcal{Q}^{\prime}\right)$ such that this diagram commutes:

Let $[\square]$ denote the equivalence class of $\langle\underline{ }\rangle$. We call $[\square]$ a quasirelation. If two spans are equivalent, then they induce the same relation \unrhd on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, and the same relation $\widetilde{\unrhd}$ on $\widetilde{\mathcal{X}}$.
Thus, \unrhd and $\widetilde{\unrhd}$ can be associated to the entire quasirelation $[\triangleright]$. If $[\boxtimes]$ satisfies reasonable conditions, then \unrhd and $\widetilde{\unrhd}$ are reflexive and transitive, and $\widetilde{\unrhd}$ is also complete (i.e. it is a preference order on $\widetilde{\mathcal{X}}$).

Quasirelations and quasipreferences

Let $\langle\underline{\unrhd}\rangle=\left(\mathcal{Q} ; q_{1}, q_{2}\right)$ and $\left\langle\underline{\Delta}^{\prime}\right\rangle=\left(\mathcal{Q}^{\prime} ; q_{1}^{\prime}, q_{2}^{\prime}\right)$ be two spans on \mathcal{X}. We say that $\langle\underline{\Delta}\rangle$ and $\langle\underline{\underline{D}}\rangle$ are equivalent if there are morphisms $f \in \overrightarrow{\mathcal{C}}\left(\mathcal{Q}^{\prime}, \mathcal{Q}\right)$ and $g \in \overrightarrow{\boldsymbol{\mathcal { C }}}\left(\mathcal{Q}, \mathcal{Q}^{\prime}\right)$ such that this diagram commutes:

Let $[\square]$ denote the equivalence class of $\langle\underline{ }\rangle$. We call $[\square]$ a quasirelation. If two spans are equivalent, then they induce the same relation \unrhd on $\overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, and the same relation $\widetilde{\unrhd}$ on $\widetilde{\mathcal{X}}$.
Thus, \unrhd and $\widetilde{\unrhd}$ can be associated to the entire quasirelation $[\square]$. If $[\square]$ satisfies reasonable conditions, then \unrhd and $\widetilde{\unrhd}$ are reflexive and transitive, and $\widetilde{\unrhd}$ is also complete (i.e. it is a preference order on $\widetilde{\mathcal{X}}$). In this case, we say that $[\triangleright]$ is a quasipreference on \mathcal{X}.

Compatible utility functions

Let $\mathcal{X} \in[\mathcal{C}]$. A function $u: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ is a \mathcal{C}-compatible utility function if there is a quasipreference $[\square]$ on \mathcal{X} for which u is an ordinal representation:

$$
(x \widetilde{\unrhd} y) \Longleftrightarrow(u(x) \geq u(y)), \quad \text { for all } x, y \in \widetilde{\mathcal{X}}
$$

Compatible utility functions

Let $\mathcal{X} \in[\mathcal{C}]$. A function $u: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ is a \mathcal{C}-compatible utility function if there is a quasipreference $[\square]$ on \mathcal{X} for which u is an ordinal representation:

$$
(x \widetilde{\unrhd} y) \Longleftrightarrow(u(x) \geq u(y)), \quad \text { for all } x, y \in \widetilde{\mathcal{X}} .
$$

Example. If $\mathcal{C}=$ Set, then every real-valued function on $\widetilde{\mathcal{X}}$ is a compatible utility function. But in other categories, this is not necessarily the case.

Compatible utility functions

Let $\mathcal{X} \in[\mathcal{C}]$. A function $u: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ is a \mathcal{C}-compatible utility function if there is a quasipreference $[\square]$ on \mathcal{X} for which u is an ordinal representation:

$$
(x \widetilde{\unrhd} y) \Longleftrightarrow(u(x) \geq u(y)), \quad \text { for all } x, y \in \widetilde{\mathcal{X}} .
$$

Example. If $\mathcal{C}=$ Set, then every real-valued function on $\widetilde{\mathcal{X}}$ is a compatible utility function. But in other categories, this is not necessarily the case.

For example, let $\mathcal{C}=$ Cpct, the category of compact spaces and continuous maps, and let $\mathcal{X} \in[\mathrm{Cpct}]$.

Compatible utility functions

Let $\mathcal{X} \in[\mathcal{C}]$. A function $u: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ is a \mathcal{C}-compatible utility function if there is a quasipreference $[\square]$ on \mathcal{X} for which u is an ordinal representation:

$$
(x \widetilde{\unrhd} y) \Longleftrightarrow(u(x) \geq u(y)), \quad \text { for all } x, y \in \widetilde{\mathcal{X}}
$$

Example. If $\mathcal{C}=$ Set, then every real-valued function on $\widetilde{\mathcal{X}}$ is a compatible utility function. But in other categories, this is not necessarily the case.

For example, let $\mathcal{C}=$ Cpct, the category of compact spaces and continuous maps, and let $\mathcal{X} \in[\mathrm{Cpct}]$.
Then a function $u: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ is a Cpct-compatible utility function if and only if it is an increasing transform of a continuous, \mathbb{R}-valued function on \mathcal{X}.

Compatible utility functions

Let $\mathcal{X} \in[\mathcal{C}]$. A function $u: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ is a \mathcal{C}-compatible utility function if there is a quasipreference $[\square]$ on \mathcal{X} for which u is an ordinal representation:

$$
(x \widetilde{\unrhd} y) \Longleftrightarrow(u(x) \geq u(y)), \quad \text { for all } x, y \in \widetilde{\mathcal{X}} .
$$

Example. If $\mathcal{C}=$ Set, then every real-valued function on $\widetilde{\mathcal{X}}$ is a compatible utility function. But in other categories, this is not necessarily the case.

For example, let $\mathcal{C}=$ Cpct, the category of compact spaces and continuous maps, and let $\mathcal{X} \in[\mathrm{Cpct}]$.
Then a function $u: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ is a Cpct-compatible utility function if and only if it is an increasing transform of a continuous, \mathbb{R}-valued function on \mathcal{X}.
(This means, in particular, that u must be Borel-measurable.)

Part V

From simple morphisms
 to

SEU representations

Simple morphisms

Let $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$ be a coproduct of some objects $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N} \in[\mathcal{C}]$.
\square

Simple morphisms

Let $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$ be a coproduct of some objects $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N} \in[\mathcal{C}]$.
Let $\mathcal{X} \in[\mathcal{C}]$ be another object.

Simple morphisms

Let $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$ be a coproduct of some objects $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N} \in[\mathcal{C}]$.
Let $\mathcal{X} \in[\mathcal{C}]$ be another object.
For all $n \in[1 \ldots N]$, let $\sigma_{n} \in \mathcal{K}\left(\mathcal{R}_{n}, \mathcal{X}\right)$ be a quasiconstant morphism. Let $x_{n} \in \widetilde{\mathcal{X}}$ be its \sim-equivalence class (the "value" of σ_{n}).

Simple morphisms

Let $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$ be a coproduct of some objects $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N} \in[\mathcal{C}]$.
Let $\mathcal{X} \in[\mathcal{C}]$ be another object.
For all $n \in[1 \ldots N]$, let $\sigma_{n} \in \mathcal{K}\left(\mathcal{R}_{n}, \mathcal{X}\right)$ be a quasiconstant morphism. Let $x_{n} \in \widetilde{\mathcal{X}}$ be its \sim-equivalence class (the "value" of σ_{n}).

By the defining property of coproducts, there is a unique morphism $\sigma=$ $\left[\sigma_{1}|\cdots| \sigma_{N}\right] \in \overrightarrow{\mathcal{C}}(\mathcal{R}, \mathcal{X})$ such that this diagram commutes:

Simple morphisms

Let $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$ be a coproduct of some objects $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N} \in[\mathcal{C}]$.
Let $\mathcal{X} \in[\mathcal{C}]$ be another object.
For all $n \in[1 \ldots N]$, let $\sigma_{n} \in \mathcal{K}\left(\mathcal{R}_{n}, \mathcal{X}\right)$ be a quasiconstant morphism. Let $x_{n} \in \widetilde{\mathcal{X}}$ be its \sim-equivalence class (the "value" of σ_{n}).

By the defining property of coproducts, there is a unique morphism $\sigma=$ $\left[\sigma_{1}|\cdots| \sigma_{N}\right] \in \overrightarrow{\mathcal{C}}(\mathcal{R}, \mathcal{X})$ such that this diagram commutes:
Say σ is a simple morphism from \mathcal{R} into \mathcal{X}, and write " $\sigma=\left[x_{1}|\cdots| x_{N}\right]$ ".

Simple morphisms

Let $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$ be a coproduct of some objects $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N} \in[\mathcal{C}]$.
Let $\mathcal{X} \in[\mathcal{C}]$ be another object.
For all $n \in[1 \ldots N]$, let $\sigma_{n} \in \mathcal{K}\left(\mathcal{R}_{n}, \mathcal{X}\right)$ be a quasiconstant morphism. Let $x_{n} \in \widetilde{\mathcal{X}}$ be its \sim-equivalence class (the "value" of σ_{n}).

By the defining property of coproducts, there is a unique morphism $\sigma=$ $\left[\sigma_{1}|\cdots| \sigma_{N}\right] \in \overrightarrow{\mathcal{C}}(\mathcal{R}, \mathcal{X})$ such that this diagram commutes:

Say σ is a simple morphism from \mathcal{R} into \mathcal{X}, and write " $\sigma=\left[x_{1}|\cdots| x_{N}\right]$ ".

Idea: σ is "constant" when restricted to each of $\mathcal{R}_{1}, \ldots \mathcal{R}_{N}$.

Simple morphisms

Let $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$ be a coproduct of some objects $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N} \in[\mathcal{C}]$. Let $\mathcal{X} \in[\mathcal{C}]$ be another object.

For all $n \in[1 \ldots N]$, let $\sigma_{n} \in \mathcal{K}\left(\mathcal{R}_{n}, \mathcal{X}\right)$ be a quasiconstant morphism. Let $x_{n} \in \widetilde{\mathcal{X}}$ be its \sim-equivalence class (the "value" of σ_{n}).

By the defining property of coproducts, there is a unique morphism $\sigma=$ $\left[\sigma_{1}|\cdots| \sigma_{N}\right] \in \overrightarrow{\mathcal{C}}(\mathcal{R}, \mathcal{X})$ such that this diagram commutes:

Say σ is a simple morphism from \mathcal{R} into \mathcal{X}, and write " $\sigma=\left[x_{1}|\cdots| x_{N}\right]$ ".

Idea: σ is "constant" when restricted to each of $\mathcal{R}_{1}, \ldots \mathcal{R}_{N}$.
 Let $\Sigma(\mathcal{R}, \mathcal{X})$ be the set of all simple morphisms from \mathcal{R} to \mathcal{X} which are compatible with the coproduct structure of $\boldsymbol{\mathcal { R }}$.

Expected utility for simple morphisms

Let $\mathcal{S} \in[\mathcal{S}]$ and $\mathcal{X} \in[\mathcal{X}]$.
Let $\mathrm{P}=\left(\mathrm{p}^{\mathcal{R}}\right)_{\mathcal{R} \in \mathfrak{R}_{\mathcal{S}}(S)}$ be a probability structure on $\mathfrak{R}_{\mathcal{S}}(S)$
Let $\mathcal{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R} ; \rho\right) \in \Re_{\mathcal{S}}(\mathcal{S}) \quad$ (a partition of \mathcal{S}).
let $\sigma \in \sum(\mathcal{T}, \mathcal{\nu})$ be simple morphism
Suppose $\sigma=\left[x_{1}|\cdots| x_{N}\right]$, for some quasielements $x_{1}, \ldots, x_{N} \in \widetilde{\mathcal{X}}$ Let $\cdot \mathrm{V}: \widetilde{\nu}$, im be a real-valued function (e.s. a "utility function") We define the expected utility of σ, with respect to u and \mathbf{P}, as follows

Expected utility for simple morphisms

Let $\mathcal{S} \in[\mathcal{S}]$ and $\mathcal{X} \in[\mathcal{X}]$.
Let $\mathbf{P}=\left(\mathbf{p}^{\mathcal{R}}\right)_{\mathcal{R} \in \Re_{\mathcal{S}}(\mathcal{S})}$ be a probability structure on $\mathfrak{R}_{\mathcal{S}}(\mathcal{S})$.

Let $\sigma \in \Sigma(\mathcal{R}, \mathcal{X})$ be simple morphism.

Suppose $\sigma=\left\lceil x_{1}|\cdots| x_{N}\right\rceil$, for some quas elements x_{1}Let $u: \mathcal{X} \longrightarrow \mathbb{R}$ be a real-valued function We define the expected utility of σ, with respect to u and \mathbf{P}, as follows

Expected utility for simple morphisms

Let $\mathcal{S} \in[\mathcal{S}]$ and $\mathcal{X} \in[\mathcal{X}]$.
Let $\mathbf{P}=\left(\mathbf{p}^{\mathcal{R}}\right)_{\mathcal{R} \in \Re_{\mathcal{S}}(\mathcal{S})}$ be a probability structure on $\mathfrak{R}_{\mathcal{S}}(\mathcal{S})$.
Let $\mathcal{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R} ; \rho\right) \in \mathfrak{R}_{\mathcal{S}}(\mathcal{S}) \quad$ (a partition of $\left.\mathcal{S}\right)$.
Let $\sigma \in \Sigma(\mathcal{R}, \mathcal{X})$ be simple morphism.
Suppose $\sigma=\left[x_{1}|\cdots| x_{N}\right]$, for some quasielements x_{1}

Expected utility for simple morphisms

Let $\mathcal{S} \in[\mathcal{S}]$ and $\mathcal{X} \in[\mathcal{X}]$.
Let $\mathbf{P}=\left(\mathbf{p}^{\mathcal{R}}\right)_{\mathcal{R} \in \Re_{\mathcal{S}}(\mathcal{S})}$ be a probability structure on $\mathfrak{R}_{\mathcal{S}}(\mathcal{S})$.
Let $\mathcal{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R} ; \rho\right) \in \mathfrak{R}_{\mathcal{S}}(\mathcal{S}) \quad$ (a partition of $\left.\mathcal{S}\right)$.
Let $\sigma \in \Sigma(\mathcal{R}, \mathcal{X})$ be simple morphism.

Expected utility for simple morphisms

Let $\mathcal{S} \in[\mathcal{S}]$ and $\mathcal{X} \in[\mathcal{X}]$.
Let $\mathbf{P}=\left(\mathbf{p}^{\mathcal{R}}\right)_{\mathcal{R} \in \Re_{\mathcal{S}}(\mathcal{S})}$ be a probability structure on $\mathfrak{R}_{\mathcal{S}}(\mathcal{S})$.
Let $\mathcal{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R} ; \rho\right) \in \mathfrak{R}_{\mathcal{S}}(\mathcal{S}) \quad$ (a partition of $\left.\mathcal{S}\right)$.
Let $\sigma \in \Sigma(\mathcal{R}, \mathcal{X})$ be simple morphism.
Suppose $\sigma=\left[x_{1}|\cdots| x_{N}\right]$, for some quasielements $x_{1}, \ldots, x_{N} \in \widetilde{\mathcal{X}}$

Expected utility for simple morphisms

Let $\mathcal{S} \in[\mathcal{S}]$ and $\mathcal{X} \in[\mathcal{X}]$.
Let $\mathbf{P}=\left(\mathbf{p}^{\mathcal{R}}\right)_{\mathcal{R} \in \Re_{\mathcal{S}}(\mathcal{S})}$ be a probability structure on $\mathfrak{R}_{\mathcal{S}}(\mathcal{S})$.
Let $\mathcal{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R} ; \rho\right) \in \mathfrak{R}_{\mathcal{S}}(\mathcal{S}) \quad$ (a partition of $\left.\mathcal{S}\right)$.
Let $\sigma \in \Sigma(\mathcal{R}, \mathcal{X})$ be simple morphism.
Suppose $\sigma=\left[x_{1}|\cdots| x_{N}\right]$, for some quasielements $x_{1}, \ldots, x_{N} \in \tilde{\mathcal{X}}$ Let $u: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ be a real-valued function (e.g. a "utility function").

Expected utility for simple morphisms

Let $\mathcal{S} \in[\mathcal{S}]$ and $\mathcal{X} \in[\mathcal{X}]$.
Let $\mathbf{P}=\left(\mathbf{p}^{\mathcal{R}}\right)_{\mathcal{R} \in \Re_{\mathcal{S}}(\mathcal{S})}$ be a probability structure on $\mathfrak{R}_{\mathcal{S}}(\mathcal{S})$.
Let $\mathcal{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R} ; \rho\right) \in \mathfrak{R}_{\mathcal{S}}(\mathcal{S}) \quad$ (a partition of $\left.\mathcal{S}\right)$.
Let $\sigma \in \Sigma(\mathcal{R}, \mathcal{X})$ be simple morphism.
Suppose $\sigma=\left[x_{1}|\cdots| x_{N}\right]$, for some quasielements $x_{1}, \ldots, x_{N} \in \widetilde{\mathcal{X}}$ Let $u: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ be a real-valued function (e.g. a "utility function").

We define the expected utility of σ, with respect to u and \mathbf{P}, as follows:

$$
\mathbb{E}_{\mathrm{P}}^{\mu}[\sigma]:=\sum_{n=1}^{N} p_{n}^{\mathcal{R}} u\left(x_{n}\right),
$$

where $\mathbf{p}^{\mathcal{R}}=\left(p_{1}^{\mathcal{R}}, \ldots, p_{N}^{\mathcal{R}}\right)$.

Expected utility for any morphism (informal)

We define the expected utility of a simple morphism σ, with respect to u and \mathbf{P} :

$$
\mathbb{E}_{\mathrm{P}}^{\mu}[\sigma]:=\sum_{n=1}^{N} p_{n}^{\mathcal{R}} u\left(x_{n}\right)
$$

where $\mathbf{p}^{\mathcal{R}}=\left(p_{1}^{\mathcal{R}}, \ldots, p_{N}^{\mathcal{R}}\right)$, and where $x_{1}, \ldots, x_{N} \in \tilde{\mathcal{X}}$ are such that $\sigma=\left[x_{1}|\cdots| x_{N}\right]$.

Expected utility for any morphism (informal)

We define the expected utility of a simple morphism σ, with respect to u and \mathbf{P} :

$$
\mathbb{E}_{\mathbf{P}}^{u}[\sigma]:=\sum_{n=1}^{N} p_{n}^{\mathcal{R}} u\left(x_{n}\right)
$$

where $\mathbf{p}^{\mathcal{R}}=\left(p_{1}^{\mathcal{R}}, \ldots, p_{N}^{\mathcal{R}}\right)$, and where $x_{1}, \ldots, x_{N} \in \widetilde{\mathcal{X}}$ are such that $\sigma=\left[x_{1}|\cdots| x_{N}\right]$.
Now, let $u: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ be a \mathcal{C}-compatible utility function, representing a quasipreference $[\boxtimes]$.

Expected utility for any morphism (informal)

We define the expected utility of a simple morphism σ, with respect to u and \mathbf{P} :

$$
\mathbb{E}_{\mathbf{P}}^{u}[\sigma]:=\sum_{n=1}^{N} p_{n}^{\mathcal{R}} u\left(x_{n}\right)
$$

where $\mathbf{p}^{\mathcal{R}}=\left(p_{1}^{\mathcal{R}}, \ldots, p_{N}^{\mathcal{R}}\right)$, and where $x_{1}, \ldots, x_{N} \in \widetilde{\mathcal{X}}$ are such that $\sigma=\left[x_{1}|\cdots| x_{N}\right]$.
Now, let $u: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ be a \mathcal{C}-compatible utility function, representing a quasipreference $[\unrhd]$. Meanwhile, let $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$ be any morphism.

Expected utility for any morphism (informal)

We define the expected utility of a simple morphism σ, with respect to u and \mathbf{P} :

$$
\mathbb{E}_{\mathrm{P}}^{\mu}[\sigma]:=\sum_{n=1}^{N} p_{n}^{\mathcal{R}} u\left(x_{n}\right)
$$

where $\mathbf{p}^{\mathcal{R}}=\left(p_{1}^{\mathcal{R}}, \ldots, p_{N}^{\mathcal{R}}\right)$, and where $x_{1}, \ldots, x_{N} \in \widetilde{\mathcal{X}}$ are such that $\sigma=\left[x_{1}|\cdots| x_{N}\right]$.
Now, let $u: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ be a \mathcal{C}-compatible utility function, representing a quasipreference $[\boxtimes]$. Meanwhile, let $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$ be any morphism. We define $\underline{\mathbb{E}}_{\mathbf{P}}^{u}[\alpha]$ and $\overline{\mathbb{E}}_{\mathbf{P}}^{u}[\alpha]$, the lower and upper expected utilities of α with respect to u and \mathbf{P}, by approximating α "from below" and "from above" (in terms of $[\square]$) by simple morphisms on partitions of \mathcal{S}.

Expected utility for any morphism (informal)

We define the expected utility of a simple morphism σ, with respect to u and \mathbf{P} :

$$
\mathbb{E}_{\mathbf{P}}^{\mu}[\sigma]:=\sum_{n=1}^{N} p_{n}^{\mathcal{R}} u\left(x_{n}\right)
$$

where $\mathbf{p}^{\mathcal{R}}=\left(p_{1}^{\mathcal{R}}, \ldots, p_{N}^{\mathcal{R}}\right)$, and where $x_{1}, \ldots, x_{N} \in \tilde{\mathcal{X}}$ are such that $\sigma=\left[x_{1}|\cdots| x_{N}\right]$.
Now, let $u: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ be a \mathcal{C}-compatible utility function, representing a quasipreference $[\boxtimes]$. Meanwhile, let $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$ be any morphism.
We define $\underline{\mathbb{E}}_{\mathbf{P}}^{u}[\alpha]$ and $\overline{\mathbb{E}}_{\mathbf{P}}^{u}[\alpha]$, the lower and upper expected utilities of α with respect to u and \mathbf{P}, by approximating α "from below" and "from above" (in terms of $[\square]$) by simple morphisms on partitions of \mathcal{S}.
If $\Re_{\mathcal{S}}(\mathcal{S})$ satisfies the Common Refinement Property, then $\overline{\mathbb{E}}_{\mathbf{p}}^{u}$ and $\mathbb{E}_{\mathbf{p}}^{u}$ have most of the properties you would expect from a notion of "expected utility".

Expected utility for any morphism (informal)

We define the expected utility of a simple morphism σ, with respect to u and \mathbf{P} :

$$
\mathbb{E}_{\mathrm{P}}^{\mu}[\sigma]:=\sum_{n=1}^{N} p_{n}^{\mathcal{R}} u\left(x_{n}\right)
$$

where $\mathbf{p}^{\mathcal{R}}=\left(p_{1}^{\mathcal{R}}, \ldots, p_{N}^{\mathcal{R}}\right)$, and where $x_{1}, \ldots, x_{N} \in \tilde{\mathcal{X}}$ are such that $\sigma=\left[x_{1}|\cdots| x_{N}\right]$.
Now, let $u: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ be a \mathcal{C}-compatible utility function, representing a quasipreference $[\square]$. Meanwhile, let $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$ be any morphism.
We define $\underline{E}_{\mathbf{P}}^{u}[\alpha]$ and $\overline{\mathbb{E}}_{\mathbf{P}}^{u}[\alpha]$, the lower and upper expected utilities of α with respect to u and \mathbf{P}, by approximating α "from below" and "from above" (in terms of $[\square]$) by simple morphisms on partitions of \mathcal{S}.
If $\Re_{\mathcal{S}}(\mathcal{S})$ satisfies the Common Refinement Property, then $\overline{\mathbb{E}}_{\mathbf{p}}^{u}$ and $\mathbb{E}_{\mathbf{p}}^{u}$ have most of the properties you would expect from a notion of "expected utility". If $\mathbb{E}_{\mathbf{P}}^{\mu}[\alpha]=\overline{\mathbb{E}}_{\mathbf{P}}^{u}[\alpha]$, then we denote their common value by $\mathbb{E}_{\mathbf{P}}^{\mu}[\alpha]$, and we say that α is (u, \mathbf{P})-integrable.

Expected utility for any morphism (informal)

We define the expected utility of a simple morphism σ, with respect to u and \mathbf{P} :

$$
\mathbb{E}_{\mathbf{P}}^{\mu}[\sigma]:=\sum_{n=1}^{N} p_{n}^{\mathcal{R}} u\left(x_{n}\right)
$$

where $\mathbf{p}^{\mathcal{R}}=\left(p_{1}^{\mathcal{R}}, \ldots, p_{N}^{\mathcal{R}}\right)$, and where $x_{1}, \ldots, x_{N} \in \tilde{\mathcal{X}}$ are such that $\sigma=\left[x_{1}|\cdots| x_{N}\right]$.
Now, let $u: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ be a \mathcal{C}-compatible utility function, representing a quasipreference $[\unrhd]$. Meanwhile, let $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$ be any morphism.
We define $\underline{E}_{\mathbf{P}}^{u}[\alpha]$ and $\overline{\mathbb{E}}_{\mathbf{P}}^{u}[\alpha]$, the lower and upper expected utilities of α with respect to u and \mathbf{P}, by approximating α "from below" and "from above" (in terms of $[\square]$) by simple morphisms on partitions of \mathcal{S}.
If $\Re_{\mathcal{S}}(\mathcal{S})$ satisfies the Common Refinement Property, then $\overline{\mathbb{E}}_{\mathbf{p}}^{u}$ and $\mathbb{E}_{\mathbf{p}}^{u}$ have most of the properties you would expect from a notion of "expected utility". If $\mathbb{E}_{\mathbf{P}}^{\mu}[\alpha]=\overline{\mathbb{E}}_{\mathbf{P}}^{u}[\alpha]$, then we denote their common value by $\mathbb{E}_{\mathbf{P}}^{\mu}[\alpha]$, and we say that α is (u, \mathbf{P})-integrable.
(But in fact, we don't need (u, \mathbf{P})-integrable morphisms.)

Virtual simple morphisms

Let $\mathcal{S} \in[\mathcal{C}]$, and let $\mathcal{R}:=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R} ; \rho\right)$ be a partition of \mathcal{S}.
\square If σ^{\prime} is a simple morphism on \mathcal{R}, then we will say that σ is a simple morphism on \mathcal{S} subordinate to the partition \mathcal{R}. Problem. In many categories (e.g. Top, Diff), the only simple morphisms on \mathcal{S} are the constant functions.

Solution. Treat the simnle mornhisms in $\Sigma_{S}(\mathcal{R}, \mathcal{X})$ as "virtual" simple morphisms on \mathcal{S} itself.

Formally, a virtual simple morphism on \mathcal{S} is a structure (σ, ρ), where $\mathcal{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R} ; \rho\right)$ is a partition of \mathcal{S}, and $\sigma \in \Sigma(\mathcal{R}, \mathcal{X})$ Let $\Sigma_{\mathcal{S}}(\mathcal{S}, \mathcal{X})$ be the set of all virtual simple morphisms from \mathcal{S} into \mathcal{X} arising from partitions in $\Re_{\mathcal{S}}(\mathcal{S})$. Formally,

Virtual simple morphisms

Let $\mathcal{S} \in[\mathcal{C}]$, and let $\mathcal{R}:=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R} ; \rho\right)$ be a partition of \mathcal{S}. Let $\mathcal{X} \in[\mathcal{C}]$ and let $\sigma \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$.
morphism on \mathcal{S} subordinate to the partition \mathcal{R}
Problem. In manv cateoories (e g. Ton Diff) the only simple morphisms on \mathcal{S} are the constant functions.

Solution. Treat the simple morphisms in $\Sigma_{\mathcal{S}}(\mathcal{R}, \mathcal{X})$ as "virtual" simple morphisms on \mathcal{S} itself.

Virtual simple morphisms

Let $\mathcal{S} \in[\mathcal{C}]$, and let $\mathcal{R}:=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R} ; \rho\right)$ be a partition of \mathcal{S}. Let $\mathcal{X} \in[\mathcal{C}]$ and let $\sigma \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$. Thus, $\sigma^{\prime}:=\sigma \circ \rho \in \overrightarrow{\mathcal{C}}(\mathcal{R}, \mathcal{X})$.
morphism on \mathcal{S} subordinate to the partition \mathcal{R}

Virtual simple morphisms

Let $\mathcal{S} \in[\mathcal{C}]$, and let $\mathcal{R}:=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R} ; \rho\right)$ be a partition of \mathcal{S}. Let $\mathcal{X} \in[\mathcal{C}]$ and let $\sigma \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$. Thus, $\sigma^{\prime}:=\sigma \circ \rho \in \overrightarrow{\mathcal{C}}(\mathcal{R}, \mathcal{X})$.
If σ^{\prime} is a simple morphism on \mathcal{R}, then we will say that σ is a simple morphism on \mathcal{S} subordinate to the partition \mathcal{R}.

Virtual simple morphisms

Let $\mathcal{S} \in[\mathcal{C}]$, and let $\mathcal{R}:=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R} ; \rho\right)$ be a partition of \mathcal{S}. Let $\mathcal{X} \in[\mathcal{C}]$ and let $\sigma \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$. Thus, $\sigma^{\prime}:=\sigma \circ \rho \in \overrightarrow{\mathcal{C}}(\mathcal{R}, \mathcal{X})$.
If σ^{\prime} is a simple morphism on \mathcal{R}, then we will say that σ is a simple morphism on \mathcal{S} subordinate to the partition \mathcal{R}.
Problem. In many categories (e.g. Top, Diff), the only simple morphisms on \mathcal{S} are the constant functions....

Virtual simple morphisms

Let $\mathcal{S} \in[\mathcal{C}]$, and let $\mathcal{R}:=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R} ; \rho\right)$ be a partition of \mathcal{S}. Let $\mathcal{X} \in[\mathcal{C}]$ and let $\sigma \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$. Thus, $\sigma^{\prime}:=\sigma \circ \rho \in \overrightarrow{\mathcal{C}}(\mathcal{R}, \mathcal{X})$.
If σ^{\prime} is a simple morphism on \mathcal{R}, then we will say that σ is a simple morphism on \mathcal{S} subordinate to the partition \mathcal{R}.
Problem. In many categories (e.g. Top, Diff), the only simple morphisms on \mathcal{S} are the constant functions....

Solution. Treat the simple morphisms in $\Sigma_{\mathcal{S}}(\mathcal{R}, \mathcal{X})$ as "virtual" simple morphisms on \mathcal{S} itself.

Virtual simple morphisms

Let $\mathcal{S} \in[\mathcal{C}]$, and let $\mathcal{R}:=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R} ; \rho\right)$ be a partition of \mathcal{S}. Let $\mathcal{X} \in[\mathcal{C}]$ and let $\sigma \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$. Thus, $\sigma^{\prime}:=\sigma \circ \rho \in \overrightarrow{\mathcal{C}}(\mathcal{R}, \mathcal{X})$.
If σ^{\prime} is a simple morphism on \mathcal{R}, then we will say that σ is a simple morphism on \mathcal{S} subordinate to the partition \mathcal{R}.
Problem. In many categories (e.g. Top, Diff), the only simple morphisms on \mathcal{S} are the constant functions....
Solution. Treat the simple morphisms in $\Sigma_{\mathcal{S}}(\mathcal{R}, \mathcal{X})$ as "virtual" simple morphisms on \mathcal{S} itself.
Formally, a virtual simple morphism on \mathcal{S} is a structure (σ, ρ), where $\mathcal{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R} ; \rho\right)$ is a partition of \mathcal{S}, and $\sigma \in \Sigma(\mathcal{R}, \mathcal{X})$.

Virtual simple morphisms

Let $\mathcal{S} \in[\mathcal{C}]$, and let $\mathcal{R}:=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R} ; \rho\right)$ be a partition of \mathcal{S}. Let $\mathcal{X} \in[\mathcal{C}]$ and let $\sigma \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$. Thus, $\sigma^{\prime}:=\sigma \circ \rho \in \overrightarrow{\mathcal{C}}(\mathcal{R}, \mathcal{X})$.
If σ^{\prime} is a simple morphism on \mathcal{R}, then we will say that σ is a simple morphism on \mathcal{S} subordinate to the partition \mathcal{R}.
Problem. In many categories (e.g. Top, Diff), the only simple morphisms on \mathcal{S} are the constant functions....
Solution. Treat the simple morphisms in $\Sigma_{\mathcal{S}}(\mathcal{R}, \mathcal{X})$ as "virtual" simple morphisms on \mathcal{S} itself.
Formally, a virtual simple morphism on \mathcal{S} is a structure (σ, ρ), where $\mathcal{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R} ; \rho\right)$ is a partition of \mathcal{S}, and $\sigma \in \Sigma(\mathcal{R}, \mathcal{X})$.

Let $\Sigma_{\mathcal{S}}(\mathcal{S}, \mathcal{X})$ be the set of all virtual simple morphisms from \mathcal{S} into \mathcal{X} arising from partitions in $\mathfrak{R}_{\mathcal{S}}(\mathcal{S})$. Formally,
$\Sigma_{\mathcal{S}}(\mathcal{S}, \mathcal{X}):=\left\{(\sigma, \rho) ; \mathcal{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right) \in \mathfrak{R}_{\mathcal{S}}(\mathcal{S}) \& \sigma \in \Sigma(\mathcal{R}, \mathcal{X})\right\}$.

Expected utility for arbitrary morphisms

Now, let $u: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ be a \mathcal{C}-compatible utility function, representing a quasipreference $\left[\unrhd_{u}\right]$ on \mathcal{X}.

Finally, define

Interpretation. These are a lower estimate and an upper estimate of the exnerted utility of α with resnect to $\|$ and \mathbb{P} If $\mathbb{E}_{\mathbb{P}}^{u}[\alpha]=\overline{\mathbb{E}}_{\mathbf{P}}^{u}[\alpha]$, then we denote their common value by $\mathbb{E}_{\mathbf{P}}^{u}[\alpha]$, and we say that α is (u, P)-integrable.

Expected utility for arbitrary morphisms

Now, let $u: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ be a \mathcal{C}-compatible utility function, representing a quasipreference $\left[\unrhd_{u}\right]$ on \mathcal{X}.
For any $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, we define

$$
\underline{\Sigma}_{\mathcal{S}}^{u}(\alpha):=\left\{(\sigma, \rho) \in \Sigma_{\mathcal{S}}(\mathcal{S}, \mathcal{X}) ; \sigma \unlhd_{\mu} \alpha \circ \rho\right\}
$$

Finally, define
\qquad

Expected utility for arbitrary morphisms

Now, let $u: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ be a \mathcal{C}-compatible utility function, representing a quasipreference $\left[\unrhd_{u}\right]$ on \mathcal{X}.
For any $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, we define

$$
\begin{aligned}
\underline{\Sigma}_{\mathcal{S}}^{u}(\alpha) & :=\left\{(\sigma, \rho) \in \Sigma_{\mathcal{S}}(\mathcal{S}, \mathcal{X}) ; \sigma \unlhd_{u} \alpha \circ \rho\right\} \\
\text { and } \quad \bar{\Sigma}_{\mathcal{S}}^{u}(\alpha) & :=\left\{(\sigma, \rho) \in \Sigma_{\mathcal{S}}(\mathcal{S}, \mathcal{X}) ; \sigma \unrhd_{u} \alpha \circ \rho\right\} .
\end{aligned}
$$

Expected utility for arbitrary morphisms

Now, let $u: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ be a \mathcal{C}-compatible utility function, representing a quasipreference $\left[\unrhd_{u}\right]$ on \mathcal{X}.
For any $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, we define

$$
\begin{aligned}
\underline{\Sigma}_{\mathcal{S}}^{u}(\alpha) & :=\left\{(\sigma, \rho) \in \Sigma_{\mathcal{S}}(\mathcal{S}, \mathcal{X}) ; \sigma \unlhd_{u} \alpha \circ \rho\right\} \\
\text { and } \quad \bar{\Sigma}_{\mathcal{S}}^{u}(\alpha) & :=\left\{(\sigma, \rho) \in \Sigma_{\mathcal{S}}(\mathcal{S}, \mathcal{X}) ; \sigma \unrhd_{u} \alpha \circ \rho\right\} .
\end{aligned}
$$

Finally, define

$$
\mathbb{E}_{\mathbf{P}}^{\mu}[\alpha]:=\sup _{(\sigma, \rho) \in \underline{\Sigma}_{\mathcal{S}}^{u}(\alpha)} \mathbb{E}_{\mathbf{P}}^{\mu}[\sigma]
$$

\qquad

Expected utility for arbitrary morphisms

Now, let $u: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ be a \mathcal{C}-compatible utility function, representing a quasipreference $\left[\unrhd_{u}\right]$ on \mathcal{X}.
For any $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, we define

$$
\begin{aligned}
& \underline{\Sigma}_{\mathcal{S}}^{u}(\alpha) \\
\text { and } \quad & :=\left\{(\sigma, \rho) \in \Sigma_{\mathcal{S}}(\mathcal{S}, \mathcal{X}) ; \sigma \unlhd_{u} \alpha \circ \rho\right\} \\
& :=\left\{(\sigma, \rho) \in \Sigma_{\mathcal{S}}(\mathcal{S}, \mathcal{X}) ; \sigma \unrhd_{u} \alpha \circ \rho\right\} .
\end{aligned}
$$

Finally, define

$$
\underline{\mathbb{E}}_{\mathbf{P}}^{\mu}[\alpha]:=\sup _{(\sigma, \rho) \in \underline{\Sigma}_{\mathcal{S}}^{u}(\alpha)} \mathbb{E}_{\mathbf{P}}^{\mu}[\sigma] \quad \text { and } \quad \overline{\mathbb{E}}_{\mathbf{P}}^{u}[\alpha]:=\inf _{(\sigma, \rho) \in \bar{\Sigma}_{\mathcal{S}}^{u}(\alpha)} \mathbb{E}_{\mathbf{P}}^{\mu}[\sigma] .
$$

Expected utility for arbitrary morphisms

Now, let $u: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ be a \mathcal{C}-compatible utility function, representing a quasipreference $\left[\unrhd_{u}\right]$ on \mathcal{X}.
For any $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, we define

$$
\begin{aligned}
& \underline{\Sigma}_{\mathcal{S}}^{u}(\alpha) \\
\text { and } \quad & :=\left\{(\sigma, \rho) \in \Sigma_{\mathcal{S}}(\mathcal{S}, \mathcal{X}) ; \sigma \unlhd_{u}^{u} \alpha \circ \rho\right\} \\
& :=\left\{(\sigma, \rho) \in \Sigma_{\mathcal{S}}(\mathcal{S}, \mathcal{X}) ; \sigma \unrhd_{u} \alpha \circ \rho\right\} .
\end{aligned}
$$

Finally, define

$$
\mathbb{E}_{\mathbf{P}}^{\mu}[\alpha]:=\sup _{(\sigma, \rho) \in \underline{\Sigma}_{\mathcal{S}}^{u}(\alpha)} \mathbb{E}_{\mathbf{P}}^{\mu}[\sigma] \quad \text { and } \quad \overline{\mathbb{E}}_{\mathbf{P}}^{u}[\alpha]:=\inf _{(\sigma, \rho) \in \bar{\Sigma}_{\mathcal{S}}^{u}(\alpha)} \mathbb{E}_{\mathbf{P}}^{\mu}[\sigma] .
$$

Interpretation. These are a lower estimate and an upper estimate of the expected utility of α with respect to u and \mathbf{P}.

Expected utility for arbitrary morphisms

Now, let $u: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ be a \mathcal{C}-compatible utility function, representing a quasipreference $\left[\unrhd_{u}\right]$ on \mathcal{X}.
For any $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, we define

$$
\begin{aligned}
\underline{\Sigma}_{\mathcal{S}}^{u}(\alpha) & :=\left\{(\sigma, \rho) \in \Sigma_{\mathcal{S}}(\mathcal{S}, \mathcal{X}) ; \sigma \unlhd_{u} \alpha \circ \rho\right\} \\
\text { and } \quad \bar{\Sigma}_{\mathcal{S}}^{u}(\alpha) & :=\left\{(\sigma, \rho) \in \Sigma_{\mathcal{S}}(\mathcal{S}, \mathcal{X}) ; \sigma \unrhd_{u} \alpha \circ \rho\right\} .
\end{aligned}
$$

Finally, define

$$
\underline{\mathbb{E}}_{\mathbf{P}}^{\mu}[\alpha]:=\sup _{(\sigma, \rho) \in \underline{\Sigma}_{\mathcal{S}}^{u}(\alpha)} \mathbb{E}_{\mathbf{P}}^{\mu}[\sigma] \quad \text { and } \quad \overline{\mathbb{E}}_{\mathbf{P}}^{u}[\alpha]:=\inf _{(\sigma, \rho) \in \bar{\Sigma}_{\mathcal{S}}^{u}(\alpha)} \mathbb{E}_{\mathbf{P}}^{\mu}[\sigma] .
$$

Interpretation. These are a lower estimate and an upper estimate of the expected utility of α with respect to u and \mathbf{P}.

Expected utility for arbitrary morphisms

Now, let $u: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ be a \mathcal{C}-compatible utility function, representing a quasipreference $\left[\unrhd_{u}\right]$ on \mathcal{X}.
For any $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, we define

$$
\begin{aligned}
\underline{\Sigma}_{\mathcal{S}}^{u}(\alpha) & :=\left\{(\sigma, \rho) \in \Sigma_{\mathcal{S}}(\mathcal{S}, \mathcal{X}) ; \sigma \unlhd_{u} \alpha \circ \rho\right\} \\
\text { and } \quad \bar{\Sigma}_{\mathcal{S}}^{u}(\alpha) & :=\left\{(\sigma, \rho) \in \Sigma_{\mathcal{S}}(\mathcal{S}, \mathcal{X}) ; \sigma \unrhd_{u} \alpha \circ \rho\right\} .
\end{aligned}
$$

Finally, define

$$
\underline{\mathbb{E}}_{\mathbf{P}}^{\mu}[\alpha]:=\sup _{(\sigma, \rho) \in \underline{\Sigma}_{\mathcal{S}}^{u}(\alpha)} \mathbb{E}_{\mathbf{P}}^{\mu}[\sigma] \quad \text { and } \quad \overline{\mathbb{E}}_{\mathbf{P}}^{u}[\alpha]:=\inf _{(\sigma, \rho) \in \bar{\Sigma}_{\mathcal{S}}^{u}(\alpha)} \mathbb{E}_{\mathbf{P}}^{\mu}[\sigma] .
$$

Interpretation. These are a lower estimate and an upper estimate of the expected utility of α with respect to u and \mathbf{P}.
If $\underline{E}_{\mathbf{P}}^{u}[\alpha]=\overline{\mathbb{E}}_{\mathbf{P}}^{u}[\alpha]$, then we denote their common value by $\mathbb{E}_{\mathbf{P}}^{\mu}[\alpha]$, and we say that α is (u, \mathbf{P})-integrable.

Expected utility for arbitrary morphisms

Now, let $u: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ be a \mathcal{C}-compatible utility function, representing a quasipreference $\left[\unrhd_{u}\right]$ on \mathcal{X}.
For any $\alpha \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, we define

$$
\begin{aligned}
\underline{\Sigma}_{\mathcal{S}}^{u}(\alpha) & :=\left\{(\sigma, \rho) \in \Sigma_{\mathcal{S}}(\mathcal{S}, \mathcal{X}) ; \sigma \unlhd_{u} \alpha \circ \rho\right\} \\
\text { and } \quad \bar{\Sigma}_{\mathcal{S}}^{u}(\alpha) & :=\left\{(\sigma, \rho) \in \Sigma_{\mathcal{S}}(\mathcal{S}, \mathcal{X}) ; \sigma \unrhd_{u} \alpha \circ \rho\right\} .
\end{aligned}
$$

Finally, define

$$
\underline{\mathbb{E}}_{\mathbf{P}}^{\mu}[\alpha]:=\sup _{(\sigma, \rho) \in \underline{\Sigma}_{\mathcal{S}}^{u}(\alpha)} \mathbb{E}_{\mathbf{P}}^{\mu}[\sigma] \quad \text { and } \quad \overline{\mathbb{E}}_{\mathbf{P}}^{u}[\alpha]:=\inf _{(\sigma, \rho) \in \bar{\Sigma}_{\mathcal{S}}^{u}(\alpha)} \mathbb{E}_{\mathbf{P}}^{\mu}[\sigma] .
$$

Interpretation. These are a lower estimate and an upper estimate of the expected utility of α with respect to u and \mathbf{P}.
If $\underline{E}_{\mathbf{P}}^{u}[\alpha]=\overline{\mathbb{E}}_{\mathbf{P}}^{u}[\alpha]$, then we denote their common value by $\mathbb{E}_{\mathbf{P}}^{\mu}[\alpha]$, and we say that α is (u, \mathbf{P})-integrable.
(But in fact, we don't need (u, \mathbf{P})-integrable morphisms.)

Subjective expected utility representations

Let $(\mathcal{S}, \mathcal{X})$ be a decision context in a category \mathcal{C}.

Subjective expected utility representations

Let $(\mathcal{S}, \mathcal{X})$ be a decision context in a category \mathcal{C}. For every $\mathcal{S} \in[\mathcal{S}]$, let $\mathbf{P}_{\mathcal{S}}$ be a probability structure on $\mathfrak{R}_{\mathcal{S}}(\mathcal{S})$.

Subjective expected utility representations

Let $(\mathcal{S}, \mathcal{X})$ be a decision context in a category \mathcal{C}. For every $\mathcal{S} \in[\mathcal{S}]$, let $\mathbf{P}_{\mathcal{S}}$ be a probability structure on $\mathfrak{R}_{\mathcal{S}}(\mathcal{S})$.
For every $\mathcal{X} \in[\mathcal{X}]$, let $u_{\mathcal{X}}: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ be a \mathcal{C}-compatible utility function.

Subjective expected utility representations

Let $(\mathcal{S}, \mathcal{X})$ be a decision context in a category \mathcal{C}.
For every $\mathcal{S} \in[\mathcal{S}]$, let $\mathbf{P}_{\mathcal{S}}$ be a probability structure on $\mathfrak{R}_{\mathcal{S}}(\mathcal{S})$.
For every $\mathcal{X} \in[\mathcal{X}]$, let $u_{\mathcal{X}}: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ be a \mathcal{C}-compatible utility function. The structure $\left[\left(\mathbf{P}_{\mathcal{S}}\right)_{\mathcal{S} \in[\mathcal{S}]},\left(u_{\mathcal{X}}\right)_{\mathcal{X} \in[\mathcal{X}]}\right]$ is an SEU structure on $(\mathcal{S}, \mathcal{X})$ if:
(PP) For all $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, every measurable morphism in $\overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ is probability-preserving with respect to $\mathbf{P}_{\mathcal{S}_{1}}$ and $\mathbf{P}_{\mathcal{S}_{2}}$.

Subjective expected utility representations

Let $(\mathcal{S}, \mathcal{X})$ be a decision context in a category \mathcal{C}.
For every $\mathcal{S} \in[\mathcal{S}]$, let $\mathbf{P}_{\mathcal{S}}$ be a probability structure on $\mathfrak{R}_{\mathcal{S}}(\mathcal{S})$.
For every $\mathcal{X} \in[\mathcal{X}]$, let $u_{\mathcal{X}}: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ be a \mathcal{C}-compatible utility function.
The structure $\left[\left(\mathbf{P}_{\mathcal{S}}\right)_{\mathcal{S} \in[\mathcal{S}]},\left(u_{\mathcal{X}}\right)_{\mathcal{X} \in[\mathcal{X}]}\right]$ is an SEU structure on $(\mathcal{S}, \mathcal{X})$ if:
(PP) For all $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, every measurable morphism in $\overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ is probability-preserving with respect to $\mathbf{P}_{\mathcal{S}_{1}}$ and $\mathbf{P}_{\mathcal{S}_{2}}$.
(UP) For all $\mathcal{X}_{1}, \mathcal{X}_{2} \in[\mathcal{X}]$, and every $\phi \in \overrightarrow{\mathcal{X}}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$, the composition $u_{\mathcal{X}_{2}} \circ \widetilde{\phi}$ is a positive affine transformation of $u_{\mathcal{X}_{1}}$-that is, there exist $A>0$ and $B \in \mathbb{R}$ such that $u_{\mathcal{X}_{2}}[\widetilde{\phi}(x)]=A u_{\mathcal{X}_{1}}(x)+B$ for all $x \in \widetilde{\mathcal{X}}_{1}$.

Subjective expected utility representations

Let $(\mathcal{S}, \mathcal{X})$ be a decision context in a category \mathcal{C}.
For every $\mathcal{S} \in[\mathcal{S}]$, let $\mathbf{P}_{\mathcal{S}}$ be a probability structure on $\mathfrak{R}_{\mathcal{S}}(\mathcal{S})$.
For every $\mathcal{X} \in[\mathcal{X}]$, let $u_{\mathcal{X}}: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ be a \mathcal{C}-compatible utility function.
The structure $\left[\left(\mathbf{P}_{\mathcal{S}}\right)_{\mathcal{S} \in[\mathcal{S}]},\left(u_{\mathcal{X}}\right)_{\mathcal{X} \in[\mathcal{X}]}\right]$ is an SEU structure on $(\mathcal{S}, \mathcal{X})$ if:
(PP) For all $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, every measurable morphism in $\overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ is probability-preserving with respect to $\mathbf{P}_{\mathcal{S}_{1}}$ and $\mathbf{P}_{\mathcal{S}_{2}}$.
(UP) For all $\mathcal{X}_{1}, \mathcal{X}_{2} \in[\mathcal{X}]$, and every $\phi \in \overrightarrow{\mathcal{X}}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$, the composition $u_{\mathcal{X}_{2}} \circ \widetilde{\phi}$ is a positive affine transformation of $u_{\mathcal{X}_{1}}$-that is, there exist $A>0$ and $B \in \mathbb{R}$ such that $u_{\mathcal{X}_{2}}[\widetilde{\phi}(x)]=A u_{\mathcal{X}_{1}}(x)+B$ for all $x \in \widetilde{\mathcal{X}}_{1}$. This SEU structure represents a Savage structure $\mathfrak{S}=\left(\succeq_{\mathcal{X}}^{\mathcal{S}}\right)_{\mathcal{X} \in[\mathcal{X}]}^{\mathcal{S} \in[\mathcal{S}]}$ if, for every $\mathcal{S} \in[\mathcal{S}]$, and every $\mathcal{X} \in[\mathcal{X}]$, and all $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, we have

$$
\left(\alpha \succ_{\mathcal{X}}^{\mathcal{S}} \beta\right) \Longleftrightarrow\left(\underline{\mathbb{E}}_{\mathbf{P}}^{\mu}[\alpha]>\overline{\mathbb{E}}_{\mathbf{P}}^{u}[\beta]\right)
$$

Subjective expected utility representations

Let $(\mathcal{S}, \mathcal{X})$ be a decision context in a category \mathcal{C}.
For every $\mathcal{S} \in[\mathcal{S}]$, let $\mathbf{P}_{\mathcal{S}}$ be a probability structure on $\mathfrak{R}_{\mathcal{S}}(\mathcal{S})$.
For every $\mathcal{X} \in[\mathcal{X}]$, let $u_{\mathcal{X}}: \widetilde{\mathcal{X}} \longrightarrow \mathbb{R}$ be a \mathcal{C}-compatible utility function.
The structure $\left[\left(\mathbf{P}_{\mathcal{S}}\right)_{\mathcal{S} \in[\mathcal{S}]},\left(u_{\mathcal{X}}\right)_{\mathcal{X} \in[\mathcal{X}]}\right]$ is an SEU structure on $(\mathcal{S}, \mathcal{X})$ if:
(PP) For all $\mathcal{S}_{1}, \mathcal{S}_{2} \in[\mathcal{S}]$, every measurable morphism in $\overrightarrow{\mathcal{S}}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ is probability-preserving with respect to $\mathbf{P}_{\mathcal{S}_{1}}$ and $\mathbf{P}_{\mathcal{S}_{2}}$.
(UP) For all $\mathcal{X}_{1}, \mathcal{X}_{2} \in[\mathcal{X}]$, and every $\phi \in \overrightarrow{\mathcal{X}}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$, the composition $u_{\mathcal{X}_{2}} \circ \widetilde{\phi}$ is a positive affine transformation of $u_{\mathcal{X}_{1}}$-that is, there exist $A>0$ and $B \in \mathbb{R}$ such that $u_{\mathcal{X}_{2}}[\widetilde{\phi}(x)]=A u_{\mathcal{X}_{1}}(x)+B$ for all $x \in \widetilde{\mathcal{X}}_{1}$. This SEU structure represents a Savage structure $\mathfrak{S}=\left(\succeq_{\mathcal{X}}^{\mathcal{S}}\right)_{\mathcal{X} \in[\mathcal{X}]}^{\mathcal{S} \in[\mathcal{S}]}$ if, for every $\mathcal{S} \in[\mathcal{S}]$, and every $\mathcal{X} \in[\mathcal{X}]$, and all $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, we have

$$
\left(\alpha \succ_{\mathcal{X}}^{\mathcal{S}} \beta\right) \Longleftrightarrow\left(\underline{\mathbb{E}}_{\mathbf{P}}^{\mu}[\alpha]>\overline{\mathbb{E}}_{\mathbf{P}}^{u}[\beta]\right)
$$

In particular, if α and β are both (u, \mathbf{P})-integrable, then this implies:

$$
\left(\alpha \succeq_{\mathcal{X}}^{\mathcal{S}} \beta\right) \Longleftrightarrow\left(\mathbb{E}_{\mathbf{P}}^{\mu}[\alpha] \geq \mathbb{E}_{\mathbf{P}}^{\mu}[\beta]\right)
$$

Part VI

Formal statement of axioms and main result

Structural conditions (S1)-(S3)

The decision context $(\mathcal{S}, \mathcal{X})$ must satisfy three structural conditions:

Every pair of outcome places in $[\mathcal{X}]$ have a coproduct in \mathcal{X}

Structural conditions (S1)-(S3)

The decision context $(\mathcal{S}, \mathcal{X})$ must satisfy three structural conditions: (S1) Every pair of state places in $[\mathcal{S}]$ have a product in the category \mathcal{S}.

Structural conditions (S1)-(S3)

The decision context $(\mathcal{S}, \mathcal{X})$ must satisfy three structural conditions: (S1) Every pair of state places in $[\mathcal{S}]$ have a product in the category \mathcal{S}.
(S2) Every pair of outcome places in $[\mathcal{X}]$ have a coproduct in \mathcal{X}.

Structural conditions (S1)-(S3)

The decision context $(\mathcal{S}, \mathcal{X})$ must satisfy three structural conditions: (S1) Every pair of state places in $[\mathcal{S}]$ have a product in the category \mathcal{S}.
(S2) Every pair of outcome places in $[\mathcal{X}]$ have a coproduct in \mathcal{X}.

$$
\mathcal{S}_{\ulcorner } \tau_{\square} \mathcal{S}_{\urcorner}
$$

(S3) Consider a pullback diagram in the category \mathcal{C} :

If $\mathcal{S}_{\urcorner}, \mathcal{S}_{\llcorner }$, and \mathcal{S}_{\lrcorner}are all in $[\mathcal{S}]$, and ρ and β are \mathcal{S}-morphisms, then $\mathcal{S}_{\ulcorner }$ is also in $[\mathcal{S}]$, and τ and λ are also \mathcal{S}-morphisms.

Structural conditions (S1)-(S3)

The decision context $(\mathcal{S}, \mathcal{X})$ must satisfy three structural conditions:
(S1) Every pair of state places in $[\mathcal{S}]$ have a product in the category \mathcal{S}.
(S2) Every pair of outcome places in $[\mathcal{X}]$ have a coproduct in \mathcal{X}.

If $\mathcal{S}_{\urcorner}, \mathcal{S}_{\llcorner }$, and \mathcal{S}_{\lrcorner}are all in $[\mathcal{S}]$, and ρ and β are \mathcal{S}-morphisms, then $\mathcal{S}_{\ulcorner }$ is also in $[\mathcal{S}]$, and τ and λ are also \mathcal{S}-morphisms.
Interpretation: Given any two "random variables" (e.g. any two state places \mathcal{S}_{1} and \mathcal{S}_{2}), (S 1) says we can couple them into a single "random variable" (namely $\mathcal{S}=\mathcal{S}_{1} \times \mathcal{S}_{2}$) such that \mathcal{S}_{1} and \mathcal{S}_{2} are "marginals" of \mathcal{S}. (\mathcal{S}_{1} and \mathcal{S}_{2} might not be independent random variables in this coupling.)

Structural conditions (S1)-(S3)

The decision context $(\mathcal{S}, \mathcal{X})$ must satisfy three structural conditions:
(S1) Every pair of state places in $[\mathcal{S}]$ have a product in the category \mathcal{S}.
(S2) Every pair of outcome places in $[\mathcal{X}]$ have a coproduct in \mathcal{X}.
(S3) Consider a pullback diagram in the category \mathcal{C} :

If $\mathcal{S}_{\urcorner}, \mathcal{S}_{\llcorner }$, and \mathcal{S}_{\lrcorner}are all in $[\mathcal{S}]$, and ρ and β are \mathcal{S}-morphisms, then $\mathcal{S}_{\ulcorner }$ is also in $[\mathcal{S}]$, and τ and λ are also \mathcal{S}-morphisms.
Interpretation: Given any two "random variables" (e.g. any two state places \mathcal{S}_{1} and \mathcal{S}_{2}), (S 1) says we can couple them into a single "random variable" (namely $\mathcal{S}=\mathcal{S}_{1} \times \mathcal{S}_{2}$) such that \mathcal{S}_{1} and \mathcal{S}_{2} are "marginals" of \mathcal{S}. (\mathcal{S}_{1} and \mathcal{S}_{2} might not be independent random variables in this coupling.) Given any two menus \mathcal{X}_{1} and \mathcal{X}_{2} of outcomes, (S2) says we can combine them into a single menu ($\mathcal{X}_{1} \amalg \mathcal{X}_{2}$). The agent's preferences on this larger menu must agree with her preferences on the two submenus.

Structural condition (S3)

Suppose \mathcal{C} is pullback-complete. Then (S3) is equivalent to:
(S3') For any $\mathcal{S}_{\urcorner}, \mathcal{S}_{\llcorner }, \mathcal{S}_{\lrcorner} \in[\mathcal{S}]$, and any $\beta \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{\llcorner }, \mathcal{S}_{\lrcorner}\right)$and $\rho \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{\urcorner}, \mathcal{S}_{\lrcorner}\right)$, there exists a fourth state place $\mathcal{S}_{\ulcorner }$, along with \mathcal{S}-morphisms τ and λ yielding the following pullback diagram in the category \mathcal{C} :

$$
\begin{aligned}
& \mathcal{S}_{\left\ulcorner-{ }^{\tau}{ }_{-\rightarrow} \mathcal{S}_{\urcorner}\right.}
\end{aligned}
$$

Structural condition (S3)

Suppose \mathcal{C} is pullback-complete. Then (S3) is equivalent to:
(S3') For any $\mathcal{S}_{\urcorner}, \mathcal{S}_{\llcorner }, \mathcal{S}_{\lrcorner} \in[\mathcal{S}]$, and any $\beta \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{\llcorner }, \mathcal{S}_{\lrcorner}\right)$and $\rho \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{\urcorner}, \mathcal{S}_{\lrcorner}\right)$, there exists a fourth state place $\mathcal{S}_{\ulcorner }$, along with \mathcal{S}-morphisms τ and λ yielding the following pullback diagram in the category \mathcal{C} :

$$
\begin{aligned}
& \mathcal{S}_{\ulcorner } \stackrel{\tau}{\tau}{ }_{-\rightarrow} \mathcal{S}_{\urcorner}
\end{aligned}
$$

This is generalizes (S1).

Structural condition (S3)

Suppose \mathcal{C} is pullback-complete. Then (S3) is equivalent to:
(S3') For any $\mathcal{S}_{\urcorner}, \mathcal{S}_{\llcorner }, \mathcal{S}_{\lrcorner} \in[\mathcal{S}]$, and any $\beta \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{\llcorner }, \mathcal{S}_{\lrcorner}\right)$and $\rho \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{\urcorner}, \mathcal{S}_{\lrcorner}\right)$, there exists a fourth state place $\mathcal{S}_{\ulcorner }$, along with \mathcal{S}-morphisms τ and λ yielding the following pullback diagram in the category \mathcal{C} :

$$
\begin{aligned}
& \mathcal{S}_{\ulcorner } \xrightarrow{\tau}{ }_{-\rightarrow} \mathcal{S}_{\urcorner}
\end{aligned}
$$

This is generalizes (S1). Suppose there are two sources of uncertainty, $\mathcal{S}_{\llcorner }$ and \mathcal{S}.

Structural condition (S3)

Suppose \mathcal{C} is pullback-complete. Then (S3) is equivalent to:
(S3') For any $\mathcal{S}_{\urcorner}, \mathcal{S}_{\llcorner }, \mathcal{S}_{\lrcorner} \in[\mathcal{S}]$, and any $\beta \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{\llcorner }, \mathcal{S}_{\lrcorner}\right)$and $\rho \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{\urcorner}, \mathcal{S}_{\lrcorner}\right)$, there exists a fourth state place $\mathcal{S}_{\ulcorner }$, along with \mathcal{S}-morphisms τ and λ yielding the following pullback diagram in the category \mathcal{C} :

This is generalizes (S 1). Suppose there are two sources of uncertainty, $\mathcal{S}_{\llcorner }$ and \mathcal{S}_{\urcorner}. The morphisms ρ and β are "measurements" of $\mathcal{S}_{\llcorner }$and \mathcal{S}_{\urcorner}, taking values in \mathcal{S}_{\lrcorner}.

Structural condition (S3)

Suppose \mathcal{C} is pullback-complete. Then (S3) is equivalent to:
(S3') For any $\mathcal{S}_{\urcorner}, \mathcal{S}_{\llcorner }, \mathcal{S}_{\lrcorner} \in[\mathcal{S}]$, and any $\beta \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{\llcorner }, \mathcal{S}_{\lrcorner}\right)$and $\rho \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{\urcorner}, \mathcal{S}_{\lrcorner}\right)$, there exists a fourth state place $\mathcal{S}_{\ulcorner }$, along with \mathcal{S}-morphisms τ and λ yielding the following pullback diagram in the category \mathcal{C} :

This is generalizes (S 1). Suppose there are two sources of uncertainty, $\mathcal{S}_{\llcorner }$ and \mathcal{S}_{\urcorner}. The morphisms ρ and β are "measurements" of $\mathcal{S}_{\llcorner }$and \mathcal{S}_{\urcorner}, taking values in \mathcal{S}_{\lrcorner}. Suppose that $\mathcal{S}_{\llcorner }$and \mathcal{S}_{\urcorner}are "correlated" in such a way that ρ and β always produce the same measurement value. Is there a way to explain this correlation?

Structural condition (S3)

Suppose \mathcal{C} is pullback-complete. Then (S3) is equivalent to:
(S3') For any $\mathcal{S}_{\urcorner}, \mathcal{S}_{\llcorner }, \mathcal{S}_{\lrcorner} \in[\mathcal{S}]$, and any $\beta \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{\llcorner }, \mathcal{S}_{\lrcorner}\right)$and $\rho \in \overrightarrow{\mathcal{S}}\left(\mathcal{S}_{\urcorner}, \mathcal{S}_{\lrcorner}\right)$, there exists a fourth state place $\mathcal{S}_{\ulcorner }$, along with \mathcal{S}-morphisms τ and λ yielding the following pullback diagram in the category \mathcal{C} :

This is generalizes (S1). Suppose there are two sources of uncertainty, $\mathcal{S}_{\llcorner }$ and \mathcal{S}_{\urcorner}. The morphisms ρ and β are "measurements" of $\mathcal{S}_{\llcorner }$and \mathcal{S}_{\urcorner}, taking values in \mathcal{S}_{\lrcorner}. Suppose that $\mathcal{S}_{\llcorner }$and \mathcal{S}_{\urcorner}are "correlated" in such a way that ρ and β always produce the same measurement value. Is there a way to explain this correlation? ($\mathrm{S} 3^{\prime}$) says "yes": there a single, common, underlying source of uncertainty $\mathcal{S}_{\ulcorner }$, such that $\mathcal{S}_{\llcorner }$and \mathcal{S}_{\urcorner}appear as "factors" of $\mathcal{S}_{\ulcorner }($via the morphisms τ and $\lambda)$.

Solvability

Let $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$ be a coproduct of objects $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N} \in[\mathcal{C}]$. Let $\Sigma(\mathcal{R}, \mathcal{X}):=\quad\{$ all simple morphisms from \mathcal{R} to $\mathcal{X}\}$.

Solvability

Let $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$ be a coproduct of objects $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N} \in[\mathcal{C}]$. Let $\Sigma(\mathcal{R}, \mathcal{X}):=\quad\{$ all simple morphisms from \mathcal{R} to $\mathcal{X}\}$.

For any simple morphism $\sigma \in \Sigma(\mathcal{R}, \mathcal{X})$, there exist quasielements $x_{1}, \ldots, x_{N} \in \widetilde{\mathcal{X}}$ such that $\sigma=\left[x_{1}|\cdots| x_{N}\right]$.

Solvability

Let $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$ be a coproduct of objects $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N} \in[\mathcal{C}]$. Let $\Sigma(\mathcal{R}, \mathcal{X}):=\quad\{$ all simple morphisms from \mathcal{R} to $\mathcal{X}\}$.

For any simple morphism $\sigma \in \Sigma(\mathcal{R}, \mathcal{X})$, there exist quasielements $x_{1}, \ldots, x_{N} \in \widetilde{\mathcal{X}}$ such that $\sigma=\left[x_{1}|\cdots| x_{N}\right]$.
For any quasielement $y \in \widetilde{\mathcal{X}}$, and any $n \in[1 \ldots N]$, let $\left(y_{n} \mid \sigma\right)$ denote simple morphism $\left[x_{1}|\cdots| x_{n-1}|y| x_{n+1}|\cdots| x_{N}\right]$ (another element of $\Sigma(\boldsymbol{\mathcal { R }}, \mathcal{X})$).

Solvability

Let $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$ be a coproduct of objects $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N} \in[\mathcal{C}]$. Let $\Sigma(\mathcal{R}, \mathcal{X}):=\{$ all simple morphisms from \mathcal{R} to $\mathcal{X}\}$.

For any simple morphism $\sigma \in \Sigma(\mathcal{R}, \mathcal{X})$, there exist quasielements $x_{1}, \ldots, x_{N} \in \tilde{\mathcal{X}}$ such that $\sigma=\left[x_{1}|\cdots| x_{N}\right]$.
For any quasielement $y \in \widetilde{\mathcal{X}}$, and any $n \in[1 \ldots N]$, let $\left(y_{n} \mid \sigma\right)$ denote simple morphism $\left[x_{1}|\cdots| x_{n-1}|y| x_{n+1}|\cdots| x_{N}\right]$ (another element of $\Sigma(\boldsymbol{\mathcal { R }}, \mathcal{X})$).
A Savage structure $\mathfrak{S}=\left(\succeq_{\mathcal{X}}^{\mathcal{X}}\right)_{\mathcal{X} \in[\mathcal{X}]}^{\mathcal{S} \in[\mathcal{S}]}$ is solvable if, for any $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N}$ in $[\mathcal{C}]$ with a coproduct $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$ such that $\mathcal{R} \in[\mathcal{S}]$, any $\underset{\mathcal{X}}{\mathcal{X}} \in[\mathcal{X}]$, any simple acts $\sigma, \tau \in \Sigma(\mathcal{R}, \mathcal{X})$, any $n \in[1 \ldots N]$, and any $x, z \in \widetilde{\mathcal{X}}$, if $\left(x_{n} \mid \sigma\right) \succ_{\mathcal{X}}^{\mathcal{R}} \tau \succ_{\mathcal{X}}^{\mathcal{R}}\left(z_{n} \mid \sigma\right)$, then there is $y \in \tilde{\mathcal{X}}$ with $\left(y_{n} \mid \sigma\right) \approx_{\mathcal{X}}^{\mathcal{R}} \tau$.

Solvability

Let $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$ be a coproduct of objects $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N} \in[\mathcal{C}]$. Let

$$
\Sigma(\mathcal{R}, \mathcal{X}):=\{\text { all simple morphisms from } \mathcal{R} \text { to } \mathcal{X}\} .
$$

For any simple morphism $\sigma \in \Sigma(\mathcal{R}, \mathcal{X})$, there exist quasielements $x_{1}, \ldots, x_{N} \in \widetilde{\mathcal{X}}$ such that $\sigma=\left[x_{1}|\cdots| x_{N}\right]$.
For any quasielement $y \in \widetilde{\mathcal{X}}$, and any $n \in[1 \ldots N]$, let $\left(y_{n} \mid \sigma\right)$ denote simple morphism $\left[x_{1}|\cdots| x_{n-1}|y| x_{n+1}|\cdots| x_{N}\right]$ (another element of $\Sigma(\boldsymbol{\mathcal { R }}, \mathcal{X})$).
A Savage structure $\mathfrak{S}=(\succeq \mathcal{X})_{\mathcal{X} \in[\mathcal{X}]}^{\mathcal{S} \in[\mathcal{S}]}$ is solvable if, for any $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N}$ in $[\mathcal{C}]$ with a coproduct $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$ such that $\mathcal{R} \in[\mathcal{S}]$, any $\underset{\mathcal{X}}{\mathcal{X}} \in[\mathcal{X}]$, any simple acts $\sigma, \tau \in \Sigma(\mathcal{R}, \mathcal{X})$, any $n \in[1 \ldots N]$, and any $x, z \in \widetilde{\mathcal{X}}$, if $\left(x_{n} \mid \sigma\right) \succ_{\mathcal{X}}^{\mathcal{R}} \tau \succ_{\mathcal{X}}^{\mathcal{R}}\left(z_{n} \mid \sigma\right)$, then there is $y \in \tilde{\mathcal{X}}$ with $\left(y_{n} \mid \sigma\right) \approx_{\mathcal{X}}^{\mathcal{R}} \tau$.

This is a standard condition in decision theory. It says that we can always find a "suitable compromise" y between any two elements x and z in $\widetilde{\mathcal{X}}$.

Solvability

Let $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$ be a coproduct of objects $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N} \in[\mathcal{C}]$. Let

$$
\Sigma(\mathcal{R}, \mathcal{X}):=\{\text { all simple morphisms from } \mathcal{R} \text { to } \mathcal{X}\} .
$$

For any simple morphism $\sigma \in \Sigma(\mathcal{R}, \mathcal{X})$, there exist quasielements $x_{1}, \ldots, x_{N} \in \widetilde{\mathcal{X}}$ such that $\sigma=\left[x_{1}|\cdots| x_{N}\right]$.
For any quasielement $y \in \widetilde{\mathcal{X}}$, and any $n \in[1 \ldots N]$, let $\left(y_{n} \mid \sigma\right)$ denote simple morphism $\left[x_{1}|\cdots| x_{n-1}|y| x_{n+1}|\cdots| x_{N}\right]$ (another element of $\Sigma(\boldsymbol{\mathcal { R }}, \mathcal{X})$).
A Savage structure $\mathfrak{S}=(\succeq \mathcal{X})_{\mathcal{X} \in[\mathcal{X}]}^{\mathcal{S} \in[\mathcal{S}]}$ is solvable if, for any $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N}$ in $[\mathcal{C}]$ with a coproduct $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$ such that $\mathcal{R} \in[\mathcal{S}]$, any $\underset{\mathcal{X}}{\mathcal{X}} \in[\mathcal{X}]$, any simple acts $\sigma, \tau \in \Sigma(\mathcal{R}, \mathcal{X})$, any $n \in[1 \ldots N]$, and any $x, z \in \widetilde{\mathcal{X}}$, if $\left(x_{n} \mid \sigma\right) \succ_{\mathcal{X}}^{\mathcal{R}} \tau \succ_{\mathcal{X}}^{\mathcal{R}}\left(z_{n} \mid \sigma\right)$, then there is $y \in \tilde{\mathcal{X}}$ with $\left(y_{n} \mid \sigma\right) \approx_{\mathcal{X}}^{\mathcal{R}} \tau$.
This is a standard condition in decision theory. It says that we can always find a "suitable compromise" y between any two elements x and z in $\widetilde{\mathcal{X}}$. In other words, $\widetilde{\mathcal{X}}$ has "no gaps".

Axioms (A1) and (A2)

The Savage structure $\mathfrak{S}=\left(\succeq_{\mathcal{X}}^{\mathcal{X}}\right)_{\mathcal{X} \in[\mathcal{X}]}^{\mathcal{S} \in[\mathcal{S}]}$ must satisfy five axioms..... Recall:

Axioms (A1) and (A2)

The Savage structure $\mathfrak{S}=\left(\succeq_{\mathcal{X}}^{\mathcal{S}}\right)_{\mathcal{X} \in[\mathcal{X}]}^{\mathcal{S}[\mathcal{S}]}$ must satisfy five axioms..... Recall: $\mathcal{K}(\mathcal{S}, \mathcal{X})$ is the set of quasiconstant morphisms from \mathcal{S} to \mathcal{X}.

Axioms (A1) and (A2)

The Savage structure $\mathfrak{S}=\left(\succeq_{\mathcal{X}}^{\mathcal{X}}\right)_{\mathcal{X} \in[\mathcal{X}]}^{\mathcal{S} \in[\mathcal{S}]}$ must satisfy five axioms.....
Recall: $\mathcal{K}(\mathcal{S}, \mathcal{X})$ is the set of quasiconstant morphisms from \mathcal{S} to \mathcal{X}. Heuristically, these represent "perfectly predictable" (i.e. "riskless") acts.

Axioms (A1) and (A2)

The Savage structure $\mathfrak{S}=\left(\succeq_{\mathcal{X}}^{\mathcal{X}}\right)_{\mathcal{X} \in[\mathcal{X}]}^{\mathcal{S} \in[\mathcal{S}]}$ must satisfy five axioms..... Recall: $\mathcal{K}(\mathcal{S}, \mathcal{X})$ is the set of quasiconstant morphisms from \mathcal{S} to \mathcal{X}. Heuristically, these represent "perfectly predictable" (i.e. "riskless") acts.
Notation: For any $\kappa \in \mathcal{K}(\mathcal{S}, \mathcal{X})$, let $\bar{\kappa} \in \widetilde{\mathcal{X}}$ denote its \sim-equivalence class.

Interpretation:

Axioms (A1) and (A2)

The Savage structure $\mathfrak{S}=\left(\succeq_{\mathcal{X}}^{\mathcal{X}}\right)_{\mathcal{X} \in[\mathcal{X}]}^{\mathcal{S} \in[\mathcal{S}]}$ must satisfy five axioms..... Recall: $\mathcal{K}(\mathcal{S}, \mathcal{X})$ is the set of quasiconstant morphisms from \mathcal{S} to \mathcal{X}. Heuristically, these represent "perfectly predictable" (i.e. "riskless") acts.
Notation: For any $\kappa \in \mathcal{K}(\mathcal{S}, \mathcal{X})$, let $\bar{\kappa} \in \widetilde{\mathcal{X}}$ denote its \sim-equivalence class.
For any $\mathcal{X} \in[\mathcal{X}]$, we require a quasipreference $\left[\succeq^{\mathcal{X}}\right]$ on \mathcal{X} satisfying:

Axioms (A1) and (A2)

The Savage structure $\mathfrak{S}=\left(\succeq_{\mathcal{X}}^{\mathcal{X}}\right)_{\mathcal{X} \in[\mathcal{X}]}^{\mathcal{S} \in[\mathcal{S}]}$ must satisfy five axioms.....
Recall: $\mathcal{K}(\mathcal{S}, \mathcal{X})$ is the set of quasiconstant morphisms from \mathcal{S} to \mathcal{X}. Heuristically, these represent "perfectly predictable" (i.e. "riskless") acts.
Notation: For any $\kappa \in \mathcal{K}(\mathcal{S}, \mathcal{X})$, let $\bar{\kappa} \in \widetilde{\mathcal{X}}$ denote its \sim-equivalence class.
For any $\mathcal{X} \in[\mathcal{X}]$, we require a quasipreference $\left[\succeq_{\mathcal{X}}^{\text {dom }}\right]$ on \mathcal{X} satisfying:
(A1) (Ex post preferences) Let $\succeq_{\mathcal{X}}^{\mathrm{xp}}$ be the preference order that $\left[\succeq_{\mathcal{X}}^{\text {dom }}\right]$ induces on $\widetilde{\mathcal{X}}$. Then $\succeq_{\mathcal{X}}$ is nontrivial, and for any $\mathcal{S} \in[\mathcal{S}]$ and any $\kappa_{1}, \kappa_{2} \in \mathcal{K}(\mathcal{S}, \mathcal{X})$, we have $\kappa_{1} \succeq_{\mathcal{X}}^{\mathcal{S}} \kappa_{2}$ if and only if $\bar{\kappa}_{1} \succeq_{\mathcal{X}}^{\text {xp }} \bar{\kappa}_{2}$.

Axioms (A1) and (A2)

The Savage structure $\mathfrak{S}=\left(\succeq_{\mathcal{X}}^{\mathcal{X}}\right)_{\mathcal{X} \in[\mathcal{X}]}^{\mathcal{S} \in[\mathcal{S}]}$ must satisfy five axioms.....
Recall: $\mathcal{K}(\mathcal{S}, \mathcal{X})$ is the set of quasiconstant morphisms from \mathcal{S} to \mathcal{X}. Heuristically, these represent "perfectly predictable" (i.e. "riskless") acts.
Notation: For any $\kappa \in \mathcal{K}(\mathcal{S}, \mathcal{X})$, let $\bar{\kappa} \in \widetilde{\mathcal{X}}$ denote its \sim-equivalence class.
For any $\mathcal{X} \in[\mathcal{X}]$, we require a quasipreference $\left[\succeq^{\text {dom }}\right]$ on \mathcal{X} satisfying:
(A1) (Ex post preferences) Let $\succeq_{\mathcal{X}}^{\mathrm{xp}}$ be the preference order that $\left[\succeq_{\mathcal{X}}^{\text {dom }}\right]$ induces on $\tilde{\mathcal{X}}$. Then $\succeq_{\mathcal{X}}^{\mathrm{xp}^{\mathrm{X}}}$ is nontrivial, and for any $\mathcal{S} \in[\mathcal{X}]$ and any $\kappa_{1}, \kappa_{2} \in \mathcal{K}(\mathcal{S}, \mathcal{X})$, we have $\kappa_{1} \succeq_{\mathcal{X}}^{\mathcal{S}} \kappa_{2}$ if and only if $\bar{\kappa}_{1} \succeq_{\mathcal{X}} \mathcal{X}_{\mathcal{X}} \bar{\kappa}_{2}$.
(A2) (Statewise dominance) For any $\mathcal{S} \in[\mathcal{S}]$ and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, if $\alpha \succeq_{\mathcal{X}}^{\text {dom }} \beta$, then $\alpha \succeq_{\mathcal{X}}^{\mathcal{S}} \beta$.

Axioms (A1) and (A2)

The Savage structure $\mathfrak{S}=\left(\succeq_{\mathcal{X}}^{\mathcal{X}}\right)_{\mathcal{X} \in[\mathcal{X}]}^{\mathcal{S} \in[\mathcal{S}]}$ must satisfy five axioms.....
Recall: $\mathcal{K}(\mathcal{S}, \mathcal{X})$ is the set of quasiconstant morphisms from \mathcal{S} to \mathcal{X}. Heuristically, these represent "perfectly predictable" (i.e. "riskless") acts.
Notation: For any $\kappa \in \mathcal{K}(\mathcal{S}, \mathcal{X})$, let $\bar{\kappa} \in \widetilde{\mathcal{X}}$ denote its \sim-equivalence class.
For any $\mathcal{X} \in[\mathcal{X}]$, we require a quasipreference $\left[\succeq^{\text {dom }}\right]$ on \mathcal{X} satisfying:
(A1) (Ex post preferences) Let $\succeq_{\mathcal{X}}^{\mathrm{Xp}}$ be the preference order that $\left[\succeq_{\mathcal{X}}^{\text {dom }}\right]$ induces on $\tilde{\mathcal{X}}$. Then $\succeq_{\mathcal{X}}^{\mathrm{xp}_{\mathrm{p}}}$ is nontrivial, and for any $\mathcal{S} \in[\mathcal{X}]$ and any $\kappa_{1}, \kappa_{2} \in \mathcal{K}(\mathcal{S}, \mathcal{X})$, we have $\kappa_{1} \succeq_{\mathcal{X}}^{\mathcal{S}} \kappa_{2}$ if and only if $\bar{\kappa}_{1} \succeq_{\mathcal{X}}^{\mathcal{X}} \bar{\kappa}_{2}$.
(A2) (Statewise dominance) For any $\mathcal{S} \in[\mathcal{S}]$ and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, if $\alpha \succeq_{\mathcal{X}}^{\text {dom }} \beta$, then $\alpha \succeq_{\mathcal{X}}^{\mathcal{S}} \beta$.
Interpretation: \succeq^{xp} is the agent's "ex post preference relation" on $\widetilde{\mathcal{X}}$.

Axioms (A1) and (A2)

The Savage structure $\mathfrak{S}=\left(\succeq_{\mathcal{X}}^{\mathcal{X}}\right)_{\mathcal{X} \in[\mathcal{X}]}^{\mathcal{S} \in[\mathcal{S}]}$ must satisfy five axioms.....
Recall: $\mathcal{K}(\mathcal{S}, \mathcal{X})$ is the set of quasiconstant morphisms from \mathcal{S} to \mathcal{X}. Heuristically, these represent "perfectly predictable" (i.e. "riskless") acts.
Notation: For any $\kappa \in \mathcal{K}(\mathcal{S}, \mathcal{X})$, let $\bar{\kappa} \in \widetilde{\mathcal{X}}$ denote its \sim-equivalence class.
For any $\mathcal{X} \in[\mathcal{X}]$, we require a quasipreference $\left[\succeq^{\text {dom }}\right]$ on \mathcal{X} satisfying:
(A1) (Ex post preferences) Let $\succeq_{\mathcal{X}}^{\mathrm{xp}}$ be the preference order that $\left[\succeq_{\mathcal{X}}^{\text {dom }}\right]$ induces on $\widetilde{\mathcal{X}}$. Then $\succeq_{\mathcal{X}}^{\mathrm{Xp}}$ is nontrivial, and for any $\mathcal{S} \in[\underset{\mathrm{xp}}{\mathcal{S}}]$ and any $\kappa_{1}, \kappa_{2} \in \mathcal{K}(\mathcal{S}, \mathcal{X})$, we have $\kappa_{1} \succeq_{\mathcal{X}}^{\mathcal{S}} \kappa_{2}$ if and only if $\bar{\kappa}_{1} \succeq_{\mathcal{X}}{ }_{\mathcal{X}} \bar{\kappa}_{2}$.
(A2) (Statewise dominance) For any $\mathcal{S} \in[\mathcal{S}]$ and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, if $\alpha \succeq_{\mathcal{X}}^{\text {dom }} \beta$, then $\alpha \succeq_{\mathcal{X}}^{\mathcal{S}} \beta$.
Interpretation: $\underset{\succ_{\mathrm{xp}} \mathcal{X}}{\mathrm{x}_{\mathrm{P}}}$ is the agent's "ex post preference relation" on $\widetilde{\mathcal{X}}$. (A1) says that $\succeq_{\mathcal{X}}^{\times \mathrm{x}}$ governs the agent's preferences over "riskless" acts.

Axioms (A1) and (A2)

The Savage structure $\mathfrak{S}=\left(\succeq_{\mathcal{X}}^{\mathcal{X}}\right)_{\mathcal{X} \in[\mathcal{X}]}^{\mathcal{S} \in[\mathcal{S}]}$ must satisfy five axioms.....
Recall: $\mathcal{K}(\mathcal{S}, \mathcal{X})$ is the set of quasiconstant morphisms from \mathcal{S} to \mathcal{X}. Heuristically, these represent "perfectly predictable" (i.e. "riskless") acts.
Notation: For any $\kappa \in \mathcal{K}(\mathcal{S}, \mathcal{X})$, let $\bar{\kappa} \in \widetilde{\mathcal{X}}$ denote its \sim-equivalence class.
For any $\mathcal{X} \in[\mathcal{X}]$, we require a quasipreference $\left[\succeq_{\mathcal{X}}^{\text {dom }}\right]$ on \mathcal{X} satisfying:
(A1) (Ex post preferences) Let $\succeq_{\mathcal{X}}^{\mathrm{xp}}$ be the preference order that $\left[\succeq_{\mathcal{X}}^{\text {dom }}\right]$ induces on $\widetilde{\mathcal{X}}$. Then $\succeq_{\mathcal{X}}^{\mathrm{Xp}}$ is nontrivial, and for any $\mathcal{S} \in[\underset{\text { xp }}{\mathcal{S}}]$ and any $\kappa_{1}, \kappa_{2} \in \mathcal{K}(\mathcal{S}, \mathcal{X})$, we have $\kappa_{1} \succeq_{\mathcal{X}}^{\mathcal{S}} \kappa_{2}$ if and only if $\bar{\kappa}_{1} \succeq_{\mathcal{X}}{ }_{\mathcal{X}} \bar{\kappa}_{2}$.
(A2) (Statewise dominance) For any $\mathcal{S} \in[\mathcal{S}]$ and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, if $\alpha \succeq_{\mathcal{X}}^{\text {dom }} \beta$, then $\alpha \succeq_{\mathcal{X}}^{\mathcal{S}} \beta$.
Interpretation: $\underset{\succ_{\mathrm{xp}} \mathcal{X}}{\mathrm{X}}$ is the agent's "ex post preference relation" on $\widetilde{\mathcal{X}}$. (A1) says that $\succeq_{\mathcal{X}}^{\times \mathrm{x}}$ governs the agent's preferences over "riskless" acts. If $\alpha \succeq_{\mathcal{X}}^{\text {dom }} \beta$, then α delivers a better ex post outcome than β in all circumstances.

Axioms (A1) and (A2)

The Savage structure $\mathfrak{S}=\left(\succeq_{\mathcal{X}}^{\mathcal{X}}\right)_{\mathcal{X} \in[\mathcal{X}]}^{\mathcal{S} \in[\mathcal{S}]}$ must satisfy five axioms.....
Recall: $\mathcal{K}(\mathcal{S}, \mathcal{X})$ is the set of quasiconstant morphisms from \mathcal{S} to \mathcal{X}. Heuristically, these represent "perfectly predictable" (i.e. "riskless") acts.
Notation: For any $\kappa \in \mathcal{K}(\mathcal{S}, \mathcal{X})$, let $\bar{\kappa} \in \widetilde{\mathcal{X}}$ denote its \sim-equivalence class.
For any $\mathcal{X} \in[\mathcal{X}]$, we require a quasipreference $\left[\succeq_{\mathcal{X}}^{\text {dom }}\right]$ on \mathcal{X} satisfying:
(A1) (Ex post preferences) Let $\succeq_{\mathcal{X}}^{\mathrm{xp}}$ be the preference order that $\left[\succeq_{\mathcal{X}}^{\text {dom }}\right]$ induces on $\widetilde{\mathcal{X}}$. Then $\succeq_{\mathcal{X}}^{\mathrm{X}}$ is nontrivial, and for any $\mathcal{S} \in[\mathcal{X x}]$ and any $\kappa_{1}, \kappa_{2} \in \mathcal{K}(\mathcal{S}, \mathcal{X})$, we have $\kappa_{1} \succeq_{\mathcal{X}}^{\mathcal{S}} \kappa_{2}$ if and only if $\bar{\kappa}_{1} \succeq_{\mathcal{X}}{ }_{\mathcal{X}} \bar{\kappa}_{2}$.
(A2) (Statewise dominance) For any $\mathcal{S} \in[\mathcal{S}]$ and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, if $\alpha \succeq_{\mathcal{X}}^{\mathrm{dom}} \beta$, then $\alpha \succeq_{\mathcal{X}}^{\mathcal{S}} \beta$.
Interpretation: $\underset{\succ_{\mathrm{xp}} \mathcal{X}}{\mathrm{X}}$ is the agent's "ex post preference relation" on $\widetilde{\mathcal{X}}$. (A1) says that $\succeq_{\mathcal{X}}^{\mathrm{xp}}$ governs the agent's preferences over "riskless" acts. If $\alpha \succeq_{\mathcal{X}}^{\text {dom }} \beta$, then α delivers a better ex post outcome than β in all circumstances. Then (A2) says the agent should prefer α over β ex ante.

Axioms (A1) and (A2)

The Savage structure $\mathfrak{S}=\left(\succeq_{\mathcal{X}}^{\mathcal{X}}\right)_{\mathcal{X} \in[\mathcal{X}]}^{\mathcal{S} \in[\mathcal{S}]}$ must satisfy five axioms.....
Recall: $\mathcal{K}(\mathcal{S}, \mathcal{X})$ is the set of quasiconstant morphisms from \mathcal{S} to \mathcal{X}. Heuristically, these represent "perfectly predictable" (i.e. "riskless") acts.
Notation: For any $\kappa \in \mathcal{K}(\mathcal{S}, \mathcal{X})$, let $\bar{\kappa} \in \widetilde{\mathcal{X}}$ denote its \sim-equivalence class.
For any $\mathcal{X} \in[\mathcal{X}]$, we require a quasipreference $\left[\succeq_{\mathcal{X}}^{\text {dom }}\right]$ on \mathcal{X} satisfying:
(A1) (Ex post preferences) Let $\succeq_{\mathcal{X}}^{\mathrm{xp}}$ be the preference order that $\left[\succeq_{\mathcal{X}}^{\text {dom }}\right]$ induces on $\widetilde{\mathcal{X}}$. Then $\succeq_{\mathcal{X}}^{\mathrm{Xp}}$ is nontrivial, and for any $\mathcal{S} \in[\underset{\text { xp }}{\mathcal{S}}]$ and any $\kappa_{1}, \kappa_{2} \in \mathcal{K}(\mathcal{S}, \mathcal{X})$, we have $\kappa_{1} \succeq_{\mathcal{X}}^{\mathcal{S}} \kappa_{2}$ if and only if $\bar{\kappa}_{1} \succeq_{\mathcal{X}}^{\mathcal{X}_{\mathcal{P}}} \bar{\kappa}_{2}$.
(A2) (Statewise dominance) For any $\mathcal{S} \in[\mathcal{S}]$ and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, if $\alpha \succeq_{\mathcal{X}}^{\text {dom }} \beta$, then $\alpha \succeq_{\mathcal{X}}^{\mathcal{S}} \beta$.
Interpretation: $\underset{\succ_{\mathrm{p}} \mathcal{X}}{\mathrm{X}}$ is the agent's "ex post preference relation" on $\widetilde{\mathcal{X}}$. (A1) says that $\succeq_{\mathcal{X}}^{\mathrm{xp}}$ governs the agent's preferences over "riskless" acts. If $\alpha \succeq_{\mathcal{X}}^{\text {dom }} \beta$, then α delivers a better ex post outcome than β in all circumstances. Then (A2) says the agent should prefer α over β ex ante.
Axioms (A1) and (A2) are part of Savage's original characterization of SEU.

Axiom (A3): Simple density

Recall. If $\mathcal{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$ is a partition of \mathcal{S}, then
$\Sigma(\mathcal{R}, \mathcal{X}):=\quad\{$ all simple morphisms from \mathcal{R} to $\mathcal{X}\}$.

Axiom (A3): Simple density

Recall. If $\mathcal{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$ is a partition of \mathcal{S}, then
$\Sigma(\mathcal{R}, \mathcal{X}):=\{$ all simple morphisms from \mathcal{R} to $\mathcal{X}\}$.
(A3) (Simple density) For any $\mathcal{S} \in \mathcal{S}$ and $\mathcal{X} \in \mathcal{X}$, and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, if $\alpha \succ_{\mathcal{X}}^{\mathcal{S}} \beta$, then there exists a partition $\mathcal{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right) \in \mathfrak{R}_{\mathcal{S}}(\mathcal{S})$, and two simple acts $\alpha^{\prime}, \beta^{\prime} \in \Sigma(\mathcal{R}, \mathcal{X})$ such that $\alpha \circ \rho \succeq_{\mathcal{X}}^{\text {dom }} \quad \alpha^{\prime} \succ_{\mathcal{X}}^{\mathcal{R}} \beta^{\prime} \succeq_{\mathcal{X}}^{\text {dom }} \quad \beta \circ \rho$.

Axiom (A3): Simple density

Recall. If $\mathcal{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right)$ is a partition of \mathcal{S}, then
$\Sigma(\mathcal{R}, \mathcal{X}):=\quad\{$ all simple morphisms from \mathcal{R} to $\mathcal{X}\}$.
(A3) (Simple density) For any $\mathcal{S} \in \mathcal{S}$ and $\mathcal{X} \in \mathcal{X}$, and any $\alpha, \beta \in \overrightarrow{\mathcal{C}}(\mathcal{S}, \mathcal{X})$, if $\alpha \succ_{\mathcal{X}}^{\mathcal{S}} \beta$, then there exists a partition $\mathcal{R}=\left(\mathcal{R}_{1}, \iota_{1} ; \ldots ; \mathcal{R}_{N}, \iota_{N} ; \mathcal{R}, \rho\right) \in \mathfrak{R}_{\mathcal{S}}(\mathcal{S})$, and two simple acts $\alpha^{\prime}, \beta^{\prime} \in \Sigma(\mathcal{R}, \mathcal{X})$ such that $\alpha \circ \rho \succeq_{\mathcal{X}}^{\text {dom }} \quad \alpha^{\prime} \succ_{\mathcal{X}}^{\mathcal{R}} \beta^{\prime} \succeq_{\mathcal{X}}^{\text {dom }} \quad \beta \circ \rho$.

Idea: We can "approximate" any acts on \mathcal{S} with simple acts.

Axiom (A4): Tradeoff consistency

Let $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$ be a coproduct of some objects $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N} \in[\mathcal{C}]$ and suppose $\mathcal{R} \in \mathcal{S}$. Let $\mathcal{X} \in \mathcal{X}$.

Axiom (A4): Tradeoff consistency

Let $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$ be a coproduct of some objects $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N} \in[\mathcal{C}]$ and suppose $\mathcal{R} \in \mathcal{S}$. Let $\mathcal{X} \in \mathcal{X}$.
For any $w, x, y, z \in \mathcal{X}$, write $(w \rightsquigarrow x) \cong(y \rightsquigarrow z)$ if there exists $\sigma, \tau \in \Sigma(\mathcal{R}, \mathcal{X})$ and $n \in[1 \ldots N]$ such that $\left(w_{n} \mid \sigma\right) \approx \mathcal{X} \quad\left(x_{n} \mid \tau\right)$ and $\left(y_{n} \mid \sigma\right) \approx \mathcal{X}\left(z_{n} \mid \tau\right)$.

Axiom (A4): Tradeoff consistency

Let $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$ be a coproduct of some objects $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N} \in[\mathcal{C}]$ and suppose $\mathcal{R} \in \mathcal{S}$. Let $\mathcal{X} \in \mathcal{X}$.
For any $w, x, y, z \in \widetilde{\mathcal{X}}$, write $(w \rightsquigarrow x) \cong(y \rightsquigarrow z)$ if there exists $\sigma, \tau \in \Sigma(\mathcal{R}, \mathcal{X})$ and $n \in[1 \ldots N]$ such that $\left(w_{n} \mid \sigma\right) \approx \mathcal{X}\left(x_{n} \mid \tau\right)$ and $\left(y_{n} \mid \sigma\right) \approx_{\mathcal{X}}^{\mathcal{R}}\left(z_{n} \mid \tau\right)$.
Idea: The gain in changing w to x on \mathcal{R}_{n} is exactly equal to the gain in changing y to z on \mathcal{R}_{n} (because both are exactly cancelled by the loss of changing σ to τ on the complement of \mathcal{R}_{n}).

Axiom (A4): Tradeoff consistency

Let $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$ be a coproduct of some objects $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N} \in[\mathcal{C}]$ and suppose $\mathcal{R} \in \mathcal{S}$. Let $\mathcal{X} \in \mathcal{X}$.
For any $w, x, y, z \in \widetilde{\mathcal{X}}$, write $(w \rightsquigarrow x) \cong(y \rightsquigarrow z)$ if there exists $\sigma, \tau \in \Sigma(\mathcal{R}, \mathcal{X})$ and $n \in[1 \ldots N]$ such that $\left(w_{n} \mid \sigma\right) \approx \mathcal{X}\left(x_{n} \mid \tau\right)$ and $\left(y_{n} \mid \sigma\right) \approx_{\mathcal{X}}^{\mathcal{R}}\left(z_{n} \mid \tau\right)$.
Idea: The gain in changing w to x on \mathcal{R}_{n} is exactly equal to the gain in changing y to z on \mathcal{R}_{n} (because both are exactly cancelled by the loss of changing σ to τ on the complement of \mathcal{R}_{n}).

Thus, the "value difference" between w and x should be the same as the "value difference" between y and z.

Axiom (A4): Tradeoff consistency

Let $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$ be a coproduct of some objects $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N} \in[\mathcal{C}]$ and suppose $\mathcal{R} \in \mathcal{S}$. Let $\mathcal{X} \in \mathcal{X}$.
For any $w, x, y, z \in \mathcal{X}$, write $(w \rightsquigarrow x) \cong(y \rightsquigarrow z)$ if there exists $\sigma, \tau \in \Sigma(\mathcal{R}, \mathcal{X})$ and $n \in[1 \ldots N]$ such that $\left(w_{n} \mid \sigma\right) \approx \mathcal{X}\left(x_{n} \mid \tau\right)$ and $\left(y_{n} \mid \sigma\right) \approx_{\mathcal{X}}^{\mathcal{R}}\left(z_{n} \mid \tau\right)$.
Idea: The gain in changing w to x on \mathcal{R}_{n} is exactly equal to the gain in changing y to z on \mathcal{R}_{n} (because both are exactly cancelled by the loss of changing σ to τ on the complement of \mathcal{R}_{n}).

Thus, the "value difference" between w and x should be the same as the "value difference" between y and z.
Example: If \mathcal{R} and \mathcal{X} were sets, and $\succeq \mathcal{X}$ had an SEU representation with utility function $u: \mathcal{X} \longrightarrow \mathbb{R}$, then

$$
(w \rightsquigarrow x) \cong(y \rightsquigarrow z) \text { if and only if } u(w)-u(x)=u(y)-u(z) .
$$

Axiom (A4): Tradeoff consistency

Let $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$ be a coproduct of some objects $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N} \in[\mathcal{C}]$ and suppose $\mathcal{R} \in \mathcal{S}$. Let $\mathcal{X} \in \mathcal{X}$.
For any $w, x, y, z \in \mathcal{X}$, write $(w \rightsquigarrow x) \cong(y \rightsquigarrow z)$ if there exists $\sigma, \tau \in \Sigma(\mathcal{R}, \mathcal{X})$ and $n \in[1 \ldots N]$ such that $\left(w_{n} \mid \sigma\right) \approx \mathcal{X}\left(x_{n} \mid \tau\right)$ and $\left(y_{n} \mid \sigma\right) \approx_{\mathcal{X}}^{\mathcal{R}}\left(z_{n} \mid \tau\right)$.
Idea: The gain in changing w to x on \mathcal{R}_{n} is exactly equal to the gain in changing y to z on \mathcal{R}_{n} (because both are exactly cancelled by the loss of changing σ to τ on the complement of \mathcal{R}_{n}).

Thus, the "value difference" between w and x should be the same as the "value difference" between y and z.
Example: If \mathcal{R} and \mathcal{X} were sets, and $\succeq_{\mathcal{X}}^{\mathcal{R}}$ had an SEU representation with utility function $u: \mathcal{X} \longrightarrow \mathbb{R}$, then

$$
(w \rightsquigarrow x) \cong(y \rightsquigarrow z) \text { if and only if } u(w)-u(x)=u(y)-u(z) .
$$

The next axiom is due to Köbberling and Wakker (2003).

Axiom (A4): Tradeoff consistency

Let $\mathcal{R}=\left(\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}\right)$ be a coproduct of some objects $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N} \in[\mathcal{C}]$ and suppose $\mathcal{R} \in \mathcal{S}$. Let $\mathcal{X} \in \mathcal{X}$.
For any $w, x, y, z \in \widetilde{\mathcal{X}}$, write $(w \rightsquigarrow x) \cong(y \rightsquigarrow z)$ if there exists $\sigma, \tau \in \Sigma(\mathcal{R}, \mathcal{X})$ and $n \in[1 \ldots N]$ such that $\left(w_{n} \mid \sigma\right) \approx \mathcal{X} \quad\left(x_{n} \mid \tau\right)$ and $\left(y_{n} \mid \sigma\right) \approx \mathcal{X} \quad\left(z_{n} \mid \tau\right)$.
Idea: The gain in changing w to x on \mathcal{R}_{n} is exactly equal to the gain in changing y to z on \mathcal{R}_{n} (because both are exactly cancelled by the loss of changing σ to τ on the complement of \mathcal{R}_{n}).
Thus, the "value difference" between w and x should be the same as the "value difference" between y and z.
Example: If \mathcal{R} and \mathcal{X} were sets, and $\succeq_{\mathcal{X}}^{\mathcal{R}}$ had an SEU representation with utility function $u: \mathcal{X} \longrightarrow \mathbb{R}$, then

$$
(w \rightsquigarrow x) \cong(y \rightsquigarrow z) \text { if and only if } u(w)-u(x)=u(y)-u(z) .
$$

The next axiom is due to Köbberling and Wakker (2003).
(A4) (Tradeoff Consistency) Let ($\mathcal{R} ; \iota_{1}, \ldots, \iota_{N}$) be a coproduct of $\mathcal{R}_{1}, \ldots, \mathcal{R}_{N}$, with $\mathcal{R} \in \mathcal{S}$. For any $\mathcal{X} \in \mathcal{X}$, and any $w, w^{\prime}, x, y, z \in \widetilde{\mathcal{X}}$, if $(w \rightsquigarrow x) \cong\left(y_{\rightsquigarrow z}\right)$ and $\left(w^{\prime} \rightsquigarrow x\right) \cong\left(y_{\rightsquigarrow} \rightsquigarrow\right)$, then $w \approx_{\mathcal{X}}^{x_{\mathcal{p}}} \quad w^{\prime}$.

Axiom (A5): Archimedeanism

Let $\mathcal{X} \in \mathcal{X}$, and consider an infinite sequence of quasielements $x_{1}, x_{2}, x_{3}, x_{4}, \ldots$ drawn from $\widetilde{\mathcal{X}}$.

The sequence $\left(x_{i}\right)_{i=1}^{\infty}$ is an infinite standard sequence if Idea: $x_{1}, x_{2}, x_{3}, x_{4}, \ldots$. are "evenly spaced" in \mathcal{X} The sequence $\left(x^{i}\right)_{i=1}^{\infty}$ is bounded if there exist $x_{*}, x^{*} \in \mathcal{X}$ such that In this case, the utility-difference between x_{i} and x_{i+1} is effectively "infinitesimal" relative to the utilitv-difference hetween Our last axiom is a standard condition in decision theory, which rules out such "infinitesimal" utility differences

Axiom (A5): Archimedeanism

Let $\mathcal{X} \in \mathcal{X}$, and consider an infinite sequence of quasielements $x_{1}, x_{2}, x_{3}, x_{4}, \ldots$ drawn from $\widetilde{\mathcal{X}}$.

The sequence $\left(x_{i}\right)_{i=1}^{\infty}$ is an infinite standard sequence if $\left(x_{i} \rightsquigarrow x_{i+1}\right) \cong\left(x_{j \rightsquigarrow x_{j+1}}\right)$ for all $i, j \in \mathbb{N}$.

Axiom (A5): Archimedeanism

Let $\mathcal{X} \in \mathcal{X}$, and consider an infinite sequence of quasielements $x_{1}, x_{2}, x_{3}, x_{4}, \ldots$ drawn from $\widetilde{\mathcal{X}}$.

The sequence $\left(x_{i}\right)_{i=1}^{\infty}$ is an infinite standard sequence if $\left(x_{i} \leadsto x_{i+1}\right) \cong\left(x_{j \rightsquigarrow x_{j+1}}\right)$ for all $i, j \in \mathbb{N}$.
Idea: $x_{1}, x_{2}, x_{3}, x_{4}, \ldots$. are "evenly spaced" in $\widetilde{\mathcal{X}}$.

Axiom (A5): Archimedeanism

Let $\mathcal{X} \in \mathcal{X}$, and consider an infinite sequence of quasielements $x_{1}, x_{2}, x_{3}, x_{4}, \ldots$ drawn from $\widetilde{\mathcal{X}}$.

The sequence $\left(x_{i}\right)_{i=1}^{\infty}$ is an infinite standard sequence if $\left(x_{i} \rightsquigarrow x_{i+1}\right) \cong\left(x_{j \rightsquigarrow x_{j+1}}\right)$ for all $i, j \in \mathbb{N}$.
Idea: $x_{1}, x_{2}, x_{3}, x_{4}, \ldots$. are "evenly spaced" in $\widetilde{\mathcal{X}}$.
The sequence $\left(x^{i}\right)_{i=1}^{\infty}$ is bounded if there exist $x_{*}, x^{*} \in \widetilde{\mathcal{X}}$ such that $x_{*} \preceq_{\mathcal{X}}^{\mathrm{xp}_{\mathcal{p}}} \quad x_{1} \quad \prec_{\mathcal{X}}^{\mathrm{xp}} \quad x_{2} \quad \prec_{\mathcal{X}}^{\mathrm{xp}} \quad x_{3} \quad \prec_{\mathcal{X}}^{\mathrm{xp}} \cdots \cdots \cdots \prec_{\mathcal{X}}^{\mathrm{xp}} \quad x^{*}$.

Axiom (A5): Archimedeanism

Let $\mathcal{X} \in \mathcal{X}$, and consider an infinite sequence of quasielements $x_{1}, x_{2}, x_{3}, x_{4}, \ldots$ drawn from $\widetilde{\mathcal{X}}$.

The sequence $\left(x_{i}\right)_{i=1}^{\infty}$ is an infinite standard sequence if $\left(x_{i} \rightsquigarrow x_{i+1}\right) \cong\left(x_{j \rightsquigarrow x_{j+1}}\right)$ for all $i, j \in \mathbb{N}$.
Idea: $x_{1}, x_{2}, x_{3}, x_{4}, \ldots$. are "evenly spaced" in $\widetilde{\mathcal{X}}$.
The sequence $\left(x^{i}\right)_{i=1}^{\infty}$ is bounded if there exist $x_{*}, x^{*} \in \widetilde{\mathcal{X}}$ such that $x_{*} \preceq_{\mathcal{X}}^{\mathrm{xp}} \quad x_{1} \prec_{\mathcal{X}}^{\mathrm{xp}} \quad x_{2} \prec_{\mathcal{X}}^{\mathrm{xp}} \quad x_{3} \prec_{\mathcal{X}}^{\mathrm{xp}} \cdots \cdots \cdots \prec_{\mathcal{X}}^{\mathrm{xp}} \quad x^{*}$.

In this case, the utility-difference between x_{i} and x_{i+1} is effectively "infinitesimal" relative to the utility-difference between x_{*} and x^{*}

Axiom (A5): Archimedeanism

Let $\mathcal{X} \in \mathcal{X}$, and consider an infinite sequence of quasielements $x_{1}, x_{2}, x_{3}, x_{4}, \ldots$ drawn from $\widetilde{\mathcal{X}}$.

The sequence $\left(x_{i}\right)_{i=1}^{\infty}$ is an infinite standard sequence if $\left(x_{i} \rightsquigarrow x_{i+1}\right) \cong\left(x_{j \rightsquigarrow x_{j+1}}\right)$ for all $i, j \in \mathbb{N}$.
Idea: $x_{1}, x_{2}, x_{3}, x_{4}, \ldots$. are "evenly spaced" in $\widetilde{\mathcal{X}}$.
The sequence $\left(x^{i}\right)_{i=1}^{\infty}$ is bounded if there exist $x_{*}, x^{*} \in \widetilde{\mathcal{X}}$ such that $x_{*} \preceq_{\underline{\mathcal{X}}}^{\mathrm{xp}} \quad x_{1} \prec_{\mathcal{X}}^{\mathrm{xp}} \quad x_{2} \prec_{\mathcal{X}}^{\mathrm{xp}} \quad x_{3} \quad \prec_{\mathcal{X}}^{\mathrm{xp}} \cdots \cdots \cdot \prec_{\mathcal{X}}^{\mathrm{xp}} \quad x^{*}$.

In this case, the utility-difference between x_{i} and x_{i+1} is effectively "infinitesimal" relative to the utility-difference between x_{*} and x^{*}

Our last axiom is a standard condition in decision theory, which rules out such "infinitesimal" utility differences....
(A5) (Archimedeanism) There are no bounded infinite standard sequences.

SEU characterization theorem (formal statement)

SEU characterization theorem. (Formal statement)
Let \mathcal{C} be any biconnected category (e.g. Set, Meas, Top, Diff, etc.)

$t(\mathcal{S}, \mathcal{X})$ be a decision structure satisfying structural conditions \mathfrak{S} be a solvable Savage structure on $(\mathcal{S}, \mathcal{X})$. Then: transformations. preference order $\succeq x$

SEU characterization theorem (formal statement)

SEU characterization theorem. (Formal statement)
 Let \mathcal{C} be any biconnected category (e.g. Set, Meas, Top, Diff, etc.)
 Let $(\mathcal{S}, \mathcal{X})$ be a decision structure satisfying structural conditions (S1)-(S3).

\square
Let \mathfrak{S} be a solvable Savage structure on $(\mathcal{S}, \mathcal{X})$. Then
\qquad
transformations.
preference order $\succeq x$

SEU characterization theorem. (Formal statement)
Let \mathcal{C} be any biconnected category (e.g. Set, Meas, Top, Diff, etc.)
Let $(\mathcal{S}, \mathcal{X})$ be a decision structure satisfying structural conditions (S1)-(S3).
Let \mathfrak{S} be a solvable Savage structure on $(\mathcal{S}, \mathcal{X})$. Then:

SEU characterization theorem (formal statement)

SEU characterization theorem. (Formal statement)

Let \mathcal{C} be any biconnected category (e.g. Set, Meas, Top, Diff, etc.)
Let $(\mathcal{S}, \mathcal{X})$ be a decision structure satisfying structural conditions (S1)-(S3).
Let \mathfrak{S} be a solvable Savage structure on $(\mathcal{S}, \mathcal{X})$. Then:

- \mathfrak{S} has an SEU representation if and only if it satisfies (A1)-(A5).

SEU characterization theorem (formal statement)

SEU characterization theorem. (Formal statement)

Let \mathcal{C} be any biconnected category (e.g. Set, Meas, Top, Diff, etc.)
Let $(\mathcal{S}, \mathcal{X})$ be a decision structure satisfying structural conditions (S1)-(S3).
Let \mathfrak{S} be a solvable Savage structure on $(\mathcal{S}, \mathcal{X})$. Then:

- \mathfrak{S} has an SEU representation if and only if it satisfies (A1)-(A5).

Let $\left(\mathbf{P}_{\mathcal{S}}\right)_{\mathcal{S} \in \mathcal{S}}$ and $\left(u_{\mathcal{X}}\right)_{\mathcal{X} \in \mathcal{X}}$ be this SEU representation. Then:

SEU characterization theorem (formal statement)

SEU characterization theorem. (Formal statement)

Let \mathcal{C} be any biconnected category (e.g. Set, Meas, Top, Diff, etc.)
Let $(\mathcal{S}, \mathcal{X})$ be a decision structure satisfying structural conditions (S1)-(S3).
Let \mathfrak{S} be a solvable Savage structure on $(\mathcal{S}, \mathcal{X})$. Then:

- \mathfrak{S} has an SEU representation if and only if it satisfies (A1)-(A5).

Let $\left(\mathbf{P}_{\mathcal{S}}\right)_{\mathcal{S} \in \mathcal{S}}$ and $\left(u_{\mathcal{X}}\right)_{\mathcal{X} \in \mathcal{X}}$ be this SEU representation. Then:

- For all $\mathcal{S} \in \mathcal{S}$, the probability structure $\mathbf{P}_{\mathcal{S}}$ is unique.

SEU characterization theorem (formal statement)

SEU characterization theorem. (Formal statement)
Let \mathcal{C} be any biconnected category (e.g. Set, Meas, Top, Diff, etc.)
Let $(\mathcal{S}, \mathcal{X})$ be a decision structure satisfying structural conditions (S1)-(S3).
Let \mathfrak{S} be a solvable Savage structure on $(\mathcal{S}, \mathcal{X})$. Then:

- \mathfrak{S} has an SEU representation if and only if it satisfies (A1)-(A5).

Let $\left(\mathbf{P}_{\mathcal{S}}\right)_{\mathcal{S} \in \mathcal{S}}$ and $\left(u_{\mathcal{X}}\right)_{\mathcal{X} \in \mathcal{X}}$ be this SEU representation. Then:

- For all $\mathcal{S} \in \mathcal{S}$, the probability structure $\mathbf{P}_{\mathcal{S}}$ is unique.
- For all $\mathcal{X} \in \mathcal{X}$, the utility function $u_{\mathcal{X}}$ is unique up to positive affine transformations.
preference order \succeq

SEU characterization theorem (formal statement)

SEU characterization theorem. (Formal statement)

Let \mathcal{C} be any biconnected category (e.g. Set, Meas, Top, Diff, etc.)
Let $(\mathcal{S}, \mathcal{X})$ be a decision structure satisfying structural conditions (S1)-(S3).
Let \mathfrak{S} be a solvable Savage structure on $(\mathcal{S}, \mathcal{X})$. Then:

- \mathfrak{S} has an SEU representation if and only if it satisfies (A1)-(A5).

Let $\left(\mathbf{P}_{\mathcal{S}}\right)_{\mathcal{S} \in \mathcal{S}}$ and $\left(u_{\mathcal{X}}\right)_{\mathcal{X} \in \mathcal{X}}$ be this $S E U$ representation. Then:

- For all $\mathcal{S} \in \mathcal{S}$, the probability structure $\mathbf{P}_{\mathcal{S}}$ is unique.
- For all $\mathcal{X} \in \mathcal{X}$, the utility function $u_{\mathcal{X}}$ is unique up to positive affine transformations.
- For any $\mathcal{X} \in \mathcal{X}, u_{\mathcal{X}}$ is an ordinal utility representation for the ex post preference order $\succeq_{\mathcal{X}}^{x_{p}}$.

Thank you.

Prologue

What is Decision Theory?
Savage's Theorem
Desiderata I
Desiderata II
Outline
Part I. Savage structures
Definition: Category
Concrete categories
Decision Contexts
Savage structures
Definition
Exampel
Informal statement of axioms I
Informal statement of axioms II
Informal statement of main result I
Informal statement of main result II
Part II: Partitions and probability
Isomorphisms and monomorphisms

Coproducts

Partitions

Partition refinements
An illustrative example
Partition categories and common refinement
Probability structures
Partition preimages and measurability in a nutshell
Preimages and pullbacks
Partition preimages
Definition
Example
Measurable and probability-preserving morphisms

Part III. Concretization

Quasiconstant morphisms
The concretization functor....
Informal treatment
Formal treatment
Part IV. Products, spans, and quasipreferences
Executive summary
Products

Spans
Quasirelations and quasipreferences
Compatible utility functions
Part V. From simple morphisms to SEU representations
Simple morphisms
Expected utility
....for simple morphisms
....for not-so-simple morphisms (informal)
Virtual simple morphisms
Expected utility for arbitrary morphisms (formal)
Subjective expected utility representations
Part VI. Formal statement of axioms and main result
Structural conditions (S1)-(S3)
Solvability
Axioms (A1) and (A2)
Axiom (A3): Simple density
Axiom (A4): Tradeoff consistency
Axiom (A5): Archimedeanism
SEU characterization theorem (formal statement)

Thank you

