The proof theory of semi-De Morgan Algebras

Fei Liang

Institute of Logic and Cognition, Sun Yat-sen University joint work with: Giuseppe Greco and Alessandra Palmigiano

21th, Nov. 2016

Plan for talk

- Part 1 Introduction to De Morgan and semi-De Morgan algebras
- Part 2 Sequent calculus for semi-De Morgan algebras
- Part 3 Display calculus for semi-De Morgan algebras
- Part 4 Discussion about different non-classical negations
- Part 5 Further work

The history of De Morgan Algebras

De Morgan algebras (also called "quasi-Boolean algebras")

- were introduced by A. Bialynicki-Birula and H. Rasiowa, in "On the representation of quasi-Boolean algebras",1957.
- H.Rasiowa proposed a representation of De Morgan algebra in 1974
- In relevance logic, the logic of bilattices and pre-rough algebras, there are many applications of De Morgan algebra.

The history of Semi-De Morgan Algebras

semi-De Morgan algebras

- were originally introduced in "Semi-De Morgan algebra", H. Sankappanavar 1987, as a common abstraction of De Morgan algebras and distributive pseudo-complemented lattices.
- D. Hobby presented a duality theory for semi-De Morgan algebras based on Priestly duality for distributive lattices in 1996.
- C. Palma and R. Santos investigated the Subvarieties of semi-De Morgan algebras in 2003.

De Morgan and Semi-De Morgan Algebras

Definition

If $(A, \vee, \wedge, 0, 1)$ is a bounded distributive lattice, then an algebra $\mathfrak{A} = (A, \vee, \wedge, \neg, 0, 1)$ is: for all $a, b \in A$:

De Morgan algebra Semi-De Morgan algebra
$$\neg(a \lor b) = \neg a \land \neg b \qquad \neg(a \land b) = \neg a \land \neg b$$

$$\neg(a \land b) = \neg a \lor \neg b \qquad \neg\neg(a \land b) = \neg \neg a \land \neg \neg b$$

$$\neg \neg a = a \qquad \neg \neg a = \neg a$$

$$\neg 0 = 1, \neg 1 = 0 \qquad \neg 0 = 1 \text{ and } \neg 1 = 0$$

Notice that $a \wedge \neg a = 0$ and $a \vee \neg a = 1$ don't hold in both algebras!

De Morgan and Semi-De Morgan Algebras

The variety of all De Morgan algebras is denoted by dM, and the variety of all semi-De Morgan algebras is denoted by SdM.

Fact

A semi-De Morgan algebra $\mathfrak A$ is a De Morgan algebras if and only if $\mathfrak A$ satisfies the identity $a \lor b = \neg(\neg a \land \neg b)$.

Sequent calculus for semi-De Morgan algebras

Language

 $\mathcal{T} \ni \varphi ::= p \mid \bot \mid \neg \varphi \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi), \text{ where } p \in \Xi.$

Define $\top:=\neg\bot.$ All terms are denoted by φ,ψ,χ etc. with or without subscripts.

Axioms

Operation rules

Rules for lattice

$$\frac{\varphi_i \vdash \psi}{\varphi_1 \land \varphi_2 \vdash \psi} (\land \vdash) (i = 1, 2) \quad \frac{\varphi \vdash \psi \quad \varphi \vdash \chi}{\varphi \vdash \psi \land \chi} (\vdash \land)$$

$$\frac{\varphi \vdash \chi \quad \psi \vdash \chi}{\varphi \lor \psi \vdash \chi} \ (\lor \vdash) \quad \frac{\varphi \vdash \psi_i}{\varphi \vdash \psi_1 \lor \psi_2} \ (\vdash \lor) (i = 1, 2)$$

Cut rule:

$$\frac{\varphi \vdash \psi \quad \psi \vdash \chi}{\varphi \vdash \chi}$$
 (Cut)

• Contraposition rule:

$$\frac{\varphi \vdash \psi}{\neg \psi \vdash \neg \varphi}$$
(cp)

The basic sequent calculus for De Morgan algebras S_{dM} is obtained from S_{SdM} by adding the axiom $\varphi \lor \psi \dashv \vdash \neg (\neg \varphi \land \neg \psi)$.

Validity

Definition

Given a semi-De Morgan algebra $\mathfrak{A}=(A,\vee,\wedge,\neg,0,1)$, an assignment in \mathfrak{A} is a function AtProp $\to A$. For any term $\varphi\in\mathcal{T}$ and assignment σ in \mathfrak{A} , define φ^{σ} inductively as follows:

$$p^{\sigma} = \sigma(p) \qquad \qquad \bot^{\sigma} = 0 \qquad (\neg \varphi)^{\sigma} = \neg \varphi^{\sigma}$$
$$(\varphi \wedge \psi)^{\sigma} = \varphi^{\sigma} \wedge \psi^{\sigma} \qquad (\varphi \vee \psi)^{\sigma} = \varphi^{\sigma} \vee \psi^{\sigma}$$

A sequent $\varphi \vdash \psi$ is said to be *valid* in a semi-De Morgan algebra $\mathfrak A$ if $\varphi^\sigma \leq \psi^\sigma$ for any assignment σ in $\mathfrak A$, where \leq is the lattice order. For a class of semi-De Morgan algebras K, a sequent $\varphi \vdash \psi$ is *valid* in K if $\varphi \vdash \psi$ is valid in $\mathfrak A$ for all $\mathfrak A \in \mathsf K$.

Completeness

Theorem (Completeness)

For every sequent $\varphi \vdash \psi$,

- 1. $\varphi \vdash \psi$ is derivable in S_{SdM} if and only if $\varphi \vdash \psi$ is valid in SdM;
- 2. $\varphi \vdash \psi$ is derivable in S_{dM} if and only if $\varphi \vdash \psi$ is valid in dM.

A G3-style Sequent Calculus for semi-De Morgan Algebras

See M. Ma and F. Liang. "Sequent calculi for semi-De Morgan and De Morgan algebras". Submitted. ArXiv preprint 1611.05231, 2016.

Definition

- Atomic G3SdM-structure φ or $*\varphi$ where φ is a term, denoted by α, β, γ etc.
- G3SdM-structure

 a multi-set of atomic structures, denoted by Γ, Δ,etc.
- Interpretation of structure

• G3SdM-sequent $\Gamma \vdash \alpha$, where Γ is an G3SdM-structure and α is an atomic G3SdM-structure.

Axioms

See O. Arieli and A. Avron. "The value of four values". *Artificial Intelligence*, 102:97-141, 1998.

(Id)
$$p, \Gamma \vdash p$$
 $(\bot \vdash)$ $\bot, \Gamma \vdash \beta$
 $(\vdash *\bot)$ $\Gamma \vdash *\bot$ $(*¬\bot \vdash)$ $*¬\bot, \Gamma \vdash \beta$

Operation rules

operation rules

$$\frac{\varphi, \psi, \Gamma \vdash \beta}{\varphi \land \psi, \Gamma \vdash \beta} (\land \vdash) \quad \frac{\Gamma \vdash \varphi \quad \Gamma \vdash \psi}{\Gamma \vdash \varphi \land \psi} (\vdash \land)$$

$$\frac{\varphi, \Gamma \vdash \beta \quad \psi, \Gamma \vdash \beta}{\varphi \lor \psi, \Gamma \vdash \beta} (\lor \vdash) \quad \frac{\Gamma \vdash \varphi_i}{\Gamma \vdash \varphi_1 \lor \varphi_2} (\vdash \lor) (i \in \{1, 2\})$$

$$\frac{*\varphi, *\psi, \Gamma \vdash \beta}{*(\varphi \lor \psi), \Gamma \vdash \beta} (*\lor \vdash) \quad \frac{\Gamma \vdash *\varphi \quad \Gamma \vdash *\psi}{\Gamma \vdash *(\varphi \lor \psi)} (\vdash *\lor)$$

$$\frac{*\neg \varphi, *\neg \psi, \Gamma \vdash \beta}{*\neg (\varphi \land \psi), \Gamma \vdash \beta} (*\neg \land \vdash) \quad \frac{\Gamma \vdash *\neg \varphi \quad \Gamma \vdash *\neg \psi}{\Gamma \vdash *\neg (\varphi \land \psi)} (\vdash *\neg \land)$$

$$\frac{*\varphi, \Gamma \vdash \beta}{*\neg \varphi, \Gamma \vdash \beta} (\neg \vdash) \quad \frac{\Gamma \vdash *\varphi}{\Gamma \vdash *\neg \varphi} (\vdash \neg)$$

structure rule

$$\frac{\varphi \vdash \psi}{*\psi, \Gamma \vdash *\varphi} \ (*)$$

Weakening admissible

Theorem

For any atomic G3SdM-structures α and β , the weakening rule

$$\frac{\Gamma \vdash \beta}{\alpha, \Gamma \vdash \beta} (Wk)$$

is height-preserving admissible in G3SdM.

Contraction admissible

Theorem

For any atomic G3SdM-structure α and term $\psi \in \mathcal{T}$, the contraction rule

$$\frac{\alpha, \alpha, \Gamma \vdash \psi}{\alpha, \Gamma \vdash \psi} (Ctr)$$

is height-preserving derivable in G3SdM.

Cut admissible and decidability

Theorem

For any atomic G3SdM-structures α and β , the cut rule

$$\frac{\Gamma \vdash \alpha \quad \alpha, \Delta \vdash \beta}{\Gamma, \Delta \vdash \beta}$$
 (Cut)

is admissible in G3SdM.

Theorem (Decidability)

The derivability of an G3SdM-sequent in the calculus G3SdM is decidable.

Craig Interpolation

Definition

Given any G3SdM-sequent $\Gamma \vdash \beta$, we say that $(\Gamma_1; \emptyset)(\Gamma_2, \beta)$ is a partition of $\Gamma \vdash \beta$, if the multiset union of Γ_1 and Γ_2 is equal to Γ . An atomic G3SdM-structure α is called an *interpolant* of the partition $(\Gamma_1; \emptyset)(\Gamma_2, \beta)$ if the following conditions are satisfied:

- 1. G3SdM $\vdash \Gamma_1 \vdash \alpha$;
- 2. G3SdM $\vdash \alpha, \Gamma_2 \vdash \beta$;
- 3. $var(\alpha) \subseteq var(\Gamma_1) \cap var(\Gamma_2, \beta)$.

Let α be an interpolant of the partition $(\Gamma_1; \emptyset)(\Gamma_2, \beta)$. It is obvious that the term $t(\alpha)$ is also an interpolant of the partition.

Craig Interpolation

Theorem (Craig Interpolation)

For any G3SdM-sequent $\Gamma \vdash \beta$, if $\Gamma \vdash \beta$ is derivable in G3SdM, then any partition of the sequent $\Gamma \vdash \beta$ has an interpolant.

Display calculus for semi-De Morgan algebras

 The language of structure and operations in D_{SDL} is defined as follows:

$$A ::= p \mid \top \mid \bot \mid \sim A \mid \neg A \mid A \land A \mid A \lor A$$
$$X ::= I \mid *X \mid \circledast X \mid X; X \mid X > X$$

 Interpretation of structural D_{SDL} connectives as their operational counterparts:

S connectives									
1		*			;	>			
T	T	_	~	\wedge	V	(→)	(ightarrow)		

Residuals:
$$\land \dashv \rightarrow \qquad \rightarrowtail \dashv \lor$$

Display structural rules

$$\mathsf{SN} \, \, \frac{ *X \vdash Y}{ \circledast Y \vdash X} \qquad \frac{ X \vdash *Y}{ Y \vdash \circledast X} \, \mathsf{SN}$$

$$\mathrm{S_D} \, \frac{X\,;\, Y \vdash Z}{Y \vdash X > Z} \qquad \frac{X \vdash Y\,;\, Z}{Y > X \vdash Z} \, \mathrm{S_D}$$

Structural rules

$$I \frac{X \vdash Y}{X ; I \vdash Y} \frac{X \vdash A}{X \vdash Y} Cut$$

$$I \frac{X \vdash Y}{X ; I \vdash Y} \frac{X \vdash Y}{X \vdash Y ; I} I$$

$$E \frac{X ; Y \vdash Z}{Y ; X \vdash Z} \frac{X \vdash Y ; Z}{X \vdash Z ; Y} E$$

$$A \frac{(X ; Y) ; Z \vdash W}{X ; (Y ; Z) \vdash Z} \frac{X \vdash (Y ; Z) ; W}{X \vdash Y ; (Z ; W)} A$$

$$W \frac{X \vdash Y}{X ; Z \vdash Y} \frac{X \vdash Y}{X \vdash Y ; Z} W$$

$$C \frac{X ; X \vdash Y}{X \vdash Y} \frac{X \vdash Y ; Y}{X \vdash Y ; Z} C$$

Operational rules

$$\begin{array}{cccc}
 & \top \frac{I \vdash X}{\top \vdash X} & \overline{I \vdash \top} & \top \\
 & \bot \frac{X \vdash I}{X \vdash \bot} & \frac{X \vdash I}{X \vdash \bot} \bot \\
 & \land \frac{A; B \vdash X}{A \land B \vdash X} & \frac{X \vdash A}{X; Y \vdash A \land B} \land \\
 & \lor \frac{A \vdash X}{A \lor B \vdash X; Y} & \frac{X \vdash A; B}{X \vdash A \lor B} \lor \\
 & \neg \frac{*A \vdash X}{\neg A \vdash X} & \frac{A \vdash X}{*X \vdash \neg A} \neg \\
 & \sim \frac{X \vdash A}{\sim A \vdash *X} & \frac{X \vdash *A}{X \vdash \sim A} \sim
\end{array}$$

Translation functions

In order to translate sequents of the original language of semi-De Morgan logic into sequents in the Display semi-De Morgan logic, we will make use of the translation $\tau_1,\tau_2:\mathsf{S}_{\mathsf{SdM}}\to\mathsf{D}_{\mathsf{SDL}}$ so that for all $A,B\in\mathsf{S}_{\mathsf{SDM}}$ and $A\vdash B$, we write

$$au_1(A) \vdash au_1(B)$$
 abbreviated as $A^{\tau} \vdash B^{\tau}$
 $au_2(A) \vdash au_2(B)$ abbreviated as $A_{\tau} \vdash B_{\tau}$

The translation τ_1 and τ_2 are defined by simultaneous induction as follows:

Completeness

Lemma

 $A \vdash B$ is derivable in S_{SdM} iff $A^{\tau} \vdash B^{\tau}$ is derivable in D_{SDL} .

Theorem (Completeness)

 $A^{\tau} \vdash B^{\tau}$ is valid in SdM iff $A^{\tau} \vdash B^{\tau}$ is derivable in D_{SDL}.

Theorem (Conservative extension)

 D_{SDL} is a conservative extension of S_{SdM} .

Cut elimination and Subformula property

Theorem (Cut elimination)

If $X \vdash Y$ is derivable in D_{SDL} , then it is derivable without Cut.

Theorem (Subformula property)

Any cut-free proof of the sequent $X \vdash Y$ in D_{SDL} contains only structures over subformulas of formulas in X and Y.

Display Calculus for De Morgan Algebras

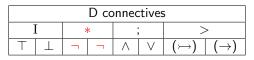
The language and the interpretation of the structural connectives of our calculus are defined as follows.

• Structural and operational language of Demorgan-Lattice:

$$\mathsf{L}\left\{\begin{array}{l} A ::= p \mid \top \mid \bot \mid \neg A \mid A \land A \mid A \lor A \mid A \to A \mid A \rightarrowtail A \mid \\ X ::= \mathsf{I} \mid *X \mid X; X \mid X > X \end{array}\right.$$

Display Calculus for De Morgan Algebras

 Interpretation of structural D_{DM} connectives as their operational (i.e. logical) counterparts:



Residuals:
$$\land \dashv \rightarrow \qquad \rightarrowtail \dashv \lor$$

(Self)Adjoints: $\neg \dashv \neg$

Display structural rules

$$SN = \frac{*X \vdash Y}{*Y \vdash X} \qquad \frac{X \vdash *Y}{Y \vdash *X} SN$$

$$S_D = \frac{X; Y \vdash Z}{Y \vdash X > Z}$$
 $\frac{X \vdash Y; Z}{Y > X \vdash Z}$ S_D

Structure rules

$$I \frac{X \vdash Y}{X; I \vdash Y} = \frac{X \vdash A}{X \vdash Y} Cut$$

$$I \frac{X \vdash Y}{X; I \vdash Y} = \frac{X \vdash Y}{X \vdash Y; I} I$$

$$E \frac{X; Y \vdash Z}{Y; X \vdash Z} = \frac{X \vdash Y; Z}{X \vdash Z; Y} E$$

$$A \frac{(X; Y); Z \vdash W}{X; (Y; Z) \vdash Z} = \frac{X \vdash (Y; Z); W}{X \vdash Y; (Z; W)} A$$

$$W \frac{X \vdash Y}{X; Z \vdash Y} = \frac{X \vdash Y}{X \vdash Y; Z} W$$

$$C \frac{X; X \vdash Y}{X \vdash Y} = \frac{X \vdash Y; Y}{X \vdash Y} C$$

$$\frac{X \vdash Y}{X \vdash X \vdash Y} *$$

Operation rules

$$\begin{array}{cccc}
 & \top & \overline{\vdash X} & \overline{\vdash \top} & \top \\
 & \bot & \overline{\vdash \bot} & \overline{X} & \overline{\vdash \bot} & \bot \\
 & \bot & \overline{\vdash \bot} & \overline{X} & \overline{\bot} & \bot & \bot \\
 & \land & \overline{A;B \vdash X} & \underline{X \vdash A} & \underline{Y \vdash B} & \land \\
 & \lor & \overline{A \land B \vdash X} & \overline{X;Y \vdash A \land B} & \lor \\
 & \lor & \overline{A \vdash X} & \underline{B \vdash Y} & \overline{X \vdash A;B} & \lor \\
 & \neg & \overline{A \vdash X} & \overline{X \vdash A \lor B} & \neg \\
 & \neg & A \vdash X & \overline{X \vdash A \lor A} & \neg \\
 & \neg & A \vdash X & \overline{X \vdash A \lor A} & \neg \\
 & \neg & A \vdash X & \overline{X \vdash A \lor A} & \neg \\
 & \hline
\end{array}$$

Completeness

Proposition

For every A in S_{dM} , $A \vdash A$ is derivable in D_{DM} .

Lemma

 $A \vdash B$ is derivable in S_{dM} iff $A \vdash B$ is derivable in D_{DM} .

Theorem (Completeness)

 $A \vdash B$ is valid in dM iff $A \vdash B$ is derivable in D_{DM} .

Cut elimination and Subformula property

Theorem (Cut elimination)

If $X \vdash Y$ is derivable in D_{DM} , then it is derivable without Cut.

Theorem (Subformula property)

Any cut-free proof of the sequent $X \vdash Y$ in D_{DM} contains only structures over subformulas of formulas in X and Y.

Glivenko theorem

Theorem (Glivenko theorem)

For any DM sequent $A \vdash B$, $A \vdash B$ is derivable in De Morgan logic iff $\neg \neg A \vdash \neg \neg B$ is derivable in semi-De Morgan logic.

The relation between De Morgan and semi-De Morgan logic is very similar with the relation between Classical logic and Intuitionistic logic!

Discussions about different non-classical negations

Some properties of negation:

Con
$$A \vdash B/\neg B \vdash \neg A$$

 $\neg \lor \neg A \land \neg B \vdash \neg (A \lor B)$ $\neg \land \neg (A \land B) \vdash \neg A \lor \neg B$
 $\neg \neg \lor \neg \neg (A \lor B) \vdash \neg \neg A \lor \neg \neg B$ $\neg \neg \land \neg \neg A \land \neg \neg B \vdash \neg \neg (A \land B)$
Nb $T \vdash \neg \bot$ Nt $\neg T \vdash \bot$
DNI $A \vdash \neg \neg A$ DNE $\neg \neg A \vdash A$
TNI $\neg A \vdash \neg \neg \neg A$ TNE $\neg \neg \neg A \vdash \neg A$
NA $A \land \neg A \vdash \neg B$ AB $A \land \neg A \vdash B$
NE $\neg B \vdash A \lor \neg A$ EM $B \vdash A \lor \neg A$

We talk about negations in bounded distributive lattice context!

Discussions about different non-classical negations

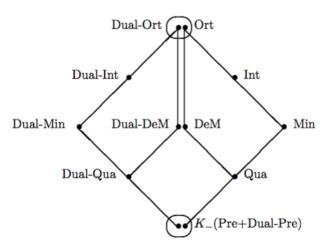
• Some derivations of difference properties

Discussions about different non-classical negations

	¬∨	¬∧	¬¬∨	¬¬∧	Nt	DNI	DNE	TNI	TNE	NA	AB	NE	EM
PMN	√												
PMN ^d		√											
QMN	\checkmark				√	\checkmark		\checkmark	\checkmark				
QMN^d		\checkmark			\checkmark	\checkmark		\checkmark	\checkmark				
SDM	\checkmark			\checkmark	\checkmark			\checkmark	\checkmark				
SDM^d		\checkmark	\checkmark		\checkmark			\checkmark	\checkmark				
QDM	√			\checkmark	√	\checkmark		√	\checkmark				
QDM^d		√	√		√		\checkmark	√	\checkmark				
MIN				\checkmark	√	\checkmark		√	\checkmark	\checkmark			
MIN^d		\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark			\checkmark	
ОСМ	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark								
DMN	\checkmark		\checkmark										
INT	\checkmark			\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark		
INT ^d		\checkmark	√		√	\checkmark		\checkmark	\checkmark			√	√
ORT	√	√	√	\checkmark	√	\checkmark	√	√	\checkmark	\checkmark	\checkmark	√	√

Michael Dunn's kite of negations

Extended (United) Kite of Negations



Further work

- Semantics: based on the compatibility frame, we can also give a compatibility semantics for semi-De Morgan logic by adding more frame conditions corresponds to the axioms.
- Applying to Justification logic (compatibility frame).
- Linear logic in semi-De Morgan context.

References

A. Anderson and N. Belnap. Entailment: The Logic of Relevance and Necessity, Vol. 1. Princeton University Press, 1975.

O. Arieli and A. Avron. Reasoning with logical bilattices. Journal of Logic, Language and Information, 5:25-63, 1996.

A. Avron. Negation: two points of view. In: D. Gabbay and H. Wansing (eds.). What is Negation?, pp. 3–22. Kluwer Academic Publishers. 1999.

A. Bialynicki-Birula and H. Rasiowa. On the representation of quasi-Boolean algebras. *Bulletin of the Polish Academy of Science*, Cl. III (5): 159–261, 1957.

R. Balbes and P. Dwinger. Distributive Lattices. Abstract Space Publishing, 2011.

F. Bou and U. Rivieccio. The logic of distributive bilattices. Logic Journal of IGPL, 19(1): 183-216, 2011.

M. Dunn. A relational representation of quasi-Boolean algebras. Notre Dame Journal of Formal Logic, 23(4): 353-357, 1982.

F. Liang, G.Greco and A. Palmigiano. Display calculi for Semi-De Morgan and De Morgan logic. In preparation.

D. Hobby, Semi-De Morgan algebras, Studia Logica, 56(1/2): 151-183, 1996.

References

N. Kamide. Notes on Craig interpolation for LJ with strong negation. Mathematical Logic Quarterly, 57(4): 395–399, 2011.

M. Ma and F. Liang. Sequent calculi for semi-De Morgan and De Morgan algebras. Submitted. ArXiv preprint 1611.05231, 2016.

S. Negri and J. von Plato. Structural Proof Theory. Cambridge University Press, 2001.

C. Palma and R. Santos. On a subvariety of semi-De Morgan algebras. Acta Mathematica Hungarica, 98(4): 323-328, 2003.

H. Rasiowa. An Algebraic Approach to Non-Classical Logics. North-Holland Co., Amsterdam, 1974.

H. Sankappanavar. Semi-De Morgan algebras. The Journal of Symbolic Logic 52(3):712-724, 1987.

A, Saha, J. Sen and M. K. Chakraborty. Algebraic structures in the vicinity of pre-rough algebra and their logics. *Information Sciences*, 282: 296-320, 2014.