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Introduction

In his study of the deontic fragments of certain alethic modal
systems, Lennart Aqvist wrote that “proof-theoretical methods
seem to be less natural here” [2, p. 227]. | disagree. | show that
some results in this area can easily be obtained by proof-theoretical
methods. The proofs are at least as “natural” as Aqist's proofs.
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OS54 is the deontic fragment of 54

Deontic system O54.

Language -2 (0S4): F == p|~-F|OF|F A F|F v FIF - F|F < F,
where p is an atomic formula.

Axiom schemata:

Al.
A2.
A3.
A4

Rules of inference:

R1.
R2.

All theorems of PC.
O(A— B) - (OA - OB).
O(OA - A).

OA - OOA.

From A and A — B infer B.
From A infer OA.
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Alethic modal system S4.

Language .2 (54): F == p|~F|aF|F A FIF v F|F - F|F < F,
where p is an atomic formula.

Axiom schemata:

Al. All theorems of PC.

A5. o(A- B) - (DA —OB).
A6. DA - A.

A7. DA->DOOA.

Rules of inference:

R1. From A and A — B infer B.
R3. From A infer OA.
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Mixed alethic-deontic system 00S54.
Language .2 (00S54): £ (00S4) = £(0S4) u £ (54).

Axiom schemata: Al, ..., A7 and
A8. o(A— B) - (OA— OB).
A9. OA - OOA.

Rules of inference: R1, R2 and R3.
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Mixed alethic-deontic system 0OS54 .
Language £ (00S4¢):
F == p|Q|-F|OF|o F|F AF|F Vv FIF - F|F < F,
where p is an atomic formula.
Axiom schemata: Al, ..., A9 and
A10. OA - O(Q — A).
Rules of inference: R1, R2 and R3.
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We refer to those formulas of D054 ¢ in which Q occurs, if at all,
only in contexts of the form O(Q — A), as Q-formulas of 0S54 .
If AQ is any Q-formula of 0S4 g, then the O-transform of A® is
the formula A got by replacing every part of A of the form
0(Q — A) by OA. Evidently, if A? is a Q-formula of 0S4, then
A© will be a formula of 00S4.
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Theorem (Theorem 1)

If A is a Q-formula of 10S4 g and A° is its O-transform, then
00S4q - A® iff 0S4 + AC.
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PROOF: We first observe that in 1054 o we have

+ OA < 0O(Q — A) and a derivable rule of substitution, so

00S4q + AR iff 0S4 + AC. This is half the battle. What
remains to be proven is that 0054 ¢ is a conservative extension of
0054, that is, that each Q-free formula of OS54 has a Q-free
proof. Such a proof will also be a proof in 0S4, from which it
will follow that if 00S4 ¢ + A© then 10S4 + A°.
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The leading idea is that, although @ cannot be replaced by the
same Q-free formula in every proof, it is still possible to find, for
each proof of a Q-free formula, a particular Q-free formula that
can replace Q throughout that proof. Let Ag, ..., A, (A, =A) be
a proof of A in 0054, and let p1, ..., pm be a list of the
propositional variables and constants occurring in A1, ..., Ap.
Then, for this proof of A, we define Q* as A”,(Op; = p;). Let A}
be the result of replacing Q throughout A; by Q*. We show
inductively that each of A], ..., A} (A} = A*) has a Q-free proof
in 0O0S4 g, which is to say a proof in 0054, as required.
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1. Base case: if A; is one of the axioms Al, ..., A9 of 0O0S4,
then 0O0S4 +— AY by the same axiom.

2. If Aj is an axiom A10[—] of 0054, then A has the form
OA - O(Q* - A). We need to show that 0054 ~ AY. Let qy,
.., gk be a list of the propositional variables and constants
occurring in A. Then an easy induction on the length of A
shows that A%, (Ogj — qj) = (OA - A). Evidently,
Q* - J’-‘zl(Oqj — qj) since the g; are all among the p;, so

00S4+ Q* - (OA— A) From the above.
00S4+ OA— (Q* - A) From 1 by Al, R1.
00S4+0(OA— (Q* - A)) From 2 by R3.
00S4+00A—-o(Q* — A)  From 3 by A5, Al, R1.
00S4+ OA-o(Q* - A) From 4 by A9, Al, R1.
0054 + A7 From 5 by Def A7,

I o
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1. If A; is an axiom A10[«] of 0OS4 ¢, then A7 has the form
0(Q* - A) > OA. We need to show that 0054 + A?.

1. 00S4+0(Q* - A) > (0Q* - OA) From A8.

2. 00S4+ 0Q* - (o(Q* - A) > OA) From 1 by Al, R1.
3. 0054+ 0Q* From A3.

4, 00S4+0(Q* - A) > OA From 2, 3 by R1.
5. DO0S4+ A7 From 4 by Def A}.

2. If A; is a conclusion from A; and A, by R1, R2 or R3, then
0054 + AJ’-’ and 0054 + A} by the inductive hypothesis, and
0054 +~ A7 by the same rule.

This completes the proof, which shows essentially that the addition
of @ and axiom schema A10 to 0OS4 is otiose, since 0054
already contains an equivalent deontic theory.
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Theorem 1 is also provable in systems based on the intuitionist
propositional calculus, Fitch calculus and Johansson's minimal
calculus [3, p. 223, p. 223, p. 299]. Since the proof of Theorem 1
does not depend on A — (B — A), contraction, expansion, or
distribution, it can also be used in the contexts of relevance and
linear logic.
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NOTE: If A— (B — A) is available, then A8
[B(A - B) - (OA - OB)] can be replaced with A — OA:

1

WO ~NO OB~ WwWwDN

A—(B—A)

A— ((OB—-B)—A)

0(A—((0B — B) > A))

0A - o((0OB - B) - A)

a((0OB - B) - A) - (O(OB - B) - OA)
(O(OB - B) - OA) - OA

oA - OA

A8

Assumption
1

2, R3

3, A5

A8

A3

4,5, 6

7, A2

i3
TUDelft

14 /21



Alethic system S4.

Language £ (S4¢q): F == p|Q|-F|o F|F A FIF v F|F - F|F < F,
where p is an atomic formula.
Axiom schemata: Al, A5, A6, AT7.

Rules of inference: R1 and R3.
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Theorem (Theorem 2)
S4q + AR iff 0S4q + AQ.

Proof.
0S4 is a conservative extension of S4¢ because in 544, OA can
be defined as O(Q — A). O

Theorem (Theorem 3)
0S4 is the deontic fragment of 54 .

Proof.
From Theorems 1 and 2. O
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OS5 is the deontic fragment of S5¢

. PA=-0-A.

. 0A=-0-A.

. OS5 = 054 plus POA — OA.
. 550 =54¢ plus 0 0 A - DA.

A W N =
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Theorem (Theorem 4)
OS5 is the deontic fragment of Sbq.

Proof.
From Theorems 1 and 2. L]
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Let ¥ =54,55.
1. OX" = OX plus OA - PA.
2. X5=2q plus 0Q.

Theorem (Theorem 5)
Let ¥ = 54,55. OY" is the deontic fragment of ¥(;.

Proof.
From Theorems 1 and 2. O
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The proof of Theorem 4 is purely syntactic and considerably
shorter than the semantical proof in [1], as described (but not
reproduced) in [2]. Conclusion: at least some of Aqvist's results
can easily be obtained by proof-theoretical methods. The resulting
proofs are at least as “natural” as Aquist's proofs.
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