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@ Dependence logic
e Structural completeness in logics of dependence

e Future directions
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Dependence logic
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Motivating example

Let / be a subset of R
Definition:

uniformly
A function f : I — R is said to be continuous on [ if

for any e > 0, there exists 6 > 0 such that for any xo € /and any x € |,

X — Xo| < 0 = |f(x) — f(x0)| < e.

Continuity: VxpVe3dVxo(xo, €, 9, X)

Uniform continuity: Ve3dVxoVxo(Xo, €, 6, X)

First Order Quantifiers:
VX1 3y1VXxo3ye0
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First Order Quantifiers:
Vx13y1VX23Yed

Henkin Quantifiers (Henkin, 1961):
VXq E|y1 &
VX2 dye

3fAGVx1Vx0( X1, X2, F(X1), g(X2))

meaning:

Theorem (Enderton, Walkoe, 1970)

FO + Henkin quantifiers = Z] (existential second-order logic).
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Independence Friendly Logic (Hintikka and Sandu, 1989):

VX1 3y1Vxo3ye /{x1} ¢

@ (Non-compositional) game theoretical semantics
@ (Compositional) team semantics (Hodges 1997)

x|yl z

I x|y|z sslal|b|c
s\a\b\c X ss|lalb|d
s3|blc|a

M s 6(x.y.2) sldfaje
M E=x é(x,y,2)

IF-logic = ¥1.
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First-order dependence Logic (Vaananen 2007):

Vx13y1Vxa3ye(=(x2, y2) A @)

' Thevalueofyis |
' functionally determined |
' by the values of X. |

First-order dependence logic

7]
IF-logic
FO + Henkin quantifiers
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Team Semantics (Hodges, 1997)

name loth uddy
s1 | Abelard | white no
So Bill blue yes
S3 Cath | white no
A team X s4 | Danny | white no Y
S5 | Eloise blue yes
Sg | Father | blue no

@ Does M =5, =(c, m) =(x, y), or does m depend on ¢ under sy?

@ On the team X, m depends on ¢, or M =x =(c, m).

@ My =(c,m).

@ In general, define M =x

=(X, y) iffforany s,s' € X,

s(X) =s'(X) = s(y) = s'(y).

This type of dependence corresponds precisely to functional
dependency widely investigated in Database Theory (Armstrong

1974, etc.).

/31



First-order dependence Logic = FO + =(xq,...,Xpn, )
Propositional dependence Logic (PD) = CPC+ =(p1,...,Pn,q)

happy rainy dark cloth muddy

V1 0 1 1 1
Vo 1 1 0 0
X v3 0 0 1 1
V4 1 0 0 0

@ X ==(d, m): Whether Abelard is muddy depends completely on
whether he wears dark cloth or not.

@ X ==(h, d): Whether Abelard wears dark cloth depends entirely on

whether he is or not.
@ Therefore, whether Abelard is muddy depends on his (and his
cloth color).

Armstrong axioms: =(p,q), =(q,r) -=(p, r),
=(q,r)-=(p,q.r), ..
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Propositional dependence Logic (PD) = CPC+ =(p1,...,Pn,q)
@ Syntax of PD:
pu=pl-p|L]=(0.9) ¢ Ad|dV @
@ A valuation is a function v : Prop — {0, 1}.
@ A feamis a set of valuations.

happy rainy dark cloth muddy
Vi 0 1 1 1
Vo 1 1 0 0
V3 0 0 1 1
V4 1 0 0 0
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Let X be a team.

@ X &= =(p,q)iffforall v,v' € X,

v(p) = V'(B) = v(q) = v(q).
e X EpiffforallveX, v(p)=1.
@ X = —piffforallve X, v(p) =0.

@ XE¢Ayiff X =dand X = .
o X = ¢® v iff there exist Y, Z C X with X = YU Z st

YE¢and Z = .
e XE Liff X=40.

Fix N={py,...,pn}, the set
[o(p1, .. pn)] = {X €2V | X |= ¢}

@ is downwards closed, thatis, Y C X € [¢] = Y <€ [¢];

@ and nonempty, since () € [¢].
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An algebraic view

Write £(p(2V)) for the set of all nonempty downwards closed subsets
of p(2N).

Abramsky and Vaananen (2009):

Consider the algebra (£(p(2V)), ®,N, U, {0}, C), where
A B=l{XUY|XecAandY € B}.

e (L(p((2V)),®, {0}, C) is a commutative quantale,
in particular, A B< C <— A< B — C;

@ (L(p(2N)),n,u, {0}) is a complete Heyting algebra,
in particular, ANB< C <— A<B-— C.
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In logic terms, we can define

@ X Eo®viffthereexist Y, Z C X with X =YUZs.t.

YE¢and Z = 9.
@ XEo—ouiffforall Yif Y E ¢, then XU Y = 1.

e XEop—vyiffforal YCX: YE¢=Y E1.
@ XEoVyiff X =dor X 1.
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Theorem (Y. 2013)

First-order dependence logic with intuitionistic connectives has the
same expressive power as full second-order logic.

Propositional intuitionistic dependence logic (PID):
n=p|l L] =(0.9) [ ¢NP[dVI[d— ¢

Observation (Y. 2014)

PID is essentially equivalent to Inquisitive Logic, InqL (Groenendijk,
Ciardelli and Roelofsen).

The same semantics (team semantics), almost the same syntax.
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A Medvedev frame: (p(2N)\ {0}, D)

00 o1 10 11

Ciardelli and Roelofsen (2011):
PID" =InqL=ML" = {¢ | 7(¢) € ML, where 7(p) = —-p}
=KP"=KP®-—p—p
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Theorem (ess. Ciardelli and Roelofsen, 2011)

PID is complete w.r.t. the following Hilbert style deductive system:
Axioms:
@ all substitution instances of IPC axioms

@ all substitution instances of
(KP)  (=p—(qVvr) = ((-p—=q)V(=p—r)).
@ ——p — p for all propositional variables p
® =(p1,-+,Pn,q) = \iL1(Pi V =pi) = (g V =)
Rules:
@ Modus Ponens

Theorem (Y. and Vaananen, 2014)

PD /s sound and complete w.r.t. its natural deduction system.
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Fix N={py,...,pn}. Clearly, for each formula ¢(p1,..., pn),
X2V | X o} =[¢] € L(p(2")).

Theorem ( Ciardelli, Huuskonen, Y.)

PD, PDY, PID, InqL are maximal downwards closed logics, i.e., ifL is
one of these logics, then

£(p(2) = {[#] | é(p1, - . pn) is a formula of L}.
In particular, PD = PD" = PID = InqL.

Every instance of V and — is definable in PD, but \/ and — are not
uniformly definable in PD.
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Theorem (Ciardelli, Huuskonen, Y.)

PD, PDY, PID, InqL are maximal downwards closed logics, i.e., ifL is
one of these logics, then

L(p2N)) = {[¢] | ¢(p1, - -, pn) is a formula of L}.
In particular, PD = PD" = PID = InqL.

Proof. We only treat PD" and PID. First, consider a team on N.

Let

p q o o
w11 Qe - A p"), for PDY,
X{—_V210 Ox =4 X L ”
T X ﬂﬂ v(pi:(n)A...Api:('ﬂ)_, for PID.
veX

Then Y E©x < Y C X, for any team Y on N.
For each K € £(p(2N)), consider \/ y.x ©x. For any team Y on N,

Y\ 0x < IXeK(YCX) < Yek.
XeK

Hence [\/x . ©x] = K. O
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Definition
A formula ¢ is said to be flat if

XEo¢ <= VWwveX:{v}Eo

Example:
e Formulas without any occurrences of =(p, q) or v are flat.
@ Negated formulas of PID and InqL are flat, i.e., —¢ is always flat.

For flat formulas ¢ of L € {PD,PID,InqL},

Fepc @ <= kL ¢
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Structural completeness in logics of dependence

Joint work with Rosalie lemhoff

20/31



Definition

Let - be a consequence relation of a logic L. A substitution
o : Prop — Form( is called an L-substitution if -_ is closed under o, i.e.,
for every formulas ¢, ¢ of L,

¢ LY = a(d) L a(¥).

Fact: None of the logics PD, PID, InqL is closed under uniform
substitution. E.g., for PID, - =——p — p, but ¥ ==(p Vv =p) — (p VvV —p).

Flat substitutions are L-substitutions, for L € {PD, PID, InqL}.

Proof. For InqL and PID, it follows from (Ciardelli and Roelofsen,
2011). For PD, non-trivial. O
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Let L be a logic, and S a class of L-substitutions.

Definition
Arule ¢/1 of L is said to be S-admissible, in symbols ¢ kvf 1, if
VoeS8: H U(¢) ==L U(@D)

| A\

Definition
A logic L is said to be S-structurally complete if every S-admissible rule
of Lis derivable in L, i.e., ¢ ¥ ¢ <= ¢ L 2.

Example:
@ KP rule is admissible in all intermediate logics, but KP rule is not

derivable in IPC.
@ KP is not structurally complete, ML is structurally complete.

@ CPC is structurally complete.

ForL € {PD,PID,InqL}, L is F-structurally complete, where F is the
class of all flat substitutions of the logic.
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Recall: For L € {PD,PID,IngL}, every formula ¢(p1,...,pn) of Lis
(semantically or/and provably) equivalent to a formula in the normal
form \/,c, ©x;, where

Qe n--npi™),  forPD;

@X _ veX;
= Ve A apn™), for PID, InqgL.

VEX;

Definition (Projective formula)

Let L be a logic, and S a set of L-substitutions. A consistent L-formula
¢ is said to be S-projective in L if there exists o € S such that

(1) FLo(9)
(2) ¢,0(v) FL v and ¢, v L o(v) for all L-formulas .
Such ¢ is called an projective unifier of ¢.

Example:
@ Every consistent formula is projective in CPC.
@ Every consistent negated formula (i.e. —¢) is projective in every

intermediate logic.
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Let L € {PD, PID, InqL}.

If X # 0, then ©x is F-projective in L.
L is F-structurally complete, i.e., ¢ M o < ¢ b 4.

Proof. It suffices to prove “=". We only treat PID. Suppose ¢ ~7 ¢ and ¢ is
consistent. We have that - ¢ <+ \/,_, ©x;, where each X; # 0.

By the lemma, each ©y, is F-projective in PID. Let o; € F be a projective
unifier of ©x.. Then + o;(Ox,), which implies that - o;(¢). Now, since ¢ 7 1,
we obtain that F o;(v)).

On the other hand, as o; is a projective unifier of ©x,, we have that
Ox;, 0i(¥) -9, thus ©x, - ¢ for all / € /. It then follows that \/;_, ©x, - 1/,
which implies that ¢ - ¢, as desired. O
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Future directions \
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proof theory

@ First-order dependence logic is not axiomatizable (since it is
equivalent to ).

@ Propositional logics of dependence (PD, PID, InqL) have Hilbert
style deductive systems, natural deduction systems and labelled
tableau calculi (Ciardelli, Roelofsen, 2011), (Y., Vaananen, 2014),
(Sano, Virtema, 2014).

@ Gentzen-style calculi for propositional logics of dependence?

26/31



algebraic approach

Abramsky and Vaananen (2009):
Consider the algebra (L(p(2V)), ®,N,U, {0}, ©).
e (L(p(2N)), ®, {0}, C) is a commutative quantale,
in particular, A B< C <— A< B — C;
@ (L(p(2M)),n, U, {0}) is a complete Heyting algebra,
in particular, ANB< C <— A<B-— C.

@ L(p(2N)) is an algebra of the Logic of Bunched Implications (Pym,
O’Hearn)

e For example L(p2N)) = {[¢] | #(p1, ..., pn) is a formula of PID}.

® Fpp ¢ <= L(p(2V)) = aé ~ 1 for all negative assignments a.
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database theory

name mood cloth  muddy
S; Abelard happy  white no
So Bill unhappy blue yes
s3  Cath happy red no
sy Danny happy green no
@ (Gradel and Vaananen, 2013): Independence logic (Ind)
Ind = FO + y L Z (multivalued dependency)
Ind is equivalent to ¥1 (Galliani, 2012), thus captures NP over finite
structures.

@ (Galliani, 2012): Inclusion logic (Inc)
Inc = FO + X C y (inclusion dependency)
Inc is equivalent to the Least Fixed Point Logic (Galliani and Hella,
2014) over finite structures, thus captures PTIME over ordered finite
structures.

A logical formalism for reasoning about dependency in Big Data?

(Kontinen, Link and Vaananen, Independence in Database Relations, 2013;

Kontinen, Hannula and Link, On Independence Atoms and Keys, 2014)
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modal and dynamic epistemic logic with team

semantics

@ (Vaananen, 2008): Modal dependence logic.

@ (Kontinen, Maller, Schnoor and Vollmer, 2014): A van Benthem
theorem for modal team logic.

@ (Y., 2014): Modal intuitionistic dependence logic is complete w.r.t.
a certain class of bi-relation Kripke models (closely related to the
Kripke models of Fischer Servi’s intuitionistic modal logic IK).

@ (Galliani, 2013): Public announcement operator for dependence
logic. In particular, =(p, q) can be read as “when the values of p
are publicly announced, the value of g is determined”.

@ (Ciardelli and Roelofsen, 2014): Inquisitive dynamic epistemic
logic.
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Social choice theory

tue | Dependence and
PTJ |ndependence in Social
Choice Theory

room b3.470, building 31

Speaker
Eric Pacuit

Abstract

The modern era in social choice theory started with Ken Arrow's ground-breaking
impossibility theorem. Arrow showed that there is no preference aggregation method
satisfying a minimal set of desirable properties. Social choice theory has since grown into
a large and multi-faceted research area. In this talk, |1 focus on one type of theorem
studied by social choice theorists: axiomatic characterizations of preference aggregation
methods. The principles studied by social choice theorists are intended to identify
procedures that ensure that every group decision depends *in the right way* on the voters'
inputs. | will show how to formalize these theorems using Jouko Vaananen's dependence
and independence logic. This is not merely an exercise in applying a logical framework to
a new area. | will argue that dependence and independence logic offers an interesting
new perspective on axiomatic characterizations of group decision methods.
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