Quantifying the Classical Impossibility Theorems from Social Choice

Frank Feys

October 21, 2015

TU Delft Applied Logic Seminar

Introduction

• Part 1: Quantifying the Classical Impossibility Theorems

• Part 2: Cognitive Biases in Small Meeting Sequential Voting

Conclusion

1 - Informal Introduction: To the Movies

Example: going to the movies with the family

Suppose the 3 options are *Star Wars* (SW), *The Pianist* (TP), and *Breakfast at Tiffany's* (BaT). The preferences might be

Dad:	TP > SW > BaT
Mom:	BaT > TP > SW
Son:	SW > TP > BaT

Questions:

- Which movie should they actually go see? How to decide?
- Output the decision-making process depend on the social interactions taking place?

TODAY: To study such questions by (1) using the technique *Fourier* analysis on the Boolean cube, and (2) introducing biases

- Social choice theory studies collective decision-making: how to aggregate *individual* "preferences" into a *collective* (*societal*) outcome?
- "Preferences" might be votes, judgments, welfare, ... by any "agents" (persons, computers, ...) ⇒ very general framework
- Some important questions:
 - How to get a *coherent* societal outcome?
 - Properties of different voting rules?
 - Is there a "best" voting rule?
 - Which rule is more "democratic" / "fair"?
 - How about manipulability?

• Breakthrough by Kenneth Arrow in 1951:

ARROW'S IMPOSSIBILITY THEOREM (informally stated):

There does not exist an "ideal" voting scheme when there are at least 3 candidates.

- But what does "ideal" mean?
- Arrow proposed use of axiomatic method, suggested desirable properties:
 - Pareto condition:

If everybody likes Star Wars more than The Pianist, then we definitely shouldn't go watch The Pianist!

- Independence of Irrelevant Alternatives (IIA) = "no spoiler condition"
- Note that the statement is qualitative: "there's no ideal scheme"

1 – Arrow's Theorem: "Cycles are Inevitable!"

• Arrow's Theorem is closely related to *Condorcet's Paradox*: classical example

Voter 1:	A > B > C
Voter 2:	B > C > A
Voter 3:	C > A > B

• Condorcet's idea (= IIA): do all pairwise competitions (with majority)

• Societal outcome: $A > B > C > A > B > C > \ldots$

\Rightarrow a **CYCLE**!

 Alternative formulation of Arrow's Theorem: occurrence of cycles is inevitable, for any reasonable rule

PART 1: Quantifying the Classical Impossibility Theorems

- To teach you about the *quantified* versions of the classical impossibility theorems
- To introduce you to the technique used to prove those theorems: Fourier analysis on the Boolean cube
- So the set of the s

PART 2: Cognitive Biases in Small Meeting Sequential Voting

- To convince you that, alas, the decision-making process in small meetings is often troubled by persistent biases
- It introduce you to some of those biases
- To propose a very simple model to simulate biases

PART 1:

Quantifying the Classical Impossibility Theorems

3 – Fourier Expansion

- Boolean functions $f:\{-1,1\}^n\to\mathbb{R}$ are ubiquitous in theoretical computer science
- Each such f has Fourier expansion $f = \sum_{S \subseteq [n]} \hat{f}(S)\chi_S$ where $\chi_S(x) := \prod_{i \in S} x_i$ (parity), and the $\hat{f}(S)$'s are called Fourier coefficients
- For example,

$$\mathsf{Maj}_3(x_1, x_2, x_3) = \frac{1}{2}x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 - \frac{1}{2}x_1x_2x_3$$

$$\Rightarrow \ \widehat{\mathsf{Maj}_3}(\emptyset) = \mathbf{0}, \ \ \widehat{\mathsf{Maj}_3}(\{1\}) = \widehat{\mathsf{Maj}_3}(\{2\}) = \widehat{\mathsf{Maj}_3}(\{3\}) = \frac{1}{2}, \ \ \widehat{\mathsf{Maj}_3}(\{1,2,3\}) = -\frac{1}{2}$$

• Note: Boolean functions $f:\{-1,1\}^n \to \{-1,1\}$ can be thought of as voting rules

ESSENCE OF BOOLEAN ANALYSIS:

All of the interesting combinatorial properties of Boolean functions are **encoded** in the Fourier coefficients

 \Rightarrow to "know" the Fourier expansion is to "know" those properties.

Example:

- In social choice, notion of "influence" $\inf_i [f] \in [0,1]$ of voting rule $f: \{-1,1\}^n \to \{-1,1\}$
- Have a nice formula for this (under mild condition): $\ln f_i[f] = \hat{f}(i)$
- Indeed:

$$\mathsf{Maj}_{3}(x_{1}, x_{2}, x_{3}) = \frac{1}{2}x_{1} + \frac{1}{2}x_{2} + \frac{1}{2}x_{3} - \frac{1}{2}x_{1}x_{2}x_{3}$$

so all voters have influence exactly 1/2

4 – Fourier for Social Choice: Quantifying Statements 11/26

- Number of applications of Boolean analysis in TCS last 20 years is huge (circuit theory, learning theory, cryptography, communication complexity, pseudorandomness, coding theory, ...)
- In last 15 years also social choice

MAIN POINT FOR SOCIAL CHOICE:

It allows us to get from qualitative to quantitative statements.

- This is very important: in real life we like to quantify things
- Conceptually: "changing the metric" (discrete ⇒ Hamming)

QUANTITATIVE ARROW THEOREM (Kalai/Keller):

For any $\varepsilon > 0$, there is a $\delta = \delta(\varepsilon)$ such that, if a rule satisfies IIA, then: if the rule is at least ε -far from being "highly undesirable" (i.e., being a dictator or breaching Pareto condition), then its probability of having a cycle is *at least* δ (under ICA).

LONG STORY SHORT:

"<u>The more</u> we want to **avoid cycles**, <u>the more</u> the election scheme will **resemble a dictator function** (under ICA)."

4 – Arrow's Theorem: It's actually even Worse!

Quantitative Arrow Theorem (Kalai/Keller):

For any $\varepsilon > 0$, there is a $\delta = \delta(\varepsilon)$ such that, if a rule satisfies IIA, then: if the rule is at least ε -far from being "highly undesirable" (i.e., being a dictator or breaching Pareto condition), then its probability of having a cycle is *at least* δ (under ICA).

- Very nice theoretical result: "continuity condition" also for Hamming metric
- Bad news though: it is negative result, and it *worsens* (aggravates) classical Arrow's Theorem!
- Here $\delta(\varepsilon) = C \cdot \varepsilon^3$ (with C natural constant)
- Fine poly-dependence on ε , but unfortunately

 $C \approx 2^{-10,000,000} = 0$ for all practical purposes

4 - Sketch of Kalai's Proof of Classical Arrow's Theorem 14/26

CLASSICAL ARROW'S THEOREM:

Let $f, g, h : \{-1, 1\}^n \to \{-1, 1\}$ be unanimous (Pareto) and such that, when doing a 3-candidate election based on (f, g, h), the outcome is *never* a cycle. Then f = g = h, and they are a **dictatorship function**.

- f corresponds to a vs. b
 - g corresponds to <u>b vs.</u> c
 - *h* corresponds to $\underline{c \text{ vs. } a}$

			voters			
	1	2	3			
a (+1) vs. $b (-1)$	+1	$^{+1}$	-1	 =: x	\sim	$f(x) \in \{-1, 1\}$
b (+1) vs. $c (-1)$	+1	-1	$^{+1}$	 =: y	$\sim \rightarrow$	$g(y) \in \{-1, 1\}$
$c \; (+1) \; { m vs.} \; a \; (-1)$	-1	$^{-1}$	$^{+1}$	 =: z	$\sim \rightarrow$	$h(z) \in \{-1,1\}$

• Crucial! Note that the "forbidden" preferences (i.e., cycles) correspond to $\begin{pmatrix} +1 \end{pmatrix} \begin{pmatrix} -1 \end{pmatrix}$

$$\begin{pmatrix} +1\\ +1\\ +1 \end{pmatrix}$$
 and $\begin{pmatrix} -1\\ -1\\ -1 \end{pmatrix}$

• By ICA, columns are independent and uniformly distributed over the set

$$\left\{ \begin{pmatrix} +1\\+1\\-1 \end{pmatrix}, \begin{pmatrix} +1\\-1\\-1 \end{pmatrix}, \begin{pmatrix} +1\\-1\\+1 \end{pmatrix}, \begin{pmatrix} -1\\+1\\-1 \end{pmatrix}, \begin{pmatrix} -1\\+1\\+1 \end{pmatrix}, \begin{pmatrix} -1\\+1\\+1 \end{pmatrix} \right\}$$

• Crucial! Let NAE : $\{-1,1\}^n \to \{0,1\}$ be indicator of "Not-All-Equal"; its Fourier expansion is

$$\mathsf{NAE}(t_1, t_2, t_3) = \frac{3}{4} - \frac{1}{4}t_1t_2 - \frac{1}{4}t_2t_3 - \frac{1}{4}t_1t_3$$

Kalai's idea: explicitly calculate

 $\Pr_{\text{ICA}}[$ no cycles].

• Further analysis of Fourier expansion of NAE

 \Rightarrow Classical Arrow's Theorem <u>PLUS</u> quantitative version!

Important for theory as well as practice:

- Mathematical enrichment
 - Continuity: impossibility theorems are resilient
 - New modus operandi: the method *itself* is quantitative
- Practice
 - Introduces probabilistic perspective: gives us concrete probabilities
 - There is also a quantitative Gibbard-Satterthwaite Theorem
 - \Rightarrow it has important consequences for computational complexity

(on next slides...)

5 - G-S Theorem: Elections are Manipulable

• A constructive manipulation means: misreporting your "true" preferences to gain a better outcome (w.r.t. your "true" preferences)

GIBBARD-SATTERTHWAITE THEOREM (informally stated): For a "reasonable" voting rule (with ≥ 3 candidates), there are always people with an incentive to manipulate: "manipulation is unavoidable".

- Idea: use computational hardness as a barrier against manipulation
 I.e., maybe voting rules exist for which manipulations are hard to find?
- They do exist! Examples: manipulation problem for
 - single transferable vote (STV)
 - variant of Copeland rule

are NP-complete

• **Problem:** computational complexity is modeled as *worst-case*, but maybe manipulation is easy *on average*!?

QUANTIFIED GIBBARD-SATTERTHWAITE THEOREM:

If social choice function (*n* voters, *m* candidates) is ε -far from family of non-manipulable functions NONMANIP, then probability of a profile being manipulable is bounded from below by a polynomial in $\frac{1}{n}, \frac{1}{m}, \varepsilon$.

• Mossel and Rácz gave a proof, with

$$p\left(\varepsilon,\frac{1}{n},\frac{1}{m}\right) = \frac{\varepsilon^{15}}{10^{41}n^{68}m^{167}}$$

- Quantified G-S Theorem ⇒ manipulation is easy on average
- At least, theoretically: degree of polynomial is <u>MUCH</u> too big: for Belgium ($n = 10^7$ and m = 10): Prob $\geq \frac{\varepsilon^{15}}{10^{684}}$
- **Conclusion:** for real-life applications this result is "theoretically good", but practically insignificant

PART 2:

Cognitive Biases in Small Meeting Sequential Voting

6 – Problem Description

- Last chapter of thesis: introduction of new model to simulate the various *cognitive biases* that show up in small meetings
- Kahneman, Tversky et al. have shown that decisions taken by committees are liable to pervading biases
- That's very unfortunate!
 - Bad decisions, waste of time and money
 - But, it is even more sad because of Condorcet's Jury Theorem / "Wisdom of the Crowd":

People as a group **can**, in principle, come to **better** decisions, <u>but</u> main problem is **lack of independence** (due to **biases**).

Example: estimating the number of pennies in a glass jar

• Kahneman got the Nobel Prize in Economics in 2002 (for developing *behavioral economics*)

21/26

6 – Some Examples of Cognitive Biases

- Anchoring Effect: when making decisions, individuals tend to rely too much on the first piece of info put forward, the so-called "anchor" (E.g., "starting low" as negotation skill when buying a car, judges in Germany)
- Priming Effect: your actions and emotions can be *primed* by events of which you're not even aware

(E.g., EAT primes SOUP, when asked to fill in SO_P)

- Halo Effect: people tend to like *everything* about a person/idea/argument whenever they like just *one* part of it (E.g., first impressions—they're very important!)
- Bandwagon Effect: social conformity, groupthink, herding (E.g., "likes" on Facebook, YouTube)
- Many, many more! Regarding meetings, in particular: keeping up ones's appearance/reputation
 ⇒ avoiding disagreement
 ⇒ status-quo bias
 ⇒ bias towards "the obvious" (discarding private insights)

6 – A Simple Model

23/26

- Setup:
 - Small committee of *n* persons {1, 2, ..., *n*} has to decide on proposal: accept (1) or reject (0)?
 - All votes are public, members vote *sequentially* (in order of index), and then the majority rule is applied
- Each member has a sway $w_i \in [0,1]$, signifying that person's "weight" (In English, "sway" is a synonym of

"domination" "authority" "influence" "leadership")

- Additional constraint: $w_1 + \ldots + w_n \leq 1$
- Probabilistic model: if $x_i \in \{0,1\}$ is *i*'s vote,
 - Individual 1 votes uniformly at random

2 For any
$$i \in \{2, 3, ..., n\}$$
,

$$x_i \stackrel{\text{def}}{=} \begin{cases} x_j & \text{with probability } w_j \quad (\forall j < i) \\ \{0,1\} \text{ uniformly at random} & \text{with probability } 1 - \sum_{j=1}^{i-1} w_j \end{cases}$$

6 - Comments and Kahneman's Advice

- Very simple model, Boolean-inspired \Rightarrow open to criticism
- In thesis only the case n = 3 was analyzed (time constraints)
- So, how to go about small meeting voting? Kahneman's advice:
 - Before the meeting starts, all members secretly write down on paper a summary of their opinion
 - Who speaks first?
 - Either the first person to speak is picked uniformly at random (to avoid the same dominant personalities dominating the discussions)
 - Or people are required to speak in reverse order of "dominance" (sway)
 - Oisagreement should be supported and even rewarded
- Interesting future research: apply tools from logic to study such questions

7 – Overall Conclusions and Take-home Messages

- Fourier analysis on the Boolean cube is a useful technique also for social choice theory
- Best illustration: strengthening of classical impossibility theorems (Arrow, Gibbard-Satterthwaite) into quantitative theorems
- Social choice theory is linked with many other areas; there is a particularly interesting connection with cognitive sciences (biases)
- We introduced a new, simple model to simulate the various cognitive biases present in small meeting decision-making
- These topics are very important, also for real life