The Universal Model for the negation-free fragment of IPC

Apostolos Tzimoulis and Zhiguang Zhao

July 26, 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Universal Model

The *n*-universal model for IPC, U(n) = (U(n), R, V) is the "least" model of IPC that witnesses the failure of every unprovable formula of IPC.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Universal Model

- The first layer U(n)¹ consists of 2ⁿ nodes with the 2ⁿ different n-colors under the discrete ordering.
- Under each element w in U(n)^k \ U(n)^{k-1}, for each color s < col(w), we put a new node v in U(n)^{k+1} such that v ≺ w with col(v) = s, and we take the reflexive transitive closure of the ordering.
- Under any finite anti-chain X with at least one element in $\mathcal{U}(n)^k \setminus \mathcal{U}(n)^{k-1}$ and any color s with $s \leq col(w)$ for all $w \in X$, we put a new element v in $\mathcal{U}(n)^{k+1}$ such that col(v) = s and $v \prec X$ and we take the reflexive transitive closure of the ordering.

(日)((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))

The whole model $\mathcal{U}(n)$ is the union of its layers.

Properties of $\mathcal{U}(n)$

Lemma

For any finite rooted Kripke n-model \mathfrak{M} , there exists a unique $w \in \mathcal{U}(n)$ and a p-morphism of \mathfrak{M} onto $\mathcal{U}(n)_w$.

Theorem

For any n-formula φ , $\mathcal{U}(n) \models \varphi$ iff $\vdash_{IPC} \varphi$.

de Jongh formulas for $\mathcal{U}(n)$

Proposition

For every $w \in \mathcal{U}(n)$ we have that

• $V(\varphi_w) = R(w)$, where $R(w) = \{w' \in U(n) | wRw'\}$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

•
$$V(\psi_w) = \mathcal{U}(n) \setminus R^{-1}(w)$$
, where $R^{-1}(w) = \{w' \in \mathcal{U}(n) | w' R w\}$.

de Jongh formulas for $\mathcal{U}(n)$

For any node w in an *n*-model \mathfrak{M} , if $w \prec \{w_1, \ldots, w_m\}$, then we let

$$prop(w) := \{p_i | w \models p_i, 1 \le i \le n\},\ notprop(w) := \{q_i | w \nvDash q_i, 1 \le i \le n\},\ newprop(w) := \{r_j | w \nvDash r_j \text{ and } w_i \vDash r_j \text{ for each } 1 \le i \le m, \text{ for } 1 \le j \le n\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

de Jongh formulas for $\mathcal{U}(n)$

If d(w) = 1, then let

 $\varphi_w := \bigwedge \operatorname{prop}(w) \land \bigwedge \{ \neg p_k | p_k \in \operatorname{notprop}(w), 1 \le k \le n \},$

and

$$\psi_{\mathbf{w}} := \neg \varphi_{\mathbf{w}}.$$

If d(w) > 1, and $\{w_1, \ldots, w_m\}$ is the set of all immediate successors of w, then define

$$\varphi_{\mathbf{w}} := \bigwedge \operatorname{prop}(\mathbf{w}) \land (\bigvee \operatorname{newprop}(\mathbf{w}) \lor \bigvee_{i=1}^{m} \psi_{\mathbf{w}_{i}} \rightarrow \bigvee_{i=1}^{m} \varphi_{\mathbf{w}_{i}}),$$

and

$$\psi_{\mathbf{w}} := \varphi_{\mathbf{w}} \to \bigvee_{i=1}^{m} \varphi_{\mathbf{w}_i}.$$

m

Universal Model for $[\lor, \land, \rightarrow]$ -fragment

The *n*-universal model for the negation-free fragment of IPC, $U^*(n) = (U^*(n), R^*, V^*)$, is a generated submodel of the universal model for IPC. It is (generated by):

$$\{u \in U(n) : \neg u Rw_0\}$$

where w_0 is the maximal element of $\mathcal{U}(n)$ that satisfies all propositional atoms.

Universal Model for $[\lor, \land, \rightarrow]$ -fragment

- The first layer U^{*}(n)¹ consists of 2ⁿ 1 nodes with all the different *n*-colors *excluding the color* 1...1 under the discrete ordering.
- Under each element w in U^{*}(n)^k \ U^{*}(n)^{k-1}, for each color s < col(w), we put a new node v in U^{*}(n)^{k+1} such that v ≺ w with col(v) = s, and we take the reflexive transitive closure of the ordering.
- Under any finite anti-chain X with at least one element in $\mathcal{U}^*(n)^k \setminus \mathcal{U}^*(n)^{k-1}$ and any color s with $s \leq col(w)$ for all $w \in X$, we put a new element v in $\mathcal{U}^*(n)^{k+1}$ such that col(v) = s and $v \prec X$ and we take the reflexive transitive closure of the ordering.

The whole model $\mathcal{U}^*(n)$ is the union of its layers.

Positive morphisms

Definition

A positive morphism is a partial function $f: (W, R, V) \rightarrow (W', R', V')$ such that:

- $(\mathcal{W},\mathcal{K},\mathcal{V}) \rightarrow (\mathcal{W},\mathcal{K},\mathcal{V})$ such that.
 - 1. dom $(f) \supseteq \{w \in W : \exists p \in \operatorname{Prop}(w \notin V(p))\}.$
 - 2. If $w, v \in \text{dom}(f)$ and wRv then f(w)R'f(v).
- 3. If $w \in \text{dom}(f)$ and f(w)R'v then there exists some $u \in \text{dom}(f)$ such that f(u) = v and wRu (back).
- 4. If $w \in \text{dom}(f)$ and vRw, then $v \in \text{dom}(f)$ (downwards closed).
- 5. For every $p \in \operatorname{Prop} we$ have $w \in V(p) \iff f(w) \in V'(p)$.

If the models are descriptive we furthermore require for every $Q \in \mathcal{Q}$ that $W \setminus R^{-1}(f^{-1}[W' \setminus Q]) \in \mathcal{P}$.

In the case of descriptive models these maps are also called strong partial Esakia morphisms.

$\mathcal{U}^{\star}(n)$ is universal

Theorem

For any finite rooted intuitionistic n-model $\mathfrak{M} = (M, R, V)$ such that for some $x \in M$ and $p \in \operatorname{Prop}$ with $x \notin V(p)$, there exists unique $w \in U^*(n)$ and positive morphism of \mathfrak{M} onto $\mathcal{U}^*(n)_w$.

Theorem

For every n-formula $\varphi \in [\lor, \land, \rightarrow]$, $\mathcal{U}^{\star}(n) \models \varphi$ if and only if $\vdash_{IPC} \varphi$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

de Jongh formulas for $\mathcal{U}^*(n)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Proposition

For every $w \in \mathcal{U}^{\star}(n)$ we have that

•
$$V^{\star}(\varphi_w^{\star}) = R^{\star}(w)$$

•
$$V^{\star}(\psi_w^{\star}) = \mathcal{U}^{\star}(n) \setminus (R^{\star})^{-1}(w)$$

de Jongh formulas for $\mathcal{U} \star (n)$

We have that $(\mathcal{U}^*(n))^+$ is (isomorphic to) a generated submodel of $\mathcal{U}(n)$, whose domain consist of the elements of U(n) whose only successor of depth 1 satisfies all propositional atoms. Let's call this generated submodel \mathcal{M} .

Definition

If d(w) = 1 then define

$$\varphi_w^{\star} = \bigwedge \operatorname{prop}(w) \land (\bigvee \operatorname{notprop}(w) \rightarrow \bigwedge \operatorname{notprop}(w))$$

and

$$\psi_w^{\star} = \varphi_w^{\star} \to \bigwedge_{i \in n} p_i.$$

de Jongh formulas for $\mathcal{U} \star (n)$

Definition
If
$$d(w) > 1$$
 then let $w \prec \{w_1, \dots, w_r\}$ and define
 $\varphi_w^* = \bigwedge \operatorname{prop}(w) \land (\bigvee \operatorname{newprop}(w) \lor \bigvee_{i \leq r} \psi_{w_i}^* \to \bigvee_{i \leq r} \varphi_{w_i}^*)$

and

$$\psi_w^{\star} = \varphi_w^{\star} \to \bigvee_{i \le r} \varphi_{w_i}^{\star}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ