Quantifying the Classical Impossibility Theorems from Social Choice

Frank Feys

October 21, 2015
TU Delft Applied Logic Seminar

0 - Outline

- Introduction
- Part 1: Quantifying the Classical Impossibility Theorems
- Part 2: Cognitive Biases in Small Meeting Sequential Voting
- Conclusion

Quantifying the Classical Impossibility Theorems from Social Choice - Frank Feys

1 - Informal Introduction: To the Movies

Example: going to the movies with the family
Suppose the 3 options are Star Wars (SW), The Pianist (TP), and Breakfast at Tiffany's (BaT). The preferences might be

$$
\begin{aligned}
\text { Dad: } & \mathrm{TP}>\mathrm{SW}>\mathrm{BaT} \\
\text { Mom: } & \mathrm{BaT}>\mathrm{TP}>\mathrm{SW} \\
\text { Son: } & \mathrm{SW}>\mathrm{TP}>\mathrm{BaT}
\end{aligned}
$$

Questions:

(1) Which movie should they actually go see? How to decide?
(2) How does the decision-making process depend on the social interactions taking place?

TODAY: To study such questions by (1) using the technique Fourier analysis on the Boolean cube, and (2) introducing biases

1 - Social Choice

- Social choice theory studies collective decision-making: how to aggregate individual "preferences" into a collective (societal) outcome?
- "Preferences" might be votes, judgments, welfare, ... by any "agents" (persons, computers, ...) \Rightarrow very general framework
- Some important questions:
- How to get a coherent societal outcome?
- Properties of different voting rules?
- Is there a "best" voting rule?
- Which rule is more "democratic" / "fair"?
- How about manipulability?
- Breakthrough by Kenneth Arrow in 1951:

ARROW'S IMPOSSIBILITY THEOREM (informally stated):
There does not exist an "ideal" voting scheme when there are at least
3 candidates.

- But what does "ideal" mean?
- Arrow proposed use of axiomatic method, suggested desirable properties:
(1) Pareto condition:

If everybody likes Star Wars more than The Pianist, then we definitely shouldn't go watch The Pianist!
(2) Independence of Irrelevant Alternatives (IIA) $=$ "no spoiler condition"

- Note that the statement is qualitative: "there's no ideal scheme"
- Arrow's Theorem is closely related to Condorcet's Paradox: classical example

$$
\begin{array}{ll}
\text { Voter 1: } & A>B>C \\
\text { Voter 2: } & B>C>A \\
\text { Voter 3: } & C>A>B
\end{array}
$$

- Condorcet's idea (=IIA): do all pairwise competitions (with majority)

$$
\underline{A} \text { vs. } B, \quad \underline{B} \text { vs. } C, \quad \text { and } \quad \underline{C \text { vs. } A}
$$

- Societal outcome: $A>B>C>A>B>C>\ldots$

$$
\Rightarrow \quad a \operatorname{CYCLE}!
$$

- Alternative formulation of Arrow's Theorem: occurrence of cycles is inevitable, for any reasonable rule

PART 1: Quantifying the Classical Impossibility Theorems

(1) To teach you about the quantified versions of the classical impossibility theorems
(2) To introduce you to the technique used to prove those theorems: Fourier analysis on the Boolean cube
(3) To show why these things are important

PART 2: Cognitive Biases in Small Meeting Sequential Voting
(1) To convince you that, alas, the decision-making process in small meetings is often troubled by persistent biases
(2) To introduce you to some of those biases
(3) To propose a very simple model to simulate biases

PART 1:

Quantifying the Classical Impossibility Theorems

Quantifying the Classical Impossibility Theorems from Social Choice - Frank Feys

- Boolean functions $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ are ubiquitous in theoretical computer science
- Each such f has Fourier expansion $f=\sum_{S \subseteq[n]} \widehat{f}(S) \chi_{S}$ where $\chi_{S}(x):=\prod_{i \in S} x_{i}$ (parity), and the $\widehat{f}(S)$'s are called Fourier coefficients
- For example,

$$
\begin{gathered}
\operatorname{Maj}_{3}\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{2} x_{1}+\frac{1}{2} x_{2}+\frac{1}{2} x_{3}-\frac{1}{2} x_{1} x_{2} x_{3} \\
\Rightarrow \widehat{\operatorname{Maj}_{3}}(\emptyset)=0, \widehat{\operatorname{Maj}_{3}}(\{1\})=\widehat{\operatorname{Maj}_{3}}(\{2\})=\widehat{\operatorname{Maj}_{3}}(\{3\})=\frac{1}{2}, \widehat{\operatorname{Maj}_{3}}(\{1,2,3\})=-\frac{1}{2}
\end{gathered}
$$

- Note: Boolean functions $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ can be thought of as voting rules

3 - Fourier Expansion: What's the Point?

ESSENCE OF BOOLEAN ANALYSIS:

All of the interesting combinatorial properties of Boolean functions are encoded in the Fourier coefficients
\Rightarrow to "know" the Fourier expansion is to "know" those properties.

Example:

- In social choice, notion of "influence" $\operatorname{lnf}_{i}[f] \in[0,1]$ of voting rule $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$
- Have a nice formula for this (under mild condition): $\operatorname{Inf}_{i}[f]=\widehat{f}(i)$
- Indeed:

$$
\operatorname{Maj}_{3}\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{2} x_{1}+\frac{1}{2} x_{2}+\frac{1}{2} x_{3}-\frac{1}{2} x_{1} x_{2} x_{3}
$$

so all voters have influence exactly $1 / 2$

4 - Fourier for Social Choice: Quantifying Statements

- Number of applications of Boolean analysis in TCS last 20 years is huge (circuit theory, learning theory, cryptography, communication complexity, pseudorandomness, coding theory, ...)
- In last 15 years also social choice

MAIN POINT FOR SOCIAL CHOICE:

It allows us to get from qualitative to quantitative statements.

- This is very important: in real life we like to quantify things
- Conceptually: "changing the metric" (discrete \Rightarrow Hamming)

QUANTITATIVE ARROW THEOREM (Kalai/Keller):

For any $\varepsilon>0$, there is a $\delta=\delta(\varepsilon)$ such that, if a rule satisfies IIA, then: if the rule is at least ε-far from being "highly undesirable" (i.e., being a dictator or breaching Pareto condition), then its probability of having a cycle is at least δ (under ICA).

LONG STORY SHORT:

"The more we want to avoid cycles, the more the election scheme will resemble a dictator function (under ICA)."

Quantitative Arrow Theorem (Kalai/Keller):
For any $\varepsilon>0$, there is a $\delta=\delta(\varepsilon)$ such that, if a rule satisfies IIA, then: if the rule is at least ε-far from being "highly undesirable" (i.e., being a dictator or breaching Pareto condition), then its probability of having a cycle is at least δ (under ICA).

- Very nice theoretical result: "continuity condition" also for Hamming metric
- Bad news though: it is negative result, and it worsens (aggravates) classical Arrow's Theorem!
- Here $\delta(\varepsilon)=C \cdot \varepsilon^{3}$ (with C natural constant)
- Fine poly-dependence on ε, but unfortunately

$$
C \approx 2^{-10,000,000}=0 \quad \text { for all practical purposes }
$$

4 - Sketch of Kalai's Proof of Classical Arrow's Theorem 14/26

CLASSICAL ARROW'S THEOREM:

Let $f, g, h:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be unanimous (Pareto) and such that, when doing a 3-candidate election based on (f, g, h), the outcome is never a cycle. Then $f=g=h$, and they are a dictatorship function.

- f corresponds to \underline{a} vs. b
g corresponds to b vs. c
h corresponds to c vs. a

	voters						
	1	2	3	\ldots			
$a(+1)$ vs. $b(-1)$	+1	+1	-1	\ldots	$=: x$	\rightsquigarrow	$f(x) \in\{-1,1\}$
$b(+1)$ vs. $c(-1)$	+1	-1	+1	\ldots	$=: y$	\rightsquigarrow	$g(y) \in\{-1,1\}$
$c(+1)$ vs. $a(-1)$	-1	-1	+1	\ldots	$=: z$	\rightsquigarrow	$h(z) \in\{-1,1\}$

- Crucial! Note that the "forbidden" preferences (i.e., cycles) correspond to

$$
\left(\begin{array}{l}
+1 \\
+1 \\
+1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right)
$$

- By ICA, columns are independent and uniformly distributed over the set

$$
\left\{\left(\begin{array}{l}
+1 \\
+1 \\
-1
\end{array}\right),\left(\begin{array}{l}
+1 \\
-1 \\
-1
\end{array}\right),\left(\begin{array}{l}
+1 \\
-1 \\
+1
\end{array}\right),\left(\begin{array}{l}
-1 \\
+1 \\
-1
\end{array}\right),\left(\begin{array}{l}
-1 \\
+1 \\
+1
\end{array}\right),\left(\begin{array}{l}
-1 \\
-1 \\
+1
\end{array}\right)\right\}
$$

- Crucial! Let NAE : $\{-1,1\}^{n} \rightarrow\{0,1\}$ be indicator of "Not-All-Equal"; its Fourier expansion is

$$
\operatorname{NAE}\left(t_{1}, t_{2}, t_{3}\right)=\frac{3}{4}-\frac{1}{4} t_{1} t_{2}-\frac{1}{4} t_{2} t_{3}-\frac{1}{4} t_{1} t_{3}
$$

Kalai's idea: explicitly calculate

$$
\operatorname{Pr}_{\mathrm{ICA}}[\text { no cycles }] .
$$

- Further analysis of Fourier expansion of NAE
\Rightarrow Classical Arrow's Theorem
PLUS quantitative version!
Quantifying the Classical Impossibility Theorems from Social Choice - Frank Feys

5 - Significance of having Quantitative Statements

Important for theory as well as practice:
(1) Mathematical enrichment

- Continuity: impossibility theorems are resilient
- New modus operandi: the method itself is quantitative
(2) Practice
- Introduces probabilistic perspective: gives us concrete probabilities
- There is also a quantitative Gibbard-Satterthwaite Theorem
\Rightarrow it has important consequences for computational complexity
(on next slides...)

5 - G-S Theorem: Elections are Manipulable

- A constructive manipulation means: misreporting your "true" preferences to gain a better outcome (w.r.t. your "true" preferences)

GIBBARD-SATTERTHWAITE THEOREM (informally stated):
For a "reasonable" voting rule (with ≥ 3 candidates), there are always people with an incentive to manipulate: "manipulation is unavoidable".

- Idea: use computational hardness as a barrier against manipulation I.e., maybe voting rules exist for which manipulations are hard to find?
- They do exist! Examples: manipulation problem for
- single transferable vote (STV)
- variant of Copeland rule are NP-complete
- Problem: computational complexity is modeled as worst-case, but maybe manipulation is easy on average!?

QUANTIFIED GIBBARD-SATTERTHWAITE THEOREM:

If social choice function (n voters, m candidates) is ε-far from family of non-manipulable functions NONMANIP, then probability of a profile being manipulable is bounded from below by a polynomial in $\frac{1}{n}, \frac{1}{m}, \varepsilon$.

- Mossel and Rácz gave a proof, with

$$
p\left(\varepsilon, \frac{1}{n}, \frac{1}{m}\right)=\frac{\varepsilon^{15}}{10^{41} n^{68} m^{167}}
$$

- Quantified G-S Theorem \Rightarrow manipulation is easy on average
- At least, theoretically: degree of polynomial is MUCH too big: for Belgium ($n=10^{7}$ and $m=10$): Prob $\geq \frac{\varepsilon^{15}}{10^{684}}$
- Conclusion: for real-life applications this result is "theoretically good", but practically insignificant

PART 2:

Cognitive Biases in Small Meeting Sequential Voting

- Last chapter of thesis: introduction of new model to simulate the various cognitive biases that show up in small meetings
- Kahneman, Tversky et al. have shown that decisions taken by committees are liable to pervading biases
- That's very unfortunate!
(1) Bad decisions, waste of time and money
(2) But, it is even more sad because of Condorcet's Jury Theorem / "Wisdom of the Crowd":

People as a group can, in principle, come to better decisions, but main problem is lack of independence (due to biases).

Example: estimating the number of pennies in a glass jar

- Kahneman got the Nobel Prize in Economics in 2002 (for developing behavioral economics)

6 - Amos Tversky (dec., 1996) and Daniel Kahneman 21/26

Quantifying the Classical Impossibility Theorems from Social Choice - Frank Feys

- Anchoring Effect: when making decisions, individuals tend to rely too much on the first piece of info put forward, the so-called "anchor" (E.g., "starting low" as negotation skill when buying a car, judges in Germany)
- Priming Effect: your actions and emotions can be primed by events of which you're not even aware (E.g., EAT primes SOUP, when asked to fill in SO_P)
- Halo Effect: people tend to like everything about a person/idea/argument whenever they like just one part of it (E.g., first impressions—they're very important!)
- Bandwagon Effect: social conformity, groupthink, herding (E.g., "likes" on Facebook, YouTube)
- Many, many more! Regarding meetings, in particular: keeping up ones's appearance/reputation \rightleftarrows avoiding disagreement \rightleftarrows status-quo bias \rightleftarrows bias towards "the obvious" (discarding private insights)
- Setup:
- Small committee of n persons $\{1,2, \ldots, n\}$ has to decide on proposal: accept (1) or reject (0)?
- All votes are public, members vote sequentially (in order of index), and then the majority rule is applied
- Each member has a sway $w_{i} \in[0,1]$, signifying that person's "weight" (In English, "sway" is a synonym of

> "domination" "authority" "influence" "leadership")

- Additional constraint: $w_{1}+\ldots+w_{n} \leq 1$
- Probabilistic model: if $x_{i} \in\{0,1\}$ is i 's vote,
(1) Individual 1 votes uniformly at random
(2) For any $i \in\{2,3, \ldots, n\}$,

$$
x_{i} \stackrel{\text { def }}{=} \begin{cases}x_{j} & \text { with probability } w_{j} \quad(\forall j<i) \\ \{0,1\} \text { uniformly at random } & \text { with probability } 1-\sum_{j=1}^{i-1} w_{j}\end{cases}
$$

- Very simple model, Boolean-inspired \Rightarrow open to criticism
- In thesis only the case $n=3$ was analyzed (time constraints)
- So, how to go about small meeting voting? Kahneman's advice:
(1) Before the meeting starts, all members secretly write down on paper a summary of their opinion
(2) Who speaks first?
- Either the first person to speak is picked uniformly at random (to avoid the same dominant personalities dominating the discussions)
- Or people are required to speak in reverse order of "dominance" (sway)
(3) Disagreement should be supported and even rewarded
- Interesting future research: apply tools from logic to study such questions

7 - Overall Conclusions and Take-home Messages

(1) Fourier analysis on the Boolean cube is a useful technique also for social choice theory
(2) Best illustration: strengthening of classical impossibility theorems (Arrow, Gibbard-Satterthwaite) into quantitative theorems
(3) Social choice theory is linked with many other areas; there is a particularly interesting connection with cognitive sciences (biases)
(9) We introduced a new, simple model to simulate the various cognitive biases present in small meeting decision-making
(3) These topics are very important, also for real life

