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Introduction

In his study of the deontic fragments of certain alethic modal
systems, Lennart Åqvist wrote that “proof-theoretical methods
seem to be less natural here” [2, p. 227]. I disagree. I show that
some results in this area can easily be obtained by proof-theoretical
methods. The proofs are at least as “natural” as Åqvist’s proofs.
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OS4 is the deontic fragment of S4Q

Deontic system OS4 .

Language L OS4 : F p F OF F F F F F F F F ,
where p is an atomic formula.

Axiom schemata:

A1. All theorems of PC .
A2. O A B OA OB .
A3. O OA A .
A4. OA OOA.

Rules of inference:

R1. From A and A B infer B .
R2. From A infer OA.
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Alethic modal system S4 .

Language L S4 : F p F F F F F F F F F F ,
where p is an atomic formula.

Axiom schemata:

A1. All theorems of PC .
A5. A B A B .
A6. A A.
A7. A A.

Rules of inference:

R1. From A and A B infer B .
R3. From A infer A.

4 / 21



Mixed alethic-deontic system OS4 .

Language L OS4 : L OS4 L OS4 L S4 .

Axiom schemata: A1, . . . , A7 and

A8. A B OA OB .
A9. OA OA.

Rules of inference: R1, R2 and R3.
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Mixed alethic-deontic system OS4Q .

Language L OS4Q :
F p Q F OF F F F F F F F F F ,
where p is an atomic formula.

Axiom schemata: A1, . . . , A9 and

A10. OA Q A .

Rules of inference: R1, R2 and R3.
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We refer to those formulas of OS4Q in which Q occurs, if at all,
only in contexts of the form Q A , as Q-formulas of OS4Q .
If AQ is any Q-formula of OS4Q , then the O-transform of AQ is
the formula AO got by replacing every part of AQ of the form

Q A by OA. Evidently, if AQ is a Q-formula of OS4Q , then
AO will be a formula of OS4 .
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Theorem (Theorem 1)

If AQ is a Q-formula of OS4Q and AO is its O-transform, then
OS4Q AQ i↵ OS4 AO .
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PROOF: We first observe that in OS4Q we have
OA Q A and a derivable rule of substitution, so
OS4Q AQ i↵ OS4Q AO . This is half the battle. What

remains to be proven is that OS4Q is a conservative extension of
OS4 , that is, that each Q-free formula of OS4Q has a Q-free

proof. Such a proof will also be a proof in OS4 , from which it
will follow that if OS4Q AO then OS4 AO .
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The leading idea is that, although Q cannot be replaced by the
same Q-free formula in every proof, it is still possible to find, for
each proof of a Q-free formula, a particular Q-free formula that
can replace Q throughout that proof. Let A

1

, . . . , An (An A) be
a proof of A in OS4Q , and let p

1

, . . . , pm be a list of the
propositional variables and constants occurring in A

1

, . . . , An.
Then, for this proof of A, we define Q as m

i 1

Opi pi . Let Ai

be the result of replacing Q throughout Ai by Q . We show
inductively that each of A

1

, . . . , An (An A ) has a Q-free proof
in OS4Q , which is to say a proof in OS4 , as required.
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1. Base case: if Ai is one of the axioms A1, . . . , A9 of OS4Q ,
then OS4 Ai by the same axiom.

2. If Ai is an axiom A10[ ] of OS4Q , then Ai has the form
OA Q A . We need to show that OS4 Ai . Let q1,
. . . , qk be a list of the propositional variables and constants
occurring in A. Then an easy induction on the length of A
shows that k

j 1

Oqj qj OA A . Evidently,

Q k
j 1

Oqj qj since the qj are all among the pi , so

1. OS4 Q OA A From the above.
2. OS4 OA Q A From 1 by A1, R1.
3. OS4 OA Q A From 2 by R3.
4. OS4 OA Q A From 3 by A5, A1, R1.
5. OS4 OA Q A From 4 by A9, A1, R1.
6. OS4 Ai From 5 by Def Ai .
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1. If Ai is an axiom A10[ ] of OS4Q , then Ai has the form
Q A OA. We need to show that OS4 Ai .

1. OS4 Q A OQ OA From A8.
2. OS4 OQ Q A OA From 1 by A1, R1.
3. OS4 OQ From A3.
4. OS4 Q A OA From 2, 3 by R1.
5. OS4 Ai From 4 by Def Ai .

2. If Ai is a conclusion from Aj and Ak by R1, R2 or R3, then
OS4 Aj and OS4 Ak by the inductive hypothesis, and
OS4 Ai by the same rule.

This completes the proof, which shows essentially that the addition
of Q and axiom schema A10 to OS4 is otiose, since OS4
already contains an equivalent deontic theory.
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Theorem 1 is also provable in systems based on the intuitionist
propositional calculus, Fitch calculus and Johansson’s minimal
calculus [3, p. 223, p. 223, p. 299]. Since the proof of Theorem 1
does not depend on A B A , contraction, expansion, or
distribution, it can also be used in the contexts of relevance and
linear logic.
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NOTE: If A B A is available, then A8
[ A B OA OB ] can be replaced with A OA:

1 A B A Assumption
2 A OB B A 1
3 A OB B A 2, R3
4 A OB B A 3, A5
5 OB B A O OB B OA A8
6 O OB B OA OA A3
7 A OA 4, 5, 6
8 A8 7, A2
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Alethic system S4Q .

Language L S4Q : F p Q F F F F F F F F F F ,
where p is an atomic formula.

Axiom schemata: A1, A5, A6, A7.

Rules of inference: R1 and R3.
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Theorem (Theorem 2)

S4Q AQ i↵ OS4Q AQ .

Proof.

OS4Q is a conservative extension of S4Q because in S4Q , OA can
be defined as Q A .

Theorem (Theorem 3)

OS4 is the deontic fragment of S4Q .

Proof.

From Theorems 1 and 2.
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OS5 is the deontic fragment of S5Q

1. PA O A.

2. A A.

3. OS5 OS4 plus POA OA.

4. S5Q S4Q plus A A.
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Theorem (Theorem 4)

OS5 is the deontic fragment of S5Q .

Proof.

From Theorems 1 and 2.
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Let ⌃ S4 ,S5 .

1. O⌃ O⌃ plus OA PA.

2. ⌃Q ⌃Q plus Q.

Theorem (Theorem 5)

Let ⌃ S4 ,S5. O⌃ is the deontic fragment of ⌃Q .

Proof.

From Theorems 1 and 2.
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The proof of Theorem 4 is purely syntactic and considerably
shorter than the semantical proof in [1], as described (but not
reproduced) in [2]. Conclusion: at least some of Åqvist’s results
can easily be obtained by proof-theoretical methods. The resulting
proofs are at least as “natural” as Åqvist’s proofs.
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