The proof theory of semi-De Morgan Algebras
Fei Liang

Institute of Logic and Cognition, Sun Yat-sen University

joint work with: Giuseppe Greco and Alessandra Palmigiano

21th, Nov. 2016



Plan for talk

Part 1 Introduction to De Morgan and semi-De Morgan algebras
Part 2 Sequent calculus for semi-De Morgan algebras

Part 3 Display calculus for semi-De Morgan algebras

Part 4 Discussion about different non-classical negations

Part 5 Further work



The history of De Morgan Algebras

De Morgan algebras (also called “quasi-Boolean algebras™)

e were introduced by A. Bialynicki-Birula and H. Rasiowa, in "On the
representation of quasi-Boolean algebras”,1957.

e H.Rasiowa proposed a representation of De Morgan algebra in 1974

e In relevance logic, the logic of bilattices and pre-rough algebras,
there are many applications of De Morgan algebra.



The history of Semi-De Morgan Algebras

semi-De Morgan algebras

e were originally introduced in " Semi-De Morgan algebra” , H.
Sankappanavar 1987, as a common abstraction of De Morgan
algebras and distributive pseudo-complemented lattices.

e D. Hobby presented a duality theory for semi-De Morgan algebras
based on Priestly duality for distributive lattices in 1996.

e C. Palma and R. Santos investigated the Subvarieties of semi-De
Morgan algebras in 2003.



De Morgan and Semi-De Morgan Algebras

Definition
If (A,V,A,0,1) is a bounded distributive lattice, then an algebra
A=(AV,A,—,0,1)is: forall a,b € A:

De Morgan algebra ~ Semi-De Morgan algebra
—(avb)=-an-b —=(avb)=-aA-b
-(aAb)=-aVvV-b -—-—(aAb)=-—aA-—b
——a=a ——ma = a

-0=1,-1=0 -0=1and -1=0

Notice that a A —a =10 and aV —a =1 don’t hold in both algebras!



De Morgan and Semi-De Morgan Algebras

The variety of all De Morgan algebras is denoted by dM, and the variety
of all semi-De Morgan algebras is denoted by SdM.

Fact
A semi-De Morgan algebra A is a De Morgan algebras if and only if 2
satisfies the identity aV b = —(—a A —b).



Sequent calculus for semi-De Morgan algebras

e lLanguage

Topu=p|L]=-o|(@Ap)|(¢Ve) where p € =.

Define T := —L. All terms are denoted by ¢, 1, x etc. with or
without subscripts.



Axioms
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Operation rules

e Rules foLIattice - -
pit ¥ (AF)(i = 1,2) ww A)

p1ANp2 Y pEYAX
obEx YEx © F )
2 7 X (V) —F  (+V)(i=1,2
ovorx P g CVi=12)
e Cut rule:
PP YEX
ek x
e Contraposition rule:
pkEY
_PTY (e
WFW( )

The basic sequent calculus for De Morgan algebras Sym is obtained from
Ssam by adding the axiom ¢ V ¢ 4F —(=p A —1)).



Validity

Definition

Given a semi-De Morgan algebra 24 = (A, V, A, —,0,1), an assignment in
2 is a function AtProp — A. For any term ¢ € T and assignment o in
2, define 7 inductively as follows:

g

p” = o(p) 17=0 (me)” =
(pAP)T =7 AT (e V)T =7 Vi

A sequent @ I 1) is said to be valid in a semi-De Morgan algebra 2 if
p? <97 for any assignment o in 2, where < is the lattice order. For a
class of semi-De Morgan algebras K, a sequent ¢ - 4 is valid in K if

@ F 1 is valid in 2 for all 2 € K.



Completeness

Theorem (Completeness)

For every sequent v F 1),
1. @t is derivable in Ssqm if and only if ¢ = 1) is valid in SAM;
2. ¢ F 4 is derivable in Sqm if and only if o =1 is valid in dM.



A G3-style Sequent Calculus for semi-De Morgan Algebras

See M. Ma and F. Liang. "Sequent calculi for semi-De Morgan and De
Morgan algebras”. Submitted. ArXiv preprint 1611.05231, 2016.
Definition
e Atomic G3SdM-structure
@ or xp where ¢ is a term, denoted by «, 3,7 etc.

e G3SdM-structure
a multi-set of atomic structures, denoted by I, A etc.

o Interpretation of structure

* b
—|\ﬁ/\\/

e G3SdM-sequent
I+ «, where I is an G3SdM-structure and « is an atomic
G3SdM-structure.



Axioms

See O. Arieli and A. Avron. " The value of four values”. Artificial
Intelligence, 102:97-141, 1998.
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Operation rules
e operation rules
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Weakening admissible

Theorem
For any atomic G35dM-structures o and 3, the weakening rule

r=p

arrg W

is height-preserving admissible in G3SdM.



Contraction admissible

Theorem
For any atomic G3S5dM-structure o and term i € T, the contraction rule
a,a, F

o g €

is height-preserving derivable in G3SdM.



Cut admissible and decidability

Theorem
For any atomic G35dM-structures o and 3, the cut rule

N-a oAFpS
MNAES

(Cut)

is admissible in G3SdM.

Theorem (Decidability)
The derivability of an G35dM-sequent in the calculus G35dM s decidable.



Craig Interpolation

Definition
Given any G3SdM-sequent ' I 3, we say that ('y; 0)(I2, 3) is a partition
of '+ 3, if the multiset union of I'; and I'; is equal to . An atomic
G3SdM-structure « is called an interpolant of the partition (I'1; #)(T'2, 3)
if the following conditions are satisfied:

1. G3SdM T F ¢

2. G3SdM F a, Ty F ;

3. var(a) C var(l'1) Nvar(2, B).

Let « be an interpolant of the partition (I'1; 0)(I'», 8). It is obvious that
the term t(«) is also an interpolant of the partition.



Craig Interpolation

Theorem (Craig Interpolation)

For any G35dM-sequent ' = 3, if T & (3 is derivable in G3SdM, then any
partition of the sequent I = 3 has an interpolant.



Display calculus for semi-De Morgan algebras

e The language of structure and operations in Dgp is defined as
follows:
Ac=p|T|L|~A|-A|ANA|AVA
Xo=1l]*xX|@X|X; X | X>X
e Interpretation of structural Dsp; connectives as their operational
counterparts:

S connectives
/ * : >
TIL]-[~[AVI(=) [ (=)

Residuals : A= — — =V



Display structural rules

\ *XFEY X ExY N
®Y X Y F®X
X;YHZ X+Y;Z
SD SD

YEX>Z Y>XFEZ



Structural rules

Id XEA ALY .

pEp XFY

XEY Xby
XIrY Xrv.
X YbZ XbkY:Z
Y Xt Z Xrz.vy .
xX;Y),Zz+-WwW XE(Y;Z);,W

A
X (Y, 2)rZ XEY;(Z;,W)

W XFY XEY W

X Z+Y XkFY;Z
X;XFY XEY;Y
XFY XkFY

X FxY
XExx*xY




Operational rules

IEX T
TFrx IFT
XEI

TIET kot

A BFX XEA YFB
AANBEF X X;YFAAB

AFX BrY XFA;B
AVBEX;Y XFAVB

L *AF X AEX
SAEX #XF A

XFA X F %A
~AFxX XEF~A

A

V

~




Translation functions

In order to translate sequents of the original language of semi-De Morgan
logic into sequents in the Display semi-De Morgan logic, we will make
use of the translation 71,7 : Ssgqm — DspL so that for all A, B € Sspm
and A+ B, we write

71(A) F 1(B) abbreviated as A"k BT
m(A) - »(B) abbreviated as A, I B,

The translation 71 and 7, are defined by simultaneous induction as
follows:

TT o= T Tro= T
17= L 1l,= L
pT = p pri= P
(AANB)" := A"ABT | (AAB), = A AB;
(AvB) u= A"VB" | (AVB), = A, VB
(AT = ~ A, (RA),; = AT




Completeness

Lemma

At B is derivable in Ssqm iff A™ = B7 is derivable in Dspy .

Theorem (Completeness)

AT+ B7 s valid in SdM iff AT i BT is derivable in Dgp .

Theorem (Conservative extension)

DspL is a conservative extension of Ssqm.



Cut elimination and Subformula property

Theorem (Cut elimination)

If X =Y is derivable in Dspy, then it is derivable without Cut.

Theorem (Subformula property)

Any cut-free proof of the sequent X Y in Dsp contains only structures

over subformulas of formulas in X and Y.



Display Calculus for De Morgan Algebras

The language and the interpretation of the structural connectives of our
calculus are defined as follows.

e Structural and operational language of Demorgan-Lattice:
A=p|T|L|-A|ANA|AVA|A=SA|A— A]

Xo=T|«X|X; X | X>X



Display Calculus for De Morgan Algebras

o Interpretation of structural Dpy connectives as their operational
(i.e. logical) counterparts:

D connectives
I * ; >
TIL - -IAJVIC=) (=)

Residuals : A — — =V

(Self)Adjoints : - ==



Display structural rules

*XFY X xY
SN SN
*Y F X Y F xX
X;:Y+HZ XkY; Z

Sp

Sp

YEX>Z Y>XFZ



Structure rules

XFA ArY
pEp XFY

XFY XEY
X;I+Y XEY;I
EX;YI—Z X}—Y;ZE
Y: X+HZ X+ZY
(X;YpzZ-W  XE(Y;Z2),W

Id

Cut

X (Y;Z2)rZ XY (Z;W) A

W XFY XkY W

X;ZFY XbBY;Z
X; XFEY  XEYY
XFY XkFY

X+Y
XExxY




Operation rules

IFX

T 1EX T

TFx IFET
| — XFKI
LEL X1

A ABFX XEA YI—BA
AANBF X X;YEFAANB

AEF X BFY XA B
AVBEX;Y XFAVB

1

\

_HAEX  XExA
SAEX  XF-A




Completeness

Proposition
For every A in Sqm, A & A is derivable in Dpy; .

Lemma
A B is derivable in Sqm iff A+ B is derivable in Dpy .

Theorem (Completeness)
At B isvalid in dM iff A&+ B is derivable in Dpy .



Cut elimination and Subformula property

Theorem (Cut elimination)

If X &Y is derivable in Dpwn, then it is derivable without Cut.

Theorem (Subformula property)

Any cut-free proof of the sequent X =Y in Dpw contains only structures

over subformulas of formulas in X and Y.



Glivenko theorem

Theorem (Glivenko theorem)

For any DM sequent A+ B, A+ B is derivable in De Morgan logic iff
——AF =B is derivable in semi-De Morgan logic.

The relation between De Morgan and semi-De Morgan logic is very
similar with the relation between Classical logic and Intuitionistic logic!



Discussions about different non-classical negations

e Some properties of negation:

Con AR B/-BFE-A

-V —AA-BF-(AVB) -A  —(AAB)F-AV-B
==V —=(AVB)F-—AV-—-B -—-A —-—AA-—-BF -—(AAB)
Nb  Tr-L Nt =Tk L

DNI AR —-—A DNE —-—AFA

TNl -AF-—-A TNE —-—AF-A

NA AN-AF-B AB AN-AFB

NE “BFAV-A EM BFAV-A

We talk about negations in bounded distributive lattice context!



Discussions about different non-classical negations

e Some derivations of difference properties

Con, DNI F Nt Con, DNE F Nb

Con, DNI F =V Con, DNE F—=A

Con, DNI, NA  F ==/ Con, DNI, Ab F—==A

Con, DNE, NE F ==V Con, DNE, EM F ==V

Con, DNI F TNI, TNE Con, DNE F TNI, TNE
DNI, =V, =-A + DNE DNE,—~V, =A F DNI

—\\/7—|/\ I— —\—\\/’—\—|/\



Discussions about different non-classical negations

-V

A

DNI

DNE

NA

AB

NE

EM

PMN Vv

PMN¢ v

QMN v v |V v |V

QMN? v v |V Y%

SDM v Vv v v |V

sbm* v |V v vV |V

QDM v Vv v |V YR

QDM v |V v v vV |V

MIN v v v |V vV |V v

MIN¢ v |V v |V v |V v
OCM vV IV |V v V

DMN vV IV |V v vV v |V v |V

INT V v V|V Y vV |V

INT® v |V v |V v |V v |V
ORT vV IV |V v ViV |V Y VIV IV IV




Michael Dunn’s kite of negations

Extended (United) Kite of Negations

Dual-Min Dual-DeM Min

Dual-Qua

@ K_ (Pre+Dual-Pre)



Further work

e Semantics: based on the compatibility frame, we can also give a
compatibility semantics for semi-De Morgan logic by adding more
frame conditions corresponds to the axioms.

e Applying to Justification logic (compatibility frame).
e Linear logic in semi-De Morgan context.
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