The Logic of Common Ignorance

Gert-Jan Lokhorst
TU Delft
g.j.c.lokhorst@tudelft.nl
Collective Intentionality X
The Hague, The Netherlands

September 1, 2016

Introduction

Quote "Knowledge is a big subject. Ignorance is bigger...and it is more interesting." ¹

Claim Ignorance has some surprising properties.

Example Common ignorance.

¹Stuart Firestein, Interview about S. Firestein, *Ignorance: How It Drives*Science, OUP 2012.

Question

- "Obama calls Trump ignorant about foreign affairs" (Google, August 16, 2016, 8 results).
- "Trump calls Obama ignorant about foreign affairs" (Google, August 16, 2016, about 135 results).
- Suppose that at least one of them were right. (Of course, both could be right.)
- ► Would this give the group of all humans *common ignorance* about foreign affairs?

Knowing that

To answer this question, we extend the (propositional) logic of individual, shared and common knowledge that A, $TEC_{(m)}$, with a few uncontroversial definitions. $TEC_{(m)}$ applies to a group having members $1, \ldots, m$. $TEC_{(m)}$ is well-known and is axiomatized as follows.²

²J.-J. Ch. Meyer and W. van der Hoek, *Epistemic Logic for Computer Science and Artificial Intelligence* (Cambridge: Cambridge University Press, 1995), Ch. 2.1.

Symbols

- ▶ Individual knowledge that A: K_iA , where $1 \le i \le m$. K_iA is read as "i individually knows that A" or as "i has individual knowledge that A."
- ► Shared knowledge that A: **E**A. **E**A is read as "everyone knows that A" or as "the group has shared knowledge that A."
- ► Common knowledge that A: CA. CA is read as "it is commonly known that A" or as "the group has common knowledge that A."

Axioms and derivation rules

- A1 All instances of propositional tautologies.
- A2 $K_i(A \rightarrow B) \rightarrow (K_iA \rightarrow K_iB)$.
- A3 $K_iA \rightarrow A$.
- A4 $EA \leftrightarrow \bigwedge_{i=1}^{m} K_i A$.
- A5 $CA \rightarrow A$.
- A6 $CA \rightarrow ECA$.
- A7 $\boldsymbol{C}(A \rightarrow B) \rightarrow (\boldsymbol{C}A \rightarrow \boldsymbol{C}B)$.
- A8 $C(A \rightarrow EA) \rightarrow (A \rightarrow CA)$.
- R1 From A and $A \rightarrow B$ infer B.
- R2 From A infer K_iA .
- R3 From A infer **C**A.

Theorems

- 1.1 $CA \rightarrow EA$ (common knowledge that A implies shared knowledge that A).
- 1.2 $EA \rightarrow K_iA$ (shared knowledge that A implies individual knowledge that A).
- 1.3 $CA \rightarrow K_iA$ (common knowledge that A implies individual knowledge that A).
- †1.4 $K_iA \rightarrow CA$ (individual knowledge that A implies common knowledge that A) is *invalid* [proof: by the semantics].

Intuitively, $CA = \bigwedge_{i \geq 0} E^i A$ (common knowledge that A is the conjunction of A, shared knowledge that A, shared knowledge that the group has shared knowledge that A, and so on).

Knowledge whether/about

Symbols:³

- ▶ Individual knowledge about A: $\Delta_i A = K_i A \vee K_i \neg A$. $\Delta_i A$ is read as "i individually knows whether A" or as "i has individual knowledge about A."
- ▶ Common knowledge about A: $\mathbf{C}_{\Delta}A = \mathbf{C}A \vee \mathbf{C}_{\neg}A$. $\mathbf{C}_{\Delta}A$ is read as "the group has common knowledge about A."

³See J. Fan, Y. Wang and H. van Ditmarsch, "Contingency and Knowing Whether," *The Review of Symbolic Logic*, 8:75–107, 2015.

Theorems

- 2.1 $C_{\Delta}A \to \Delta_i A$ [($CA \lor C \neg A$) \to ($K_i A \lor K_i \neg A$)] (common knowledge about A implies individual knowledge about A) [from $CA \to K_i A$ (1.3) by propositional calculus].
- †2.2 $\Delta_i A \to \mathbf{C}_{\Delta} A$ (individual knowledge about A implies common knowledge about A) is *invalid* [proof: by the semantics].

Ignorance whether/about

Symbols:4

- ► Individual ignorance about A:
 - $abla_i A = \neg \Delta_i A = \neg K_i A \land \neg K_i \neg A$ (individual ignorance about A is the negation of individual knowledge about A). $\nabla_i A$ is read as "i does not individually know whether A", as "i individually ignores whether A" or as "i has individual ignorance about A."
- ► Common ignorance about A:

 $C_{\nabla}A = \neg C_{\Delta}A = \neg CA \land \neg C \neg A$ (common ignorance about A is the negation of common knowledge about A). $C_{\nabla}A$ is read as "the group has common ignorance about A."

⁴See Fan, Wang and Van Ditmarsch, "Contingency and Knowing Whether, op. cit.

Theorems

- 3.1 $\nabla_i A \to \mathbf{C}_{\nabla} A$ [$\neg \Delta_i A \to \neg \mathbf{C}_{\Delta} A$] (individual ignorance about A implies common ignorance about A) [from $\mathbf{C}_{\Delta} A \to \Delta_i A$ (2.1) by contraposition].
- †3.2 $C_{\nabla}A \rightarrow \nabla_i A$ (common ignorance about A implies individual ignorance about A) is *invalid* [proof: by the semantics].

Individual ignorance about A is therefore stronger than common ignorance about A. If agents have individual ignorance about A, all groups to which they belong have common ignorance about A.

Answer to question

- ► Obama and Trump called each other ignorant about foreign affairs.
- Suppose that at least one of them were right.
- Question: would this give the group of all humans common ignorance about foreign affairs?
- ▶ Answer: yes, it would, by theorem $\nabla_i A \rightarrow \mathbf{C}_{\nabla} A$ (3.1).

Common ignorance about common ignorance

- ▶ $S5EC_{(m)}$ is $TEC_{(m)}$ plus $\neg K_i A \rightarrow K_i \neg K_i A$ ("i does not know that A" implies "i knows that i does not know that A").
- ▶ **S5EC**_(m) has the following theorem.⁵
 - 4.1 $\neg C_{\nabla}C_{\nabla}A$ (there is no common ignorance about common ignorance about A).
- **TEC**_(m) does not have this theorem, as the semantics shows.
- ▶ The Obama/Trump case seems to show that 4.1 is false.
- We do have common ignorance about our common ignorance about foreign affairs.
- ▶ $TEC_{(m)}$ is therefore preferable to $S5EC_{(m)}$.

⁵H. Montgomery and R. Routley, "Contingency and Non-Contingency Bases for Normal Modal Logics," *Logique et Analyse*, 9:318–328, 1966.