Deontic Fragments: Simple Syntactic Proofs

Gert-Jan C. Lokhorst

g.j.c.lokhorst@tudelft.nl

September 22, 2014

Introduction

In his study of the deontic fragments of certain alethic modal systems, Lennart Åqvist wrote that "proof-theoretical methods seem to be less natural here" [2, p. 227]. I disagree. I show that some results in this area can easily be obtained by proof-theoretical methods. The proofs are at least as "natural" as Åqvist's proofs.

OS4 is the deontic fragment of $S4_Q$

Deontic system OS4.

Language $\mathcal{L}(OS4)$: $F := p|\neg F|OF|F \land F|F \lor F|F \to F|F \leftrightarrow F$, where p is an atomic formula.

Axiom schemata:

- A1. All theorems of *PC*.
- A2. $O(A \rightarrow B) \rightarrow (OA \rightarrow OB)$.
- A3. $O(OA \rightarrow A)$.
- A4. $OA \rightarrow OOA$.

Rules of inference:

- R1. From A and $A \rightarrow B$ infer B.
- R2. From A infer OA.

Alethic modal system S4.

Language $\mathcal{L}(S4)$: $F := p|\neg F| \Box F|F \wedge F|F \vee F|F \rightarrow F|F \leftrightarrow F$, where p is an atomic formula.

Axiom schemata:

- A1. All theorems of *PC*.
- A5. $\Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$.
- A6. $\Box A \rightarrow A$.
- A7. $\Box A \rightarrow \Box \Box A$.

Rules of inference:

- R1. From A and $A \rightarrow B$ infer B.
- R3. From A infer $\Box A$.

Mixed alethic-deontic system $\square OS4$.

Language
$$\mathcal{L}(\Box OS4)$$
: $\mathcal{L}(\Box OS4) = \mathcal{L}(OS4) \cup \mathcal{L}(S4)$.

Axiom schemata: A1, ..., A7 and

A8.
$$\Box(A \rightarrow B) \rightarrow (OA \rightarrow OB)$$
.

A9. $OA \rightarrow \Box OA$.

Rules of inference: R1, R2 and R3.

Mixed alethic-deontic system $\square OS4_Q$.

Language $\mathcal{L}(\Box OS4_Q)$:

 $F ::= p|Q|\neg F|OF| \square F|F \wedge F|F \vee F|F \rightarrow F|F \leftrightarrow F$, where p is an atomic formula.

Axiom schemata: A1, ..., A9 and

A10. $OA \leftrightarrow \Box(Q \rightarrow A)$.

Rules of inference: R1, R2 and R3.

We refer to those formulas of $\Box OS4_Q$ in which Q occurs, if at all, only in contexts of the form $\Box(Q \to A)$, as Q-formulas of $\Box OS4_Q$. If A^Q is any Q-formula of $\Box OS4_Q$, then the Q-transform of Q is the formula Q got by replacing every part of Q of the form $\Box(Q \to A)$ by Q Evidently, if Q is a Q-formula of Q will be a formula of Q of Q.

Theorem (Theorem 1)

If A^Q is a Q-formula of $\square OS4_Q$ and A^O is its O-transform, then $\square OS4_Q \vdash A^Q$ iff $\square OS4 \vdash A^O$.

PROOF: We first observe that in $\square OS4_Q$ we have $\vdash OA \leftrightarrow \square(Q \to A)$ and a derivable rule of substitution, so $\square OS4_Q \vdash A^Q$ iff $\square OS4_Q \vdash A^O$. This is half the battle. What remains to be proven is that $\square OS4_Q$ is a conservative extension of $\square OS4$, that is, that each Q-free formula of $\square OS4_Q$ has a Q-free proof. Such a proof will also be a proof in $\square OS4$, from which it will follow that if $\square OS4_Q \vdash A^O$ then $\square OS4 \vdash A^O$.

The leading idea is that, although Q cannot be replaced by the same Q-free formula in every proof, it is still possible to find, for each proof of a Q-free formula, a particular Q-free formula that can replace Q throughout that proof. Let A_1, \ldots, A_n $(A_n = A)$ be a proof of A in $\square OS4_Q$, and let p_1, \ldots, p_m be a list of the propositional variables and constants occurring in A_1, \ldots, A_n . Then, for this proof of A, we define Q^* as $\bigwedge_{i=1}^m (Op_i \to p_i)$. Let A_i^* be the result of replacing Q throughout A_i by Q^* . We show inductively that each of A_1^* , ..., A_n^* ($A_n^* = A^*$) has a Q-free proof in $\square OS4_{\mathcal{O}}$, which is to say a proof in $\square OS4$, as required.

- 1. Base case: if A_i is one of the axioms A1, ..., A9 of $\square OS4_O$, then $\Box OS4 \vdash A_i^*$ by the same axiom.
- 2. If A_i is an axiom A10[\rightarrow] of $\Box OS4_O$, then A_i^* has the form $OA \rightarrow \Box (Q^* \rightarrow A)$. We need to show that $\Box OS4 \vdash A_i^*$. Let q_1 , \dots , q_k be a list of the propositional variables and constants occurring in A. Then an easy induction on the length of A shows that $\bigwedge_{i=1}^k (Oq_i \to q_i) \to (OA \to A)$. Evidently, $Q^* \to \bigwedge_{i=1}^k (Oq_i \to q_i)$ since the q_i are all among the p_i , so

1.
$$\square OS4 \vdash Q^* \rightarrow (OA \rightarrow A)$$

From the above.

2.
$$\Box OS4 \vdash OA \rightarrow (Q^* \rightarrow A)$$
 From 1 by A1, R1.

3.
$$\square OS4 \vdash \square(OA \rightarrow (Q^* \rightarrow A))$$
 From 2 by R3.

$$4. \quad \Box OS4 \vdash \Box OA \rightarrow \Box (Q^* \rightarrow A)$$

From 3 by A5, A1, R1.

5.
$$\square OS4 \vdash OA \rightarrow \square(\hat{Q}^* \rightarrow A)$$

From 4 by A9, A1, R1.

6.
$$\square OS4 \vdash A_i^*$$

From 5 by Def A_i^* .

1. If A_i is an axiom A10[\leftarrow] of $\square OS4_Q$, then A_i^* has the form $\square(Q^* \to A) \to OA$. We need to show that $\square OS4 \vdash A_i^*$.

1.
$$\Box OS4 \vdash \Box (Q^* \rightarrow A) \rightarrow (OQ^* \rightarrow OA)$$
 From A8.

2.
$$\Box OS4 \vdash OQ^* \rightarrow (\Box(Q^* \rightarrow A) \rightarrow OA)$$
 From 1 by A1, R1.

3.
$$\square OS4 \vdash OQ^*$$
 From A3.

4.
$$\Box OS4 \vdash \Box (Q^* \rightarrow A) \rightarrow OA$$
 From 2, 3 by R1.

5.
$$\square OS4 \vdash A_i^*$$
 From 4 by Def A_i^* .

2. If A_i is a conclusion from A_j and A_k by R1, R2 or R3, then $\Box OS4 \vdash A_j^*$ and $\Box OS4 \vdash A_k^*$ by the inductive hypothesis, and $\Box OS4 \vdash A_i^*$ by the same rule.

This completes the proof, which shows essentially that the addition of Q and axiom schema A10 to $\square OS4$ is otiose, since $\square OS4$ already contains an equivalent deontic theory.

Theorem 1 is also provable in systems based on the intuitionist propositional calculus, Fitch calculus and Johansson's minimal calculus [3, p. 223, p. 223, p. 299]. Since the proof of Theorem 1 does not depend on $A \rightarrow (B \rightarrow A)$, contraction, expansion, or distribution, it can also be used in the contexts of relevance and linear logic.

NOTE: If $A \to (B \to A)$ is available, then A8 $[\Box(A \to B) \to (OA \to OB)]$ can be replaced with $\Box A \to OA$:

1
$$A \rightarrow (B \rightarrow A)$$
 Assumption
2 $A \rightarrow ((OB \rightarrow B) \rightarrow A)$ 1
3 $\Box(A \rightarrow ((OB \rightarrow B) \rightarrow A))$ 2, R3
4 $\Box A \rightarrow \Box((OB \rightarrow B) \rightarrow A)$ 3, A5
5 $\Box((OB \rightarrow B) \rightarrow A) \rightarrow (O(OB \rightarrow B) \rightarrow OA)$ A8
6 $(O(OB \rightarrow B) \rightarrow OA) \rightarrow OA$ A3
7 $\Box A \rightarrow OA$ 4, 5, 6
8 A8 7, A2

Alethic system $S4_Q$.

Language $\mathcal{L}(S4_Q)$: $F := p|Q|\neg F| \Box F|F \wedge F|F \vee F|F \rightarrow F|F \leftrightarrow F$, where p is an atomic formula.

Axiom schemata: A1, A5, A6, A7.

Rules of inference: R1 and R3.

Theorem (Theorem 2)

$$S4_Q \vdash A^Q$$
 iff $OS4_Q \vdash A^Q$.

Proof.

 $OS4_Q$ is a conservative extension of $S4_Q$ because in $S4_Q$, OA can be defined as $\Box(Q \rightarrow A)$.

Theorem (Theorem 3)

OS4 is the deontic fragment of S4Q.

Proof.

From Theorems 1 and 2.

OS5 is the deontic fragment of $S5_Q$

- 1. $PA = \neg O \neg A$.
- 2. $\Diamond A = \neg \Box \neg A$.
- 3. OS5 = OS4 plus $POA \rightarrow OA$.
- 4. $S5_Q = S4_Q$ plus $\Diamond \Box A \rightarrow \Box A$.

Theorem (Theorem 4)

OS5 is the deontic fragment of $S5_Q$.

Proof.

From Theorems 1 and 2.

Let $\Sigma = S4, S5$.

- 1. $O\Sigma^+ = O\Sigma$ plus $OA \rightarrow PA$.
- 2. $\Sigma_Q^+ = \Sigma_Q$ plus $\Diamond Q$.

Theorem (Theorem 5)

Let $\Sigma = S4, S5$. $O\Sigma^+$ is the deontic fragment of Σ_Q^+ .

Proof.

From Theorems 1 and 2.

The proof of Theorem 4 is purely syntactic and considerably shorter than the semantical proof in [1], as described (but not reproduced) in [2]. Conclusion: at least some of Åqvist's results can easily be obtained by proof-theoretical methods. The resulting proofs are at least as "natural" as Åqvist's proofs.

- Åqvist, L. (1987). An Introduction to Deontic Logic and the Theory of Normative Systems. Naples: Bibliopolis.
- Åqvist, L. (2002). Deontic logic. In D. Gabbay and F. Günthner (Eds.), *Handbook of Philosophical Logic, vol. 8*, 2nd edition (pp. 147–264). Dordrecht: Springer.
- Hackstaff, L. H. (1966). Systems of Formal Logic. Dordrecht: D. Reidel.
- Smiley, T. (1963). Relative necessity. *The Journal of Symbolic Logic*, 28, 113–134.

