
Code-free recursion & realizability

Eric Faber

Universiteit Utrecht

February 24, 2014

Outline

1 History
Combinatory Logic
Computability Theory
Motivation

2 Partial combinatory algebras
PCAs are very rich
PCAs allow for Abstract Recursion Theory

3 Realizability Toposes
From Categories of Assemblies . . .
. . . to Realizability Toposes
Morphisms
Subtoposes

Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 2 / 30

History Combinatory Logic

Combinatory Logic
• Combinatory logic was founded by Moses Schönfinkel in his

article “Über die Bausteine der mathematischen Logik” in 1924.
• Intended as a pre-logic that would solve foundational issues that

arise from the use of variables by eliminating them.
• Further development was mostly due to Haskell Curry in the 50s,

after which combinatory logic regained interest in theoretical
computer science

Moses Schönfinkel
Haskell Curry

Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 3 / 30

History Computability Theory

Computability Theory

• Founded in 1936 by work of Alan Turing, Alonzo Church, Stephen
Kleene and Emil Post

• Mathematical rigorous definition of a computation
• First results on undecidability

Turing Church Kleene Post

Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 4 / 30

History Computability Theory

The Effective Topos

• In 1982, Martin Hyland discovered the “Effective Topos”
• From the viewpoint of a Topos as a “constructive universe”, the

Effective Topos is an effective universe.
• The internal first-order logic of the Effective Topos coincides with

Kleene’s notion of realizability

Martin Hyland

Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 5 / 30

History Motivation

Why Study PCAs and Realizability Toposes?

• PCAs give rise to a lot of interpretations of constructive proofs
• Realizability Toposes give higher-order interpretations of this logic

and help understand them
• Applications in Computer Science (e.g. Domain theory,

programming language semantics)
• Applications in Topos theory and foundations, e.g. independence

proofs.

Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 6 / 30

Partial combinatory algebras PCAs are very rich

Definition
A partial applicative structure (pas) is a set A together with a partial
map A ×A→ A, denoted (a,b)� ab.

• We often refer to elements of A as “indices”, since they index a set
of partial functions defined by

b � ab

for each a ∈ A.
• Using a countable set of variables V = {x0,x1, . . .} we can build

terms, e.g.:
t(x0,x1,x2) = x0x2(x1x2).

We can evaluate terms, e.g. for a,b,c ∈ A t(a,b,c) is defined if
and only if ac(bc) is defined, and in that case they are equal.
Notation:

t(a,b,c) � ac(bc).
Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 7 / 30

Partial combinatory algebras PCAs are very rich

Definition
A pas A is combinatory complete if there are k,s ∈ A such that for all
a,b ∈ A:

1 sab is defined
2 kab = a
3 sabc � ac(bc).

In that case we call A a partial combinatory algebra (pca).

Examples of pcas include:
• Any singleton set {∗} with ∗∗ = ∗ is a pca, the trivial pca. Any pca

with k = s is trivial.
• Kleene’s K1, the pca on N defined by

nm � 'n(m)
where 'n is the partial recursive function with index n.

• Any model of untyped �-calculus is a total pca. This means that
application is always defined.

Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 8 / 30

Partial combinatory algebras PCAs are very rich

Import Facts
Theorem (Abstraction)

A pas A is a PCA if and only if for every term t(x ,x1, . . . ,xn) there is a
term �x�t(x1, . . . ,xn) such that for all a,a1, . . . ,an ∈ A:

�x�t(a1, . . . ,an) ↓(�x�t(a1, . . . ,an))a � t(a,a1, . . . ,an).
Compare this term to �x .t(x ,x1, . . . ,xn) in �-calculus.

Theorem (Recursion theorem)

Let A be a pca. There are y ,z ∈ A such that for every f ∈ A:
(i) yf � f (yf)
(ii) zf ↓ and for all a ∈ A:

zfx � f (zf)x .
Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 9 / 30

Partial combinatory algebras PCAs are very rich

Elementary building blocks in a PCA
• We have terms for true/false: T = k , F = k where k satisfies:

kab = b.

• Consider the term
t ∶= �v�vab.

Then tT = a, tF = b. In other words:

tv ∶= if v then a else b.

• With only the combinators k,s, we can construct a pairing
combinator p with projections p0,p1:

p0(pab) = a
p1(pab) = b

Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 10 / 30

Partial combinatory algebras PCAs allow for Abstract Recursion Theory

Every PCA has a set of natural numbers
Definition (Curry numerals)

Let A be a non-trivial pca. Then we define for every n ∈ N the Curry
numeral n ∈ A as follows:

• 0 = i = skk
• n + 1 = pkn.

In every pca A, we can make definitions by recursion:

Proposition (Definition by Recursion)

For every a,R ∈ A, there is an f ∈ A (recursive in a,R) such that

f0 = a

fn + 1 = Rn(f n).
Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 11 / 30

Partial combinatory algebras PCAs allow for Abstract Recursion Theory

Every PCA is Turing complete
Theorem
Let A be a non-trivial pca. For every partial recursive function
F ∶ Nk → N, there exists f ∈ A such that

f n1�nk � F(n1, . . . ,nk).

• Using the pairing combinator and definition by recursion, we can
define tuples [u0, . . . ,un] of elements, such that functions
determining length, as well as concatenation and projections are
all recursive.

• We only need the combinators k,s and the requirement k ≠ s!
• The programming language Unlambda consists only of these k,s

operators and "application" as build-in functions. In theory, we can
write any program we like in Unlambda!

Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 12 / 30

Partial combinatory algebras PCAs allow for Abstract Recursion Theory

Relative recursion can be generalized to PCAs

• For A a pca, f ∶ A→ A a function we can define a pca A[f] in which
f is adjoined as an oracle. An element a ∈ A interrogates b ∈ A if
there exists u = [u0, . . . ,un] such that for all i ≤ n:

a([b,u0, . . . ,ui−1]) = pFvi and ui = f (vi).
• Define an application on A by: a ⋅ b ↓,a ⋅ b = c if a interrogates b

and
a([b,u0, . . . ,un] = pTc

• This yields a pca structure on A in which f is recursive. One can
show that for A = K1, this is essentially the same thing as ordinary
relative recursion in an oracle.

Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 13 / 30

Partial combinatory algebras PCAs allow for Abstract Recursion Theory

Recursion in a type 2 oracle can be generalized too
Theorem
Let F ∶ AA → A be a functional. There exists a pca A[F], with
application ⋅, so that F becomes representable, i.e. there is r ∈ A so
that for all f ∶ A→ A:

(∀b)a ⋅ b = f (a)⇒ r ⋅ a = F(f).
For A = K1, this is essentially equivalent to recursion in a type 2
functional as defined by P. Hinman.

Let E ∶ NN → N be the functional:

E(f) = �������
0 if (∃m)f (m) = 0
1 otherwise .

Then K1[E] consists of precisely the ⇧1
1 functions, so it computes

every arithmetical subset of N.
Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 14 / 30

Realizability Toposes From Categories of Assemblies . . .

Categories of Assemblies

Definition
Let A be a pca. An assembly is a pair (X ,E) with X a set, and

E ∶ X → P∗(A)
a function, where P∗(A) is the set of non-empty subsets of A.
A morphism of assemblies f ∶ (X ,E)→ (Y ,E ′) is given by a function
f ∶ X → Y and an element r ∈ A such that:

(∀x ∈ X)(∀a ∈ E(x)) ra ↓ and ra ∈ E ′(f (x)).

• Example: Consider the assembly (N,N) where

N(n) = {n}.
Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 15 / 30

Realizability Toposes From Categories of Assemblies . . .

Assemblies have a rich structure
Proposition

For a pca A, there is a category Ass(A):
• Objects are assemblies on A
• Arrows are morphisms of assemblies.

Moreover, Ass(A) is regular, cartesian closed and has finite colimits.

• In fact, Ass(A) is a little more: it is a quasi-topos. Also, it has a
natural numbers object:

(N,N) where N(n) = {n}
• There is an embedding ∇ ∶ Set→ Ass(A):

∇(X) = (X ,E) where E(x) = A for all x

Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 16 / 30

Realizability Toposes From Categories of Assemblies . . .

Subobject classifiers

Definition
A subobject classifier for a category C is a pair (⌦, true) where ⌦ is
an object of C and true ∶ 1→ ⌦ is an arrow, such that for every
subobject A→ X there is a unique ' ∶ X → ⌦ with the property that

A 1

X ⌦

m true

'

is a pullback diagram.

• A category of assemblies Ass(A) does not have a subobject
classifier :-(

Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 17 / 30

Realizability Toposes From Categories of Assemblies . . .

Definition of a Topos

Definition
A (elementary) Topos is a category with the following properties:

• It is cartesian closed (binary products & exponentials)
• It has all finite limits
• It has a subobject classifier true ∶ 1→ ⌦.

• The categorical properties of a Topos are “essentially the same”
as in Set, e.g. we have a powerset, and very often we have a
natural numbers object.

• Every topos is a model for higher-order intuitionistic logic
• Examples: Set, FinSet, SetCop

, Sh(C,Cov).
• Realizability Toposes

Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 18 / 30

Realizability Toposes . . . to Realizability Toposes

Assemblies can be completed to a Topos
• For a pca A, Ass(A) is in general not exact. This roughly means

that for equivalence relations on objects, there is not always a
“good” quotient.

• A regular category C admits an exact/regular completion to an
exact category Cex/reg.

Theorem
For a pca A, Ass(A)ex/reg is a topos. It is called the Realizability Topos
on Ass(A), and we write

RT(A) ∶= Ass(A)ex/reg

• RT(K1) is called the Effective Topos
• For a lot of constructions we can work with assemblies.

Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 19 / 30

Realizability Toposes . . . to Realizability Toposes

Some facts about Realizability Toposes

• The first order logic of RT(K1) coincides with Kleene realizability.
• Every realizability topos RT(A) has a natural numbers object N , it

is the same as in Ass(A).
• In RT(K1), the morphisms N →N are precisely the computable

functions.
• A lot of “strange theorems” hold in RT(K1). For example

“Brouwer’s theorem”: Every function from the reals to reals is
continuous.

• Recall the functional E ∶ NN → N:

E(f) = �������
0 if (∃m)f (m) = 0
1 otherwise .

One can show that RT(K1[E]) satisfies classical arithmetic.

Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 20 / 30

Realizability Toposes Morphisms

Morphisms between PCAs

Definition
Let A,B be pcas. An applicative morphism � ∶ A→ B is a function
� ∶ A→ P∗(B) such that there exists r ∈ B with the following property:

(∀a,a′ ∈ A)aa′ ↓⇒ r�(a)�(a′) ↓⊆ �(aa′).
We define a preorder � on applicative morphisms; for �, � ∶ A→ B,
define

� � � ⇐⇒ (∃t)(∀a)t�(a) ⊆ �(a).
• We have to check that applicative morphisms are closed under

composition!
• We obtain a preorder-enriched category PCA.

Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 21 / 30

Realizability Toposes Morphisms

Morphisms of categories of Assemblies
Definition (van Oosten)

A functor F ∶ Ass(A)→ Ass(B) is an S−functor if it is the identity on the
level of sets, i.e.

F(X ,E) = (X ,E ′).
Theorem (Longley)

(i) Every applicative morphism � ∶ A→ B gives rise to a regular
S−functor �∗ ∶ Ass(A)→ Ass(B).
Moreover, if � � � then there is a natural transformation �∗ ⇒ �∗.

(ii) For every regular S−functor F ∶ Ass(A)→ Ass(B) there is an
applicative morphism F̃ ∶ A→ B.
Moreover, if there is a natural transformation F ⇒ G, then F̃ � G̃.

(iii) For �,F as above, ˜(�∗) � � and (F̃)∗ ≅ F.

Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 22 / 30

Realizability Toposes Morphisms

Morphisms of Realizability Toposes

Proposition

Regular S−functors Ass(A)→ Ass(B) correspond (up to isomorphism)
precisely to regular functors F ∶ RT(A)→ RT(B) such that

F ○ ∇A ≅ ∇B.

Definition
Let E ,F be toposes. A geometric morphism f ∶ F → E is an adjoint
pair f ∗ � f∗ where f ∗ ∶ E → F , f∗ ∶ F → E and f ∗ preserves finite limits.

Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 23 / 30

Realizability Toposes Morphisms

Geometric morphism of Realizability Toposes I

Theorem (Johnstone, 2013)

Every geometric morphism f ∶ RT(B)→ RT(A) is induced by an
applicative morphism � ∶ A→ B.
These are precisely the applicative morphisms that are
computationally dense (Hofstra-van Oosten).

Definition (Hofstra, van Oosten)

An applicative morphism � ∶ A→ B is computationally dense if there
exists m ∈ A such that:

(∀b ∈ B)(∃a ∈ A)(∀a′ ∈ A)b�(a′) ↓⇒ aa′ ↓,m�(aa′) ⊆ b�(a′).

Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 24 / 30

Realizability Toposes Morphisms

Geometric morphism of Realizability Toposes II
Proposition

An applicative morphism � ∶ A→ B is computationally dense iff there
exists � ∶ B → A such that

�� � ◆B,
where ◆B ∶ B → B is the identity (i.e. b � {b}).

• So a geometric morphism f ∗ � f∗ ∶ RT(B)→ RT(A) corresponds to
a “half-adjoint” pair

� ∶ A→ B
� ∶ B → A

If f∗ were regular, this would be an adjoint pair. It seems that
“applicative morphism” is a little too restrictive.

Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 25 / 30

Realizability Toposes Morphisms

Extending applicative morphisms

• Define an application on P∗(A) by:

↵↵′ = �������
{aa′ �a ∈ ↵,a ∈ ↵′} if aa′ ↓ for all a ∈ ↵,a′ ∈ ↵′
undefined else

.

This yields an order-pca, a certain generalization of a pca.
• Define a “proto applicative morphism” A→ B as a function

� ∶ P∗(A)→ P∗(B)
for which there is r ∈ B such that for all ↵,↵′ ∈ P∗(A), whenever
↵↵′ ↓, then

r�(↵)�(↵′) ⊆ �(↵↵′).

Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 26 / 30

Realizability Toposes Morphisms

Geometric morphism of Realizability Toposes III

Theorem
Proto applicative morphisms A→ B correspond precisely to left-exact
functors between categories of assemblies.
Consequently, geometric morphisms f ∶ RT(B)→ RT(A) correspond
precisely to adjoint pairs of “proto applicative morphisms” � � �.

• For every pca A and function f ∶ A→ A, a� {a} is a
computationally dense applicative morphism A→ A[f]. Therefore
we have a geometric morphism:

RT(A[f])→ RT(A).

Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 27 / 30

Realizability Toposes Subtoposes

Definition
Let E ,F be toposes. A geometric morphism f ∗ � f∗ ∶ F → E is an
embedding if f ∗f∗ ≅ 1F . For such an embedding, we call F a subtopos

of E .

• Some subtoposes of RT(A) are realizability toposes. For example

RT(A[f])→ RT(A)
is a subtopos.

• The constant object functor ∇ ∶ Set→ RT(A) has a left adjoint �,
and they give a geometric embedding Set→ RT(A) is an
embedding. In fact Set is the subtopos of ¬¬-sheaves.

• For every subobject m ∶ S � X of an object X ∈ RT(A), there is a
“smallest subtopos” in which m becomes an isomorphism.

Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 28 / 30

Realizability Toposes Subtoposes

Turing degrees embed into the lattice of subtoposes

Theorem
Let f ∶ A→ A be a function. The smallest subtopos of RT(A) in which f
becomes computable is RT(A[f]).
This yields an embedding of the (generalized) Turing degrees in the
lattice of subtoposes of RT(A).

• We can show a similar thing for type 2 functionals F ∶ AA → A.

Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 29 / 30

Realizability Toposes Subtoposes

A cute fact and an open question

Theorem
The least subtopos of RT(A) that forces ∇ to preserve finite
coproducts is Set if and only if there exists g ∈ A such that

(∀a ∈ A)(∃n ∈ N)gn = a.

In other words, g is a partial surjection N→ A computable in A.

Theorem
Let A be a countable pca. The least subtopos of RT(A) that forces
every function f ∶ A→ A computable is Set.

Question: Does this hold in the uncountable case?

Eric Faber (Universiteit Utrecht) Code-free recursion & realizability February 24, 2014 30 / 30

	History
	Combinatory Logic
	Computability Theory
	Motivation

	Partial combinatory algebras
	PCAs are very rich
	PCAs allow for Abstract Recursion Theory

	Realizability Toposes
	From Categories of Assemblies …
	…to Realizability Toposes
	Morphisms
	Subtoposes

