N
N

g,
NS

W
7

Code-free recursion & realizability

Eric Faber

Universiteit Utrecht

February 24, 2014

e L

Outline

@ History
Combinatory Logic
Computability Theory
Motivation

@ Partial combinatory algebras
PCAs are very rich
PCAs allow for Abstract Recursion Theory

@ Realizability Toposes
From Categories of Assemblies . ..
...to Realizability Toposes
Morphisms
Subtoposes

Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 2/30

&
Combinatory Logic

Combinatory logic was founded by Moses Schsnbnkel in his
article “Uber die Bausteine der mathematischen Logik”in 1924.

Intended as a pre-logic that would solve foundational issues that
arise from the use of variables by eliminating them.

Further development was mostly due to Haskell Curry in the 50s,
after which combinatory logic regained interest in theoretical
computer science

Mds Sché'n‘tkel

[}
Haskell Curry

Computability Theory

Computability Theory

¥ Founded in 1936 by work of Alan Turing, Alonzo Church, Stephen
Kleene and Emil Post

¥ Mathematical rigorous debnition of a computation
¥ First results on undecidability

Turing Church Kleene

Eric Faber (Universiteit Utrecht) February 24, 2014 4/30

&
The Effective Topos

In 1982, Martin Hyland discovered the “Effective Topos”

From the viewpoint of a Topos as a “constructive universe”, the
Effective Topos is an effective universe.

The internal brst-order logic of the Effective Topos coincides with
KleeneOs notion ofealizability

Martin Hyland

@
Why Study PCAs and Realizability Toposes?

PCAs give rise to a lot of interpretations of constructive proofs
Realizability Toposes give higher-order interpretations of this logic
and help understand them

Applications in Computer Science (e.g. Domain theory,
programming language semantics)

Applications in Topos theory and foundations, e.g. independence
proofs.

w

Debnition

A partial applicative structure (pas) is a set A together with a partial
map Ax A > A, denoted (a,b) [an.

We often refer to elements of A as OindicesO, since they index a set
of partial functions debned by

b Cab

for each a! A.
Using a countable set of variables V ={xg, X1, ...} we can build
terms, e.g.:
t(Xo, X1, X2) = XoX2(X1X2).
We can evaluate terms, e.g. for a,b,c! A t(a, b, ¢) is debned if

and only if ac(bc) is dePned, and in that case they are equal.
Notation:

t(a,b,c) " ac(bc).

w

Debnition

A pas A is combinatory complete if there are k,s ! A such that for all
ab!A

sab is debned
kab=a
sabc" ac(bc).
In that case we call A a partial combinatory algebra (pca).

Examples of pcas include:

Any singleton set { *} with =+ = % is a pca, the frivial pca. Any pca
with k = s is trivial.

Kleene’s K1, the pca on N debned by
nm" ! ,(m)

where | , is the partial recursive function with index n.

Any model of untyped " -calculus is a total pca. This means that
application is always debned.

e
Import Facts
Theorem (Abstraction)

A pas A is a PCA if and only if for every term t(x, x, ..., Xn) there is a
term ' x"t(xq,...,Xn) Such that for all a, a,,...,an! A:

Ix"t(ay,...,an) !
('x"t(ay,...,an)) a" t(a,as,...,an).

Compatre this term to " x.t(x, X1, ..., Xp) in" -calculus.

Theorem (Recursion theorem)

Let A be a pca. There are y,z ! A such that for every f! A:
yf" f(yf)
zf L andforalla! A:
zfx " f(zf) x.

@
Elementary building blocks in a PCA
We have terms for true/false: T = k, F = k where k satisbes:
kab=b.

Consider the term
t:=1v"vab.

Then T = g, tF = b. In other words:
tv := if v then a else b.

With only the combinators k, s, we can construct a pairing
combinator p with projections pg, p;:

po(pab) = a
pi(pab) =b

&
Every PCA has a set of natural numbers

DePnition (Curry numerals)

Let A be a non-trivial pca. Then we debne for everyn! N the Curry
numeral n! A as follows:

0=i=skk
n+1=pkn.

In every pca A, we can make debnitions by recursion:

Proposition (Debnition by Recursion)

Forevery a,R! A, there is an f! A (recursive in a, R) such that
f0=a
fn+1=Rn(fn).

&
Every PCA is Turing complete
Theorem

Let A be a non-trivial pca. For every partial recursive function
F:NK - N, there exists f ! A such that

fag-ng" F(ny,...,N0g).

Using the pairing combinator and dePnition by recursion, we can
debne tuples[up, ..., uy] of elements, such that functions
determining length, as well as concatenation and projections are
all recursive.

We only need the combinators k, s and the requirement k # s!

The programming language Unlambda consists only of these k, s
operators and "application" as build-in functions. In theory, we can
write any program we like in Unlambda!

w

Relative recursion can be generalized to PCAs

For Aapca, f: A - Aa function we can debPne a pcaA[f] in which
f is adjoined as an oracle. An element a! A interrogates b! A if
there exists u =[ug, ..., up] such that for all i $ n:

a([b, uo, ..., up1]) =pFv;and u; = f(v)).

Debne an application onA by: a-b |,a- b= cif ainterrogates b
and
a(b, ug,...,us =pTc

This yields a pca structure on A in which f is recursive. One can
show that for A =K, this is essentially the same thing as ordinary
relative recursion in an oracle.

&
Recursion in a type 2 oracle can be generalized too
Theorem

Let F: AA = A be a functional. There exists a pca A[F], with
application -, so that F becomes representable , i.e. thereisr! A so
that for all f: A - A:

(Vb)a-b=f(a) Cr-k=F(f).

For A=K, this is essentially equivalent to recursion in a type 2
functional as defined by P Hinman.

Let E: NN - N be the functional:

E(f)_§o if (3m) f(m) =0
- 01 otherwise .

Then K[E] consists of precisely the ! % functions, so it computes
every arithmetical subset of N.

w

Categories of Assemblies

Let A be a pca. An assembly is a pair (X, E) with X a set, and
E:X - P (A

a function, where P (A) is the set of non-empty subsets of A.
A morphism of assemblies f: (X, E) - (Y, E® is given by a function
f: X - Yandan element r! Asuch that:

(Vx! X)(Va! E(x)) ral and ra! EXf(x)).

Example: Consider the assembly (N, N) where

N(n) ={n}.

w

Assemblies have a rich structure

For a pca A, there is a category Ass(A):
Objects are assemblies on A
Arrows are morphisms of assemblies.
Moreover, Ass(A) is regular, cartesian closed and has finite colimits.

In fact, Ass(A) is a little more: it is a quasi-topos. Also, it has a
natural numbers object:

(N, N) where N(n) ={n}
There is an embedding V : Set - Ass(A):

V(X) =(X, E) where E(x) = Afor all x

&
Subobject classibers

A subobject classiber for a category Cis a pair (" ,true) where " is
an object of Cand true: 1 - " is an arrow, such that for every
subobject A - X there is a unique ! : X - " with the property that
—1
m

true

——>

X SD n
is a pullback diagram.

A category of assemblies Ass(A) does not have a subobject
classiber :-(

w

Debpnition of a Topos

A (elementary) Topos is a category with the following properties:
It is cartesian closed (binary products & exponentials)
It has all Pnite limits
It has a subobiject classiber true: 1 - " .

The categorical properties of a Topos are Oessentially the sameO
as in Set, e.g. we have a powerset, and very often we have a
natural numbers object.

Every topos is a model for higher-order intuitionistic logic
Examples: Set, FinSet, Set®", Sh(C, Cov).
Realizability Toposes

&
Assemblies can be completed to a Topos

For a pca A, Ass(A) is in general not exact. This roughly means
that for equivalence relations on objects, there is not always a
OgoodO quotient.

A regular category C admits an exact/regular completion to an
exact category Cexreg-

For a pca A, Ass(A) exreg IS a topos. It is called the Realizability Topos
on Ass(A), and we write

RT(A) = Ass(A) exsreg

RT(K,) is called the Effective Topos
For a lot of constructions we can work with assemblies.

&
Some facts about Realizability Toposes

The Pbrst order logic of RT(K,) coincides with Kleene realizability.

Every realizability topos RT(A) has a natural numbers object N , it
is the same as in Ass(A).

In RT(K,), the morphisms N - N are precisely the computable
functions.

A lot of Ostrange theoremsO hold in RK1). For example
“‘Brouwer’s theorem”. Every function from the reals to reals is
continuous.

Recall the functional E : NN - N:

E(f)_§o if (3m) f(m) =0
- 01 otherwise .

One can show that RT(K [E]) satisbes classical arithmetic.

@
Morphisms between PCAs

Debnition

Let A, B be pcas. An applicative morphism#: A - B is a function
#:A - P (B) such that there exists r ! B with the following property:

(Va,a’! A ad”| L a)#(a") 1%t (ad).

We debne a preorder & on applicative morphisms; for #,%$: A - B,
debne

#&$ LI A (Va)t#(a) %d(a).

We have to check that applicative morphisms are closed under
composition!

We obtain a preorder-enriched category PCA.

&
Morphisms of categories of Assemblies
DePnition (van Oosten)

A functor F : Ass(A) - Ass(B) is an S—functor if it is the identity on the
level of sets, i.e.

F(X,E) =(X, EY.

Theorem (Longley)

Every applicative morphism# : A - B gives rise to a regular
S-functor# : Ass(A) - Ass(B).

Moreover, if # &$ then there is a natural transformation# [$1
For every regular S—functor F : Ass(A) - Ass(B) there is an
applicative morphism F : A - B.

Moreover, if there is a natural transformation F L_G]then F & G.

For#,F as above, (#) " # and (F)" ' F.

w

Morphisms of Realizability Toposes

Proposition

Regular S—functors Ass(A) - Ass(B) correspond (up to isomorphism)
precisely to regular functors F : RT(A) - RT(B) such that

Fova' Vs

Debnition

Let E,F be toposes. A geometric morphism f:F - Eis an adjoint
pair f [Flwhere f :E - F,f :F - Eand f preserves Pnite limits.

w

Geometric morphism of Realizability Toposes |

Theorem (Johnstone, 2013)

Every geometric morphism f : RT(B) - RT(A) is induced by an
applicative morphism#: A - B.

These are precisely the applicative morphisms that are
computationally dense (Hofstra-van Oosten).

DePnition (Hofstra, van Oosten)

An applicative morphism # : A - B is computationally dense if there
exists m! A such that:

(vb! B)(3a! A(Va'! Ab#(a") | Caal |, m#(aa’) wbi(a").

w

Geometric morphism of Realizability Toposes I

Proposition

An applicative morphism # : A —» B is computationally dense iff there
exists $: B - A such that
#$&%,

where % : B - B is the identity (i.e. b [{1}) .
So a geometric morphism f [f1: RT(B) - RT(A) corresponds to
a Ohalf-adjointO pair
g A — B
$2 B - A

If # were regular, this would be an adjoint pair. It seems that
Oapplicative morphismO is a little too restrictive.

w

Extending applicative morphisms

Debne an application onP " (A) by:

&&#zgéaa#'a! &a! &4 ifaa’l foralla! & a"! &
§undebned else
This yields an order-pca, a certain generalization of a pca.

Debne a Oproto applicative morphism@ - B as a function
#:P (A - P (B)

for which there is r ! B such that for all &, &*! P" (A), whenever
&&" |, then
rit(&) #(& Yott(&&H.

w

Geometric morphism of Realizability Toposes Il

Theorem

Proto applicative morphisms A - B correspond precisely to left-exact
functors between categories of assemblies.

Consequently, geometric morphisms f : RT(B) - RT(A) correspond
precisely to adjoint pairs of ‘proto applicative morphisms”# [$l

For every pca A and function f: A - A, a [Id} isa

computationally dense applicative morphism A - A[f]. Therefore
we have a geometric morphism:

RT(A[f]) - RT(A).

Debnition

o
‘\ %g

Let E,F be toposes. A geometric morphism f [Fl:F - Eis an

embedding if f £ ' 1. For such an embedding, we call F a subtopos
of E.

Some subtoposes of RT(A) are realizability toposes. For example
RT(A[f]) - RT(A)

is a subtopos.

The constant object functor v : Set -~ RT(A) has a left adjoint #,
and they give a geometric embedding Set - RT(A) is an
embedding. In fact Set is the subtopos of —-—-sheaves.

For every subobject m: S [Xlof an object X ! RT(A), there is a
Osmallest subtoposO in whicln becomes an isomorphism.

w

Turing degrees embed into the lattice of subtoposes

Theorem

Letf: A - A be a function. The smallest subtopos of RT(A) in which f
becomes computable is RT(A[f]) .

This yields an embedding of the (generalized) Turing degrees in the
lattice of subtoposes of RT(A).

We can show a similar thing for type 2 functionals F : A% - A.

w

A cute fact and an open question

Theorem

The least subtopos of RT(A) that forces Vv to preserve finite
coproducts is Set if and only if there exists g ! A such that

(va! A)(3n! N)gn=a.

In other words, g is a partial surjection N - A computable in A.

Theorem

Let A be a countable pca. The least subtopos of RT(A) that forces
every function f : A -~ A computable is Set.

Question : Does this hold in the uncountable case?

	History
	Combinatory Logic
	Computability Theory
	Motivation

	Partial combinatory algebras
	PCAs are very rich
	PCAs allow for Abstract Recursion Theory

	Realizability Toposes
	From Categories of Assemblies …
	…to Realizability Toposes
	Morphisms
	Subtoposes

