
Propositional dependence logic

Fan Yang
Utrecht University

Delft Applied Logic Seminar
TU Delft, May 19, 2015

1/31

Outline

1 Dependence logic

2 Structural completeness in logics of dependence

3 Future directions

2/31

Dependence logic

3/31

Motivating example
Let I be a subset of R

Definition:

uniformly

A function f : I ! R is said to be continuous on I if

for any ✏ > 0, there exists � > 0 such that for any x0 2 I and any x 2 I,

|x � x0| < � =) |f (x)� f (x0)| < ✏.

Continuity: 8x08✏9�8x�(x0, ✏, �, x)

Uniform continuity: 8✏9�8x08x�(x0, ✏, �, x)

First Order Quantifiers:
8x19y18x29y2�

4/31

First Order Quantifiers:
8x19y18x29y2�

Henkin Quantifiers (Henkin, 1961):✓
8x1 9y1
8x2 9y2

◆
�

meaning:
9f9g8x18x2�(x1, x2, f (x1), g(x2))

Theorem (Enderton, Walkoe, 1970)
FO + Henkin quantifiers ⌘ ⌃1

1 (existential second-order logic).

5/31

Independence Friendly Logic (Hintikka and Sandu, 1989):

8x19y18x29y2/{x1}�

(Non-compositional) game theoretical semantics
(Compositional) team semantics (Hodges 1997)

x y z
s a b c

M |=s �(x , y , z)

X{
x y z

s1 a b c
s2 a b d
s3 b c a
s4 d a c

M |=X �(x , y , z)

Theorem
IF-logic ⌘ ⌃1

1.

6/31

First-order dependence Logic (Väänänen 2007):

8x19y18x29y2(=(x2, y2) ^ �)

First-order logic + =(~x , y)

The value of y is
functionally determined

by the values of ~x .

Theorem
First-order dependence logic ⌘ ⌃1

1
⌘ IF-logic
⌘ FO + Henkin quantifiers

7/31

Team Semantics (Hodges, 1997)

XA team {
name cloth muddy

s1 Abelard white no
s2 Bill blue yes
s3 Cath white no
s4 Danny white no
s5 Eloise blue yes
s6 Father blue no

Y

{
Does M |=s1 =(c,m)=(x , y), or does m depend on c under s1?
On the team X , m depends on c, or M |=X =(c,m).
M 6|=Y =(c,m).
In general, define M |=X =(~x , y) iff for any s, s0 2 X ,

s(~x) = s0(~x) =) s(y) = s0(y).

This type of dependence corresponds precisely to functional
dependency widely investigated in Database Theory (Armstrong
1974, etc.).

8/31

First-order dependence Logic = FO + =(x1, . . . , xn, y)

Propositional dependence Logic (PD) = CPC+ =(p1, . . . , pn, q)

X{
happy rainy dark cloth muddy

v1 0 1 1 1
v2 1 1 0 0
v3 0 0 1 1
v4 1 0 0 0

X |==(d ,m): Whether Abelard is muddy depends completely on
whether he wears dark cloth or not.

X |==(h, d): Whether Abelard wears dark cloth depends entirely on
whether he is happy or not.

Therefore, whether Abelard is muddy depends on his mood (and his
cloth color).

Armstrong axioms: =(p, q), =(q, r) `=(p, r),
=(q, r) `=(p, q, r), ...

9/31

Propositional dependence Logic (PD) = CPC+ =(p1, . . . , pn, q)

Syntax of PD:

� ::= p | ¬p | ? | =(~p, q) | � ^ � | � _ ⌦�

A valuation is a function v : Prop ! {0, 1}.

A team is a set of valuations.

happy rainy dark cloth muddy
v1 0 1 1 1
v2 1 1 0 0
v3 0 0 1 1
v4 1 0 0 0

10/31

Team Semantics: Let X be a team.

X |= =(~p, q) iff for all v , v 0 2 X ,
v(~p) = v 0(~p) =) v(q) = v 0(q).

X |= p iff for all v 2 X , v(p) = 1.
X |= ¬p iff for all v 2 X , v(p) = 0.

X |= � ^ iff X |= � and X |= .
X |= �⌦ iff there exist Y ,Z ✓ X with X = Y [Z s.t.

Y |= � and Z |= .

X |= ? iff X = ;.

Fix N = {p1, . . . , pn}, the set

J�(p1, . . . , pn)K := {X ✓ 2N | X |= �}.

is downwards closed, that is, Y ✓ X 2 J�K =) Y 2 J�K;
and nonempty, since ; 2 J�K.

11/31

An algebraic view

Write L(}(2N)) for the set of all nonempty downwards closed subsets
of }(2N).

Abramsky and Väänänen (2009):

Consider the algebra (L(}(2N)),⌦,\,[, {;},✓), where
A ⌦ B =# {X [Y | X 2 A and Y 2 B}.

(L(}(2N)),⌦, {;},✓) is a commutative quantale,
in particular, A ⌦ B  C () A  B (C;

(L(}(2N)),\,[, {;}) is a complete Heyting algebra,
in particular, A \ B  C () A  B ! C.

12/31

In logic terms, we can define

X |= �⌦ iff there exist Y ,Z ✓ X with X = Y [Z s.t.

Y |= � and Z |= .

X |= �(iff for all Y if Y |= �, then X [Y |= .

X |= �! iff for all Y ✓ X : Y |= � =) Y |= .

X |= � _ iff X |= � or X |= .

13/31

Theorem (Y. 2013)
First-order dependence logic with intuitionistic connectives has the
same expressive power as full second-order logic.

Propositional intuitionistic dependence logic (PID):

� ::= p | ? | =(~p, q) | � ^ � | � _ � | �! �

Observation (Y. 2014)
PID is essentially equivalent to Inquisitive Logic, InqL (Groenendijk,
Ciardelli and Roelofsen).

The same semantics (team semantics), almost the same syntax.

14/31

A Medvedev frame: (}(2N) \ {;},◆)

00 01 10 11

00 10 11 01 10 1100 01 1100 01 10

01 10 01 11 10 11110010000100

10 110100

p ! q

¬¬p ! p

p, 6q

Ciardelli and Roelofsen (2011):

PID� = InqL = ML¬ = {� | ⌧(�) 2 ML, where ⌧(p) = ¬p}
= KP¬ = KP � ¬¬p ! p

15/31

Theorem (ess. Ciardelli and Roelofsen, 2011)
PID is complete w.r.t. the following Hilbert style deductive system:
Axioms:

all substitution instances of IPC axioms
all substitution instances of

(KP)
�
¬p ! (q _ r)

�
!

�
(¬p ! q) _ (¬p ! r)

�
.

¬¬p ! p for all propositional variables p
=(p1, · · · , pn, q) ⌘

Vn
i=1(pi _ ¬pi) ! (q _ ¬q)

Rules:
Modus Ponens

Theorem (Y. and Väänänen, 2014)
PD is sound and complete w.r.t. its natural deduction system.

16/31

Fix N = {p1, . . . , pn}. Clearly, for each formula �(p1, . . . , pn),
{X ✓ 2N | X |= �} = J�K 2 L(}(2N)).

Theorem (Ciardelli, Huuskonen, Y.)
PD, PD_, PID, InqL are maximal downwards closed logics, i.e., if L is
one of these logics, then

L(}(2N)) = {J�K | �(p1, . . . , pn) is a formula of L}.
In particular, PD ⌘ PD_ ⌘ PID ⌘ InqL.

Theorem (Y.)
Every instance of _ and ! is definable in PD, but _ and ! are not
uniformly definable in PD.

17/31

Theorem (Ciardelli, Huuskonen, Y.)
PD, PD_, PID, InqL are maximal downwards closed logics, i.e., if L is
one of these logics, then

L(}(2N)) = {J�K | �(p1, . . . , pn) is a formula of L}.
In particular, PD ⌘ PD_ ⌘ PID ⌘ InqL.

Proof. We only treat PD_ and PID. First, consider a team on N.

X{
p q

v1 1 1
v2 1 0
v3 0 1

Let

⇥X :=

8>><>>:
O
v2X

(pv̇(i1)
i1

^ · · · ^ pv̇(in)
in), for PD_;

¬¬
_

v2X

(pv̇(i1)
i1

^ · · · ^ pv̇(in)
in), for PID.

Then Y |= ⇥X () Y ✓ X , for any team Y on N.

For each K 2 L(}(2N)), consider
W

X2K ⇥X . For any team Y on N,

Y |=
_

X2K
⇥X () 9X 2 K(Y ✓ X) () Y 2 K.

Hence J
W

X2K ⇥X K = K.
18/31

Definition
A formula � is said to be flat if

X |= � () 8v 2 X : {v} |= �.

Example:
Formulas without any occurrences of =(~p, q) or _ are flat.
Negated formulas of PID and InqL are flat, i.e., ¬� is always flat.

Lemma
For flat formulas � of L 2 {PD,PID, InqL},

`CPC � () `L �

19/31

Structural completeness in logics of dependence

———————————————–
Joint work with Rosalie Iemhoff

20/31

Definition
Let `L be a consequence relation of a logic L. A substitution
� : Prop ! FormL is called an L-substitution if `L is closed under �, i.e.,
for every formulas �, of L,

� `L =) �(�) `L �().

Fact: None of the logics PD, PID, InqL is closed under uniform
substitution. E.g., for PID, ` ¬¬p ! p, but 0 ¬¬(p _ ¬p) ! (p _ ¬p).

Lemma
Flat substitutions are L-substitutions, for L 2 {PD,PID, InqL}.

Proof. For InqL and PID, it follows from (Ciardelli and Roelofsen,
2011). For PD, non-trivial.

21/31

Let L be a logic, and S a class of L-substitutions.

Definition
A rule �/ of L is said to be S-admissible, in symbols � |⇠S

L , if
8� 2 S : `L �(�) =)`L �().

Definition
A logic L is said to be S-structurally complete if every S-admissible rule
of L is derivable in L, i.e., � |⇠S

L () � `L .

Example:
KP rule is admissible in all intermediate logics, but KP rule is not
derivable in IPC.
KP is not structurally complete, ML is structurally complete.
CPC is structurally complete.

Theorem
For L 2 {PD,PID, InqL}, L is F-structurally complete, where F is the
class of all flat substitutions of the logic.

22/31

Recall: For L 2 {PD,PID, InqL}, every formula �(p1, . . . , pn) of L is
(semantically or/and provably) equivalent to a formula in the normal
form

W
i2I ⇥Xi , where

⇥Xi =

8>><>>:
O
v2Xi

(pv(1)
1 ^ · · · ^ pv(n)

n), for PD;

¬¬
_

v2Xi

(pv(1)
1 ^ · · · ^ pv(n)

n), for PID, InqL.

Definition (Projective formula)
Let L be a logic, and S a set of L-substitutions. A consistent L-formula
� is said to be S-projective in L if there exists � 2 S such that

(1) `L �(�)

(2) �,�() `L and �, `L �() for all L-formulas .
Such � is called an projective unifier of �.

Example:
Every consistent formula is projective in CPC.
Every consistent negated formula (i.e. ¬�) is projective in every
intermediate logic.

23/31

Let L 2 {PD,PID, InqL}.

Lemma
If X 6= ;, then ⇥X is F-projective in L.

Theorem
L is F-structurally complete, i.e., � |⇠F

L () � `L .

Proof. It suffices to prove “=)”. We only treat PID. Suppose � |⇠F and � is
consistent. We have that ` �$

W
i2I ⇥Xi , where each Xi 6= ;.

By the lemma, each ⇥Xi is F-projective in PID. Let �i 2 F be a projective
unifier of ⇥Xi . Then ` �i(⇥Xi), which implies that ` �i(�). Now, since � |⇠F ,
we obtain that ` �i().

On the other hand, as �i is a projective unifier of ⇥Xi , we have that
⇥Xi ,�i() ` , thus ⇥Xi ` for all i 2 I. It then follows that

W
i2I ⇥Xi ` ,

which implies that � ` , as desired.

24/31

Future directions

25/31

proof theory

First-order dependence logic is not axiomatizable (since it is
equivalent to ⌃1

1).
Propositional logics of dependence (PD, PID, InqL) have Hilbert
style deductive systems, natural deduction systems and labelled
tableau calculi (Ciardelli, Roelofsen, 2011), (Y., Väänänen, 2014),
(Sano, Virtema, 2014).
Gentzen-style calculi for propositional logics of dependence?

26/31

algebraic approach

Abramsky and Väänänen (2009):

Consider the algebra (L(}(2N)),⌦,\,[, {;},✓).

(L(}(2N)),⌦, {;},✓) is a commutative quantale,
in particular, A ⌦ B  C () A  B (C;
(L(}(2N)),\,[, {;}) is a complete Heyting algebra,
in particular, A ^ B  C () A  B ! C.

L(}(2N)) is an algebra of the Logic of Bunched Implications (Pym,
O’Hearn)
For example, L(}(2N)) = {J�K | �(p1, . . . , pn) is a formula of PID}.

`PID �
?() L(}(2N)) |= ↵� ⇡ 1 for all negative assignments ↵.

27/31

database theory

name mood cloth muddy
s1 Abelard happy white no
s2 Bill unhappy blue yes
s3 Cath happy red no
s4 Danny happy green no

(Grädel and Väänänen, 2013): Independence logic (Ind)
Ind = FO + ~y ?~x ~z (multivalued dependency)
Ind is equivalent to ⌃1

1 (Galliani, 2012), thus captures NP over finite
structures.

(Galliani, 2012): Inclusion logic (Inc)
Inc = FO + ~x ✓ ~y (inclusion dependency)
Inc is equivalent to the Least Fixed Point Logic (Galliani and Hella,
2014) over finite structures, thus captures PTIME over ordered finite
structures.

A logical formalism for reasoning about dependency in Big Data?
(Kontinen, Link and Väänänen, Independence in Database Relations, 2013;

Kontinen, Hannula and Link, On Independence Atoms and Keys, 2014)
28/31

modal and dynamic epistemic logic with team
semantics

(Väänänen, 2008): Modal dependence logic.
(Kontinen, Müller, Schnoor and Vollmer, 2014): A van Benthem
theorem for modal team logic.
(Y., 2014): Modal intuitionistic dependence logic is complete w.r.t.
a certain class of bi-relation Kripke models (closely related to the
Kripke models of Fischer Servi’s intuitionistic modal logic IK).
(Galliani, 2013): Public announcement operator for dependence
logic. In particular, =(~p, q) can be read as “when the values of ~p
are publicly announced, the value of q is determined”.
(Ciardelli and Roelofsen, 2014): Inquisitive dynamic epistemic
logic.

29/31

Social choice theory

30/31

Quantum Logic

Samson Abramsky

Compositionality

Wilfrid Hodges
Theo Janssen

Dag Westerståhl

Inquisitive Semantics

Jeroen Groenendijk
Ivano Ciardelli

Floris Roelofsen

Game Theory

Dietmar Berwanger
Erich Grädel

Generalized Quantifiers

Fredrik Engström
Dag Westerståhl

Database Theory

Phokion Kolaitis
Sebastian Link

Dependence Logic

31/31

	Dependence logic
	Structural completeness in logics of dependence
	Future directions

