Determinacy, measurable cardinals and more

Apostolos Tzimoulis

July 26, 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Motivation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem (Woodin) Assume $V = \mathbf{L}(\mathbb{R}) + AD$. Then if $\Theta = \delta$ we have that $HOD \models \delta$ is a Woodin cardinal.

Goal

Assuming the axiom of determinacy, we want to present an abstract method for taking a combinatorial object (an *ultrafilter*) from $L(\mathbb{R})$ and turn in into a stronger large cardinal property (an *elementary embedding*) in HOD.

Reasons for inner models

In the absence of the axiom of choice the existence of ultrafilters and elementary embeddings are not equivalent.

Lemma

Assume that $j: V \to M$ is an elementary embedding, where M is a transitive model, with critical point κ . Then $V_{\kappa} \models \mathsf{ZF}$. If AD is true, it is also true in V_{κ} .

Proof Sketch.

Let $f : x \to V_{\kappa}$, where $x \in V_{\kappa}$. Since κ is the critical point j(x) = x. So $\operatorname{dom}(j(f)) = x$, by the elementarity of j. Furthermore for $y \in x$, j(y) = y and j(f(y)) = f(y). Hence j(f) = f. Therefore $\operatorname{ran}(f) \subseteq V_{\alpha}$ for $\alpha < \kappa$.

Details I

Theorem (Martin)

Assume AD. Then the filter containing the Turing cones, $M_{\rm T},$ is an ultrafilter.

Theorem (Kunen)

Assume AD + DC and let $\kappa < \Theta$. Then every ω_1 -complete ultrafilter over κ is ordinal definable.

Proof Sketch.

We can define a function $f : \mathbb{R} \to \kappa$ such that $f^*[M_T] = \mathcal{U}$. From DC we have that $V^{\mathbb{R}}/M_T$ is well-founded and thus its transitive collapse is a standard class M (and f is represented by γ in M). Hence we can define an embedding $j : V \to M$. Then, since M_T is OD, we have that so is j. Finally \mathcal{U} can be extracted in a definable way from j and γ :

$$X \in \mathcal{U} \iff f^{-1}[X] \in M_{\mathrm{T}} \iff \gamma \in j(X).$$

Details II

Proposition

If \mathcal{U} is an OD, λ -complete (normal) ultrafilter over κ , then so is $\mathcal{U} \cap HOD$ in HOD.

Proof Sketch.

If f is regressive in HOD, it is also regressive in V and the normality of \mathcal{U} implies that f is constant with value γ in \mathcal{U} . Then this set is definable from f and γ , hence it is OD.

Theorem

Assume DC. If \mathcal{U} is an OD, ω_1 -complete ultrafilter over κ , then if M is the transitive collapse of HOD^{κ}/\mathcal{U} , we have that $M \subseteq HOD$.

Proof Sketch.

By Łoś Theorem, we define a well-ordering of M, <, such that $\{x : x < y\}$ is a set for all $y \in M$. This yields a function $F : M \to \text{On.}$ That is, $M \subseteq \text{HOD.}$

Details III

Corollary

Assume that φ is a property such that

$$(\forall \xi \in \kappa)[\varphi(\xi) \implies \varphi^{HOD}(\xi)].$$

If \mathcal{U} is an OD ultrafilter over κ such that $\{\xi \in \kappa : \varphi(\xi)\} \in \mathcal{U}$ then

$$\mathrm{HOD} \models \{\xi \in \kappa : \varphi(\xi)\} \in \mathcal{U} \cap \mathrm{HOD}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Examples:

- "ξ is a cardinal"
- "ξ is an inaccessible cardinal"
- "ξ is a Mahlo cardinal"
- "ξ is measurable"
- "ξ is 1-measurable"
- • •

Definition

A Spector pointclass is an ω -parametrised normed pointclass, closed under trivial substitution, \wedge , \vee , \exists^{\leq} , \forall^{\leq} , \exists^{ω} , \forall^{ω} and it contains all semirecursive sets.

Lemma (Bounding Lemma)

Let Γ be a Spector pointclass closed under $\forall^{\mathbb{R}}$. If $\varphi : S \twoheadrightarrow \delta$ is a Γ -norm with $S \in \Gamma \setminus \Delta$ and $Q \in \check{\Gamma}$ with $Q \subseteq S$, then there exists some $\xi \in \delta$ such that $\varphi[Q] \subseteq \xi$.

Theorem

Assume AD. If Γ is a Spector pointclass closed under $\forall^{\mathbb{R}}$ then $o(\mathbf{\Delta})$ is a regular cardinal.

Theorem

Assume AD. Let Γ be a Spector pointclass closed under $\forall^{\mathbb{R}}$. If $\kappa = o(\mathbf{\Delta})$ then $\kappa \to (\kappa)_2^{\omega+\omega}$.

The game.

Let $f : [\kappa]^{\omega+\omega} \to 2$ and let $\varphi : S \twoheadrightarrow \kappa$, be a Γ -norm. Players plays $\omega \cdot (\omega + \omega)$ many elements of $S(x_{\xi} \text{ and } y_{\xi})$. For $\delta \in \omega + \omega$ we define

$$\alpha_{\delta} = \bigcup (\{\varphi(x_{\omega \cdot \delta + n}) n \in \omega\} \cup \{\varphi(y_{\omega \cdot \delta + n}) n \in \omega\}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Player I wins exactly when $f({\alpha_{\delta} : \delta \in \omega + \omega}) = 0$.

Proof Sketch.

Assuming that I has a winning strategy σ , II can take control of the game: Using the closure of Γ under $\forall^{\mathbb{R}}$ we have that for every $\nu \in \kappa$

$$B_{\nu} = \{((\sigma \star y)_I)_{\xi} : \forall \zeta < \xi : \varphi(y_{\zeta}) < \nu\}$$

is in $\check{\mathbf{\Gamma}}$. By the Bounding lemma it is bounded. Hence for every $\nu \in \kappa$ we can define the bound $\rho(\nu)$. The set

$$C = \{\beta \in \kappa : (\forall \gamma < \beta) [\rho(\gamma) < \beta]\}$$

is a club set. Then $C \cap E_{\omega}^{\kappa}$ is homogeneous for f.

Theorem (Kleinberg)

If $\kappa \to (\kappa)_2^{\lambda+\lambda}$ then $\mathcal{C}_{\kappa}^{\lambda}$ is a normal κ -complete ultrafilter over κ .

Theorem (Kleinberg)

If $\kappa \to (\kappa)_2^{\lambda+\lambda}$ then $\mathcal{C}_{\kappa}^{\lambda}$ is a normal κ -complete ultrafilter over κ .

Theorem (Kleinberg)

Let κ be a cardinal. If for all $\mu \in \kappa$ we have that $\kappa \to (\kappa)^{\kappa}_{\mu}$ then for every stationary set S there is a normal κ -complete ultrafilter \mathcal{U} over κ such that $S \in \mathcal{U}$.

Definition

A cardinal κ is called 1-embedding if there is an elementary embedding $j: V \to M$ with critical point κ such that κ is measurable in M.

Corollary

Assume $V = \mathbf{L}(\mathbb{R})$ and AD and let $\delta = \Theta$. Then

HOD $\models \delta$ is an inaccessible limit of 1-embedding cardinals.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●