### Refinement Modal Logic: Algebraic Semantics

#### Zeinab Bakhtiari

LORIA, CNRS - Université de Lorraine, France

In collaboration with:

Hans van Ditmarsch (LORIA), Sabine Frittella (LIFO)

August 2016, TU Delft

### Plan for talk

- Part 1: Logic
  - Introduction to Dynamic epistemic logic
  - Refinement modal logic
- Part 2: Algebra
  - Algebraic Semantics of action model logic
  - Algebraic Semantics of refinement modal logic

### Introduction: Dynamic Epistemic Logic (DEL)

- Dynamic epistemic logics is a family of logics dealing with knowledge and information change.
  - Epistemic Describing knowledge and belief...
  - Dynamic Knowledge acquisition, belief updates...

## Introduction: Dynamic Epistemic Logic (DEL)

- Dynamic epistemic logics is a family of logics dealing with knowledge and information change.
  - Epistemic Describing knowledge and belief...
  - Dynamic Knowledge acquisition, belief updates...
- Epistemic actions
  - Examples: Public announcements, private announcements, ...
- How can we make a formula true?

## Introduction: Dynamic Epistemic Logic (DEL)

- Dynamic epistemic logics is a family of logics dealing with knowledge and information change.
  - Epistemic Describing knowledge and belief...
  - Dynamic Knowledge acquisition, belief updates...
- Epistemic actions
  - Examples: Public announcements, private announcements, ...
- How can we make a formula true?
- Quantifying over information change.

## Different ways of quantifying over information change

- there is an announcement (by the agents in group G) after which  $\varphi$ ;
  - In arbitrary public announcement logic (APAL) we quantify over announcements.
- there is an action model with precondition  $\psi$  after which  $\varphi$ ;
  - In arbitrary action model logic (AAML) we quantify over action models.
- In these logics the quantification is over dynamic modalities for action execution . . .

### Refinement quantifier

 Bozzelli, et al. in 2013 proposed a new form of quantification over information change, independent from the logical language.

### Refinement quantifier

- Bozzelli, et al. in 2013 proposed a new form of quantification over information change, independent from the logical language.
- It is called refinement quantification, or just refinement.

### Refinement quantifier

- Bozzelli, et al. in 2013 proposed a new form of quantification over information change, *independent* from the logical language.
- It is called refinement quantification, or just refinement.
- Refinement is the dual of simulation.

• A **refinement** of a model is a submodel of a bisimilar model:

• A refinement of a model is a submodel of a bisimilar model:

Consider this pointed model (epistemic state) M:



• A refinement of a model is a submodel of a bisimilar model:

Consider this pointed model (epistemic state) M:



 $M_1$  is a bisimilar copy of the model M:



• A refinement of a model is a submodel of a bisimilar model:

Consider this pointed model (epistemic state) M:



 $M_1$  is a bisimilar copy of the model M:



 $M_2$  is a refinement of M: (M is a simulation of  $M_2$ :)



• A refinement of a model is a submodel of a bisimilar model:

Consider this pointed model (epistemic state) M:



 $M_1$  is a bisimilar copy of the model M:



 $M_2$  is a refinement of M: (M is a simulation of  $M_2$ :)



### Refinement Relation: Formal Definition

```
Let two models M=(S,R,V) and M'=(S',R',V') be given. A non-empty relation \mathfrak{R}\subseteq S\times S' is a refinement if for all (s,s')\in\mathfrak{R}, p\in P:
```

```
atoms s \in V(p) iff s' \in V'(p);
back if R's't', there is a t such that Rst and (t, t') \in \mathfrak{R}.
```

- $\leftrightarrow$  bisimulation: atoms, forth, back
- $\Rightarrow$  simulation: atoms, forth

## Refinement Modal Logic — language and semantics

Language

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \Box \varphi \mid \forall \varphi$$

Structures

pointed Kripke models

### **Semantics**

$$\begin{array}{ll} (\textit{M},\textit{s}) \models \forall \varphi & \text{iff} & \forall (\textit{M}',\textit{s}') : (\textit{M},\textit{s}) \succeq (\textit{M}',\textit{s}') \text{ implies } (\textit{M}',\textit{s}') \models \varphi \\ (\textit{M},\textit{s}) \models \exists \varphi & \text{iff} & \exists (\textit{M}',\textit{s}') : (\textit{M},\textit{s}) \succeq (\textit{M}',\textit{s}') \text{ and } (\textit{M}',\textit{s}') \models \varphi \\ \end{array}$$

[Bozzelli, Laura, et al. "Refinement modal logic." Information and Computation 239 (2014): 303-339.]

## Arbitrary action model logic and refinement modal logic

 Action model execution is a refinement, and (surprisingly) vice versa (on finite models).

$$M_s \leftarrow (M \otimes \alpha)_{(s,u)}$$

# Arbitrary action model logic and refinement modal logic

 Action model execution is a refinement, and (surprisingly) vice versa (on finite models).

$$M_s \leftarrow (M \otimes \alpha)_{(s,\mathsf{u})}$$

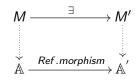
- Refinement quantifier and action model quantifier:
  - $M_s \models \bar{\exists} \varphi$  iff there exists an action model  $\alpha_u$  s.t.  $M_s \models \langle \alpha_u \rangle \varphi$ .
- If  $M_s \models \exists \varphi$  then we can find a multi-pointed action model  $\alpha_S$  s.t.  $M_s \models \langle \alpha_S \rangle \varphi$ .

#### As a result:

Refinement quantifier is equivalent to Action model quantifier!

[ J. Hales. "Arbitrary action model logic and action model synthesis" . 2013.]

## Part 2: Algebra



#### Main Goal

- Dualize the notion of refinement on algebras,
- For any algebraic model  $\mathcal{A}=(\mathbb{A},V)$ , we want to find a Boolean algebra with operator  $\mathbb{U}_{\mathcal{A}}$  and a map  $G:\mathbb{U}_{\mathcal{A}}\to\mathbb{A}$  such that for any  $\varphi\in\mathcal{L}$ ,

$$\llbracket\exists\varphi\rrbracket_{\mathcal{A}}=G(\llbracket\varphi\rrbracket_{\mathbb{U}_{\mathcal{A}}}).$$

## Step 1: Dualize Refinement Relation

### Refinement morphism

Let  $\mathbb A$  and  $\mathbb A'$  be two Boolean algebra with operators. A map

$$f: \mathbb{A} \to \mathbb{A}'$$

is a refinement morphism if

- it is monotone;
- ullet preserves ot and igvee; and
- satisfies the following inequality

$$\blacklozenge^{\mathbb{A}'} \circ f \leq f \circ \blacklozenge^{\mathbb{A}}$$

where  $\blacklozenge \dashv \Box$  (adjoint operator).

## Step 2: Epistemic update on algebras

For any algebraic model  $\mathcal{A}=(\mathbb{A},V)$  and any formula  $\varphi\in\mathcal{L}$ , we define

- ullet Boolean algebra with operators  $\mathbb{A}^{arphi}$ ,
- A pair of maps  $f^{\varphi}: \mathbb{A} \to \mathbb{A}^{\varphi}$ ,  $g^{\varphi}: \mathbb{A}^{\varphi} \to \mathbb{A}$ .

## Step 2: Epistemic update on algebras

For any algebraic model  $\mathcal{A}=(\mathbb{A},V)$  and any formula  $arphi\in\mathcal{L}$ , we define

- ullet Boolean algebra with operators  $\mathbb{A}^{arphi}$ ,
- A pair of maps  $f^{\varphi}: \mathbb{A} \to \mathbb{A}^{\varphi}$ ,  $g^{\varphi}: \mathbb{A}^{\varphi} \to \mathbb{A}$ .

For each formula  $\varphi$ , action model synthesis provides us with an action model  $\alpha_S^{\varphi} = (S, R, Pre)$ , such that for every pointed model  $M_s$  we have

$$M_s \models \exists \varphi \quad \text{iff} \quad M \otimes \alpha_S^{\varphi} \models \varphi$$

## Step 2: Epistemic update on algebras

For any algebraic model  $\mathcal{A}=(\mathbb{A},V)$  and any formula  $arphi\in\mathcal{L}$ , we define

- $\bullet$  Boolean algebra with operators  $\mathbb{A}^{\varphi},$
- A pair of maps  $f^{\varphi}: \mathbb{A} \to \mathbb{A}^{\varphi}$ ,  $g^{\varphi}: \mathbb{A}^{\varphi} \to \mathbb{A}$ .

For each formula  $\varphi$ , action model synthesis provides us with an action model  $\alpha_S^{\varphi} = (S, R, Pre)$ , such that for every pointed model  $M_s$  we have

$$M_s \models \exists \varphi \quad \text{iff} \quad M \otimes \alpha_S^{\varphi} \models \varphi$$

$$M \longrightarrow \coprod_{\alpha^{\varphi}} M \longleftarrow M \otimes \alpha^{\varphi}$$

$$\downarrow \downarrow$$

$$\mathbb{A} \longleftarrow \prod_{\alpha^{\varphi}} \mathbb{A} \longrightarrow \mathbb{A}^{\varphi}$$

- Ma, Sadrzadeh and Palmigiano. Algebraic semantics and model completeness for intuitionistic public announcement.
- Kurz and Palmigiano. Epistemic updates in algebras.

## Step 2: Epistemic updates on algebras

- $a = (S, R, Pre_{a^{\varphi}})$ :  $Pre_{a^{\varphi}} = V \circ Pre_{\alpha^{\varphi}}$ .
- $\prod_{a_{S}^{\varphi}} \mathbb{A} : |S|$ -fold product of  $\mathbb{A}$ , which is set-isomorphic to the collection  $\mathbb{A}^{S}$  of the set maps  $f : S \to \mathbb{A}$ .
- The equivalence relation  $\equiv_{a^{\varphi}}$  on  $\prod_a \mathbb{A}$  is defined as follows: for all  $h, k \in \mathbb{A}^{S}$ ,

$$h \equiv_{a^{\varphi}} k \text{ iff } h \wedge \operatorname{Pre}_{a^{\varphi}} = k \wedge \operatorname{Pre}_{a^{\varphi}}.$$

## Defining maps between $\mathbb A$ and $\mathbb A^{\varphi}$

### Refinement morphism and its adjoint

$$f^{\varphi}: \mathbb{A} \to \mathbb{A}^{\varphi} \qquad \qquad g^{\varphi}: \mathbb{A}^{\varphi} \to \mathbb{A}$$

$$b \mapsto [h_b] \qquad \qquad [h] \mapsto \bigvee_{\mathsf{u} \in \mathsf{S}} (h(\mathsf{u}) \land \mathsf{Pre}_{\mathsf{a}^{\varphi}}(\mathsf{u}))$$

where  $h_b: S \to \mathbb{A}$  is the map such that  $h_b(u) := b \land \operatorname{Pre}_{a^{\varphi}}(u)$  and  $a = (S, R, \operatorname{Pre}_{a^{\varphi}})$  is the action model induced by  $\alpha_S^{\varphi}$  via V.

- the map  $f^{\varphi}$  is a refinement morphism,
- $oldsymbol{Q}$  the map  $g^{\varphi}$  is monotone and preserves arbitrary joins,

## Step 3: Constructing Big BAO

### Refinement Algebra

For every algebraic model A = (A, V), we define the following algebraic structure:

$$\mathbb{U}_{\mathcal{A}} := \prod_{\varphi \in \mathcal{L}} \mathbb{A}^{\varphi}.$$

Elements of  $\mathbb{U}_{\mathcal{A}}$  are tuples  $(b^{\varphi})_{\varphi \in \mathcal{L}}$  where  $b^{\varphi} \in \mathbb{A}^{\varphi}$ .

## Step 3: Constructing Big BAO

### Refinement Algebra

For every algebraic model  $\mathcal{A} = (\mathbb{A}, V)$ , we define the following algebraic structure:

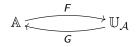
$$\mathbb{U}_{\mathcal{A}} := \prod_{\varphi \in \mathcal{L}} \mathbb{A}^{\varphi}.$$

Elements of  $\mathbb{U}_{\mathcal{A}}$  are tuples  $(b^{\varphi})_{\varphi \in \mathcal{L}}$  where  $b^{\varphi} \in \mathbb{A}^{\varphi}$ .

#### Fact

The product of any family  $\{\mathbb{A}_i\}_{i\in I}$  of normal Boolean algebra with operators, where I may be an uncountable set, is a normal Boolean algebra with operator, so Refinement algebra is a normal Boolean algebra with operator.

# Step 4: Defining the map G



$$F: \mathbb{A} o \mathbb{U}_{\mathcal{A}}$$
 $a \mapsto \prod_{\varphi \in \mathcal{L}} (f^{\varphi}(a))$ 

$$egin{aligned} G: & \mathbb{U}_{\mathcal{A}} & 
ightarrow \mathbb{A} \ & (b^{arphi})_{arphi} \mapsto \bigvee_{arphi \in \mathcal{L}} g^{arphi}(b^{arphi}) \end{aligned}$$

### Properties of (F, G)

- $\bullet$  The map F is a refinement morphism,
- ② the map G is monotone and preserves  $\bot$ ,  $\top$  and finite joins,
- $\bullet$   $G \dashv F$ .

## Algebraic Semantics of RML

Let  $\mathcal{A}=(\mathbb{A},V)$  be an algebraic model and  $\mathbb{U}$  its refinement algebra. Let  $\mathcal{A}'$  be the algebraic model  $(\mathbb{U},\mathcal{V})$  with  $\mathcal{V}: \mathsf{Atoms} \to \mathbb{U}$  and  $\mathcal{V}(p)=(F\circ V)(p)$ . The extension map  $[\![.]\!]':\mathcal{L}\to\mathbb{A}$  is defined as follows:

### Results and Future works



#### Our Results

- Algebraic semantics of Refinement modal logic
- Soundness and Completeness
- Future research
  - weaken the classical propositional modal logical base to a non-classical propositional modal logical base,
  - develop multi-type calculi for such non-classical modal logics with refinement quantifiers, for example refinement intuitionistic (modal) logic.

Thank you!