Principles of Guarded Structural Indexing On Guarded Simulations and Acyclic First Order Languages

François Picalausa ¹ George H. L. Fletcher ² Jan Hidders ³ Stijn Vansummeren ¹

¹Université Libre de Bruxelles (ULB), Belgium

²Eindhoven University of Technology, The Netherlands

³Delft University of Technology, The Netherlands

ALS 27 Oct 2014

 Increased interest in tree-based and graph-based data formats: XML, RDF, JSON, social networks

- Increased interest in tree-based and graph-based data formats: XML, RDF, JSON, social networks
- Rise of specialized graph storage and query processing engines

- Increased interest in tree-based and graph-based data formats: XML, RDF, JSON, social networks
- Rise of specialized graph storage and query processing engines
- Exploitation of graph topology for performance on large input graphs,
 e.g., structural indexes

- Increased interest in tree-based and graph-based data formats: XML, RDF, JSON, social networks
- Rise of specialized graph storage and query processing engines
- Exploitation of graph topology for performance on large input graphs, e.g., structural indexes

Central Question

Can structural indexes be generalized for arbitrary relational databases?

- We consider a class of graph queries Q
 - e.g., reachability queries, XPath queries, modal or temporal logic queries, . . .

- We consider a class of graph queries Q
 - e.g., reachability queries, XPath queries, modal or temporal logic queries, . . .
- We group and merge the nodes of input graph G to obtain a more compact representation: the structural index for G with respect to Q

- We consider a class of graph queries Q
 - e.g., reachability queries, XPath queries, modal or temporal logic queries, . . .
- We group and merge the nodes of input graph G to obtain a more compact representation: the structural index for G with respect to Q
- We group nodes such that any query $Q \in Q$ can be answered

- We consider a class of graph queries Q
 - e.g., reachability queries, XPath queries, modal or temporal logic queries, . . .
- We group and merge the nodes of input graph G to obtain a more compact representation: the structural index for G with respect to Q
- We group nodes such that any query $Q \in \mathcal{Q}$ can be answered
 - directly on the structural index of G instead of on G itself, or

- We consider a class of graph queries Q
 - e.g., reachability queries, XPath queries, modal or temporal logic queries, . . .
- We group and merge the nodes of input graph G to obtain a more compact representation: the structural index for G with respect to Q
- ullet We group nodes such that any query $Q\in\mathcal{Q}$ can be answered
 - directly on the structural index of G instead of on G itself, or
 - directly on G but using pruning information from the index.

- We consider a class of graph queries Q
 - e.g., reachability queries, XPath queries, modal or temporal logic queries, . . .
- We group and merge the nodes of input graph G to obtain a more compact representation: the structural index for G with respect to Q
- ullet We group nodes such that any query $Q\in\mathcal{Q}$ can be answered
 - directly on the structural index of G instead of on G itself, or
 - ▶ directly on *G* but using pruning information from the index.
- Since the index is typically (much) smaller than G itself, this can be significantly faster than evaluating Q directly over G.

Example

Graph G prof adv prof phd sup 6 graph G prof prof phd sup 7 graph graph

Example

Example

• Each node in / is actually a set of nodes in G.

Example

- Each node in / is actually a set of nodes in G.
- There is an edge between sets V and W in I if there is an edge between some $v \in V$ and some $w \in W$ in G.

Definition

A simulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

(lab) it relates only nodes with the same label, and

(forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.

Graph G₂

Definition

A simulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

(lab) it relates only nodes with the same label, and

(forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.

Definition

A simulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

(lab) it relates only nodes with the same label, and

(forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.

Definition

A simulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

(lab) it relates only nodes with the same label, and

(forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.

Definition

A simulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

(lab) it relates only nodes with the same label, and

(forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.

Definition

A simulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

(lab) it relates only nodes with the same label, and

(forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.

Definition

A simulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

(lab) it relates only nodes with the same label, and

(forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.

Definition

A simulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

(lab) it relates only nodes with the same label, and

(forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.

Definition

A simulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

(lab) it relates only nodes with the same label, and

(forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.

Definition

A simulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

(lab) it relates only nodes with the same label, and

(forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.

Definition

A simulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

(lab) it relates only nodes with the same label, and

(forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.

Definition

A simulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

(lab) it relates only nodes with the same label, and

(forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.

Definition

A simulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

(lab) it relates only nodes with the same label, and

(forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.

Definition

A simulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

(lab) it relates only nodes with the same label, and

(forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.

Nodes n and m are called similar if there is a simulation from G_1 to G_2 that maps n to m, and one from G_2 to G_1 that maps m to n.

Principles of Guarded Structural Indexing

Definition

A simulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

(lab) it relates only nodes with the same label, and

(forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.

Nodes n and m are called similar if there is a simulation from G_1 to G_2 that maps n to m, and one from G_2 to G_1 that maps m to n.

Definition

A simulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

(lab) it relates only nodes with the same label, and

(forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.

Nodes n and m are called similar if there is a simulation from G_1 to G_2 that maps n to m, and one from G_2 to G_1 that maps m to n.

Principles of Guarded Structural Indexing

Definition

A simulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

(lab) it relates only nodes with the same label, and

(forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.

Nodes n and m are called similar if there is a simulation from G_1 to G_2 that maps n to m, and one from G_2 to G_1 that maps m to n.

Principles of Guarded Structural Indexing

Definition

simulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

(lab) it relates only nodes with the same label, and

(forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.

Nodes n and m are called similar if there is a simulation from G_1 to G_2 that maps n to m, and one from G_2 to G_1 that maps m to n.

Principles of Guarded Structural Indexing

5 / 18

Definition

A simulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

(lab) it relates only nodes with the same label, and

(forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.

Nodes n and m are called similar if there is a simulation from G_1 to G_2 that maps n to m, and one from G_2 to G_1 that maps m to n.

Principles of Guarded Structural Indexing

Definition

A simulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

(lab) it relates only nodes with the same label, and

(forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.

Nodes n and m are called similar if there is a simulation from G_1 to G_2 that maps n to m, and one from G_2 to G_1 that maps m to n.

Principles of Guarded Structural Indexing

5 / 18

Definition

A simulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

(lab) it relates only nodes with the same label, and

(forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.

Nodes n and m are called similar if there is a simulation from G_1 to G_2 that maps n to m, and one from G_2 to G_1 that maps m to n.

Principles of Guarded Structural Indexing

Definition

A simulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

(lab) it relates only nodes with the same label, and

(forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.

Nodes n and m are called similar if there is a simulation from G_1 to G_2 that maps n to m, and one from G_2 to G_1 that maps m to n.

Definition

A bisimulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

- (lab) it relates only nodes with the same label, and
- (forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.
- (back) for every $(n, m) \in T$ and every $(m, \lambda, m') \in E_2 \dots$

Graph G₂

Definition

A bisimulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

- (lab) it relates only nodes with the same label, and
- (forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.
- (back) for every $(n, m) \in T$ and every $(m, \lambda, m') \in E_2 \dots$

Nodes n and m are called bisimilar if there is a bisimulation from G_1 to G_2 that maps n to m.

Definition

A bisimulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

- (lab) it relates only nodes with the same label, and
- (forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.
- (back) for every $(n, m) \in T$ and every $(m, \lambda, m') \in E_2 \dots$

Nodes n and m are called bisimilar if there is a bisimulation from G_1 to G_2 that maps n to m.

Definition

A bisimulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

- (lab) it relates only nodes with the same label, and
- (forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.
- (back) for every $(n, m) \in T$ and every $(m, \lambda, m') \in E_2 \dots$

Nodes n and m are called bisimilar if there is a bisimulation from G_1 to G_2 that maps n to m.

Definition

A bisimulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

- (lab) it relates only nodes with the same label, and
- (forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.
- (back) for every $(n, m) \in T$ and every $(m, \lambda, m') \in E_2 \dots$

Nodes n and m are called bisimilar if there is a bisimulation from G_1 to G_2 that maps n to m.

Definition

A bisimulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

- (lab) it relates only nodes with the same label, and
- (forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.
- (back) for every $(n, m) \in T$ and every $(m, \lambda, m') \in E_2 \dots$

Nodes n and m are called bisimilar if there is a bisimulation from G_1 to G_2 that maps n to m.

Definition

A bisimulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

- (lab) it relates only nodes with the same label, and
- (forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.
- (back) for every $(n, m) \in T$ and every $(m, \lambda, m') \in E_2 \dots$

Nodes n and m are called bisimilar if there is a bisimulation from G_1 to G_2 that maps n to m.

Definition

A bisimulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

- (lab) it relates only nodes with the same label, and
- (forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.
- (back) for every $(n, m) \in T$ and every $(m, \lambda, m') \in E_2 \dots$

Nodes n and m are called bisimilar if there is a bisimulation from G_1 to G_2 that maps n to m.

Principles of Guarded Structural Indexing

Definition

A bisimulation of G_1 in G_2 is a binary relation $T \subseteq V_1 \times V_2$ s.t.

- (lab) it relates only nodes with the same label, and
- (forth) for every $(n, m) \in T$ and every $(n, \lambda, n') \in E_1$ there exists $(m, \lambda, m') \in E_2$ such that $(n', m') \in T$.
- (back) for every $(n, m) \in T$ and every $(m, \lambda, m') \in E_2 \dots$

Nodes n and m are called bisimilar if there is a bisimulation from G_1 to G_2 that maps n to m.

Principles of Guarded Structural Indexing

Example (Academic relations graph)

Example (Academic relations graph)

• In the context of XML (bi)simulation-based structural indexes are known to be covering for certain XPath fragments, i.e., query returns on the index (a pointer to) the exact answer.

Example (Academic relations graph)

- In the context of XML (bi)simulation-based structural indexes are known to be covering for certain XPath fragments, i.e., query returns on the index (a pointer to) the exact answer.
- For example: Q is "select all professors that advised someone who is currently a professor who is advising a PhD student"

Example (Academic relations graph)

- In the context of XML (bi)simulation-based structural indexes are known to be covering for certain XPath fragments, i.e., query returns on the index (a pointer to) the exact answer.
- For example: Q is "select all professors that advised someone who is currently a professor who is advising a PhD student"
 - \triangleright Applying Q on I gives the node $\{2,3\}$ which is the correct answer

• We move to a more general relational setting.

- We move to a more general relational setting.
- Approach for covering indexes for a given target query language Q:

- We move to a more general relational setting.
- Approach for covering indexes for a given target query language Q:
 - ◆ A language-independent structural characterization of query invariance, characterizing when data objects (in our setting: relational tuples) cannot be distinguished by any query in Q.

- We move to a more general relational setting.
- ullet Approach for covering indexes for a given target query language \mathcal{Q} :
 - ◆ A language-independent structural characterization of query invariance, characterizing when data objects (in our setting: relational tuples) cannot be distinguished by any query in Q.
 - ② An efficient grouping algorithm for data objects that cannot be distinguished by any query in Q.

- We move to a more general relational setting.
- ullet Approach for covering indexes for a given target query language \mathcal{Q} :
 - ◆ A language-independent structural characterization of query invariance, characterizing when data objects (in our setting: relational tuples) cannot be distinguished by any query in Q.
 - ② An efficient grouping algorithm for data objects that cannot be distinguished by any query in Q.
 - A data structure, i.e., the index, that exploits this grouping to support query answering by means of the index.

- We move to a more general relational setting.
- Approach for covering indexes for a given target query language Q:
 - ◆ A language-independent structural characterization of query invariance, characterizing when data objects (in our setting: relational tuples) cannot be distinguished by any query in Q.
 - An efficient grouping algorithm for data objects that cannot be distinguished by any query in Q.
 - A data structure, i.e., the index, that exploits this grouping to support query answering by means of the index.
- We focus here on structural characterization of query invariance for strict conjunctive queries, i.e., queries that select tuples

- We move to a more general relational setting.
- Approach for covering indexes for a given target query language Q:
 - A language-independent structural characterization of query invariance, characterizing when data objects (in our setting: relational tuples) cannot be distinguished by any query in Q.
 - ② An efficient grouping algorithm for data objects that cannot be distinguished by any query in Q.
 - A data structure, i.e., the index, that exploits this grouping to support query answering by means of the index.
- We focus here on structural characterization of query invariance for strict conjunctive queries, i.e., queries that select tuples
 - ► Formally: All variables in the head occur in a single atom in the body, e.g., $ans(b,c) \leftarrow R(a,b), S(b,c,d), R(b,d)$.

- We move to a more general relational setting.
- Approach for covering indexes for a given target query language Q:
 - A language-independent structural characterization of query invariance, characterizing when data objects (in our setting: relational tuples) cannot be distinguished by any query in Q.
 - ② An efficient grouping algorithm for data objects that cannot be distinguished by any query in Q.
 - A data structure, i.e., the index, that exploits this grouping to support query answering by means of the index.
- We focus here on structural characterization of query invariance for strict conjunctive queries, i.e., queries that select tuples
 - ▶ Formally: All variables in the head occur in a single atom in the body, e.g., $ans(b,c) \leftarrow R(a,b), S(b,c,d), R(b,d)$.
 - ▶ This keeps the indexes small

Indistinguishability under Conjunctive Queries

All conjunctive queries are invariant under homomorphisms:

```
Theorem ([Chandra & Harel, 1980])
```

For all databases db_1 and db_2 and all tuples \overline{a}_1 and \overline{a}_2 , if there exists a homomorphism f from db_1 to db_2 such that $f(\overline{a}_1) = \overline{a}_2$, then for every conjunctive query Q, if $\overline{a}_1 \in Q(db_1)$ then also $\overline{a}_2 \in Q(db_2)$.

Indistinguishability under Conjunctive Queries

All conjunctive queries are invariant under homomorphisms:

```
Theorem ([Chandra & Harel, 1980])
```

For all databases db_1 and db_2 and all tuples \overline{a}_1 and \overline{a}_2 , if there exists a homomorphism f from db_1 to db_2 such that $f(\overline{a}_1) = \overline{a}_2$, then for every conjunctive query Q, if $\overline{a}_1 \in Q(db_1)$ then also $\overline{a}_2 \in Q(db_2)$.

Invariance under homomorphisms in fact is a characterization of the conjunctive queries (modulo union):

Theorem ([Rossman, 2008])

A query expressible in first order logic (FO) is invariant under homomorphisms on finite structures if, and only if, it is equivalent in the finite to a union of conjunctive queries.

 So invariance under homomorphisms seems the "right" notion of indistinguishability.

- So invariance under homomorphisms seems the "right" notion of indistinguishability.
- But very expensive: deciding if given databases db_1 and db_2 and tuples \overline{a}_1 and \overline{a}_2 , there exists a homomorphism f from db_1 to db_2 such that $f(\overline{a}_1) = \overline{a}_2$, is NP-complete.

- So invariance under homomorphisms seems the "right" notion of indistinguishability.
- But very expensive: deciding if given databases db_1 and db_2 and tuples \overline{a}_1 and \overline{a}_2 , there exists a homomorphism f from db_1 to db_2 such that $f(\overline{a}_1) = \overline{a}_2$, is NP-complete.

Question

- So invariance under homomorphisms seems the "right" notion of indistinguishability.
- But very expensive: deciding if given databases db_1 and db_2 and tuples \overline{a}_1 and \overline{a}_2 , there exists a homomorphism f from db_1 to db_2 such that $f(\overline{a}_1) = \overline{a}_2$, is NP-complete.

Question

Is there a useful fragment of strict conjunctive queries that has a tractable notion of indistinguishability?

• Two approaches:

- So invariance under homomorphisms seems the "right" notion of indistinguishability.
- But very expensive: deciding if given databases db_1 and db_2 and tuples \overline{a}_1 and \overline{a}_2 , there exists a homomorphism f from db_1 to db_2 such that $f(\overline{a}_1) = \overline{a}_2$, is NP-complete.

Question

- Two approaches:
 - Start from well-known well-behaved fragments, such as acyclic conjunctive queries.

- So invariance under homomorphisms seems the "right" notion of indistinguishability.
- But very expensive: deciding if given databases db_1 and db_2 and tuples \overline{a}_1 and \overline{a}_2 , there exists a homomorphism f from db_1 to db_2 such that $f(\overline{a}_1) = \overline{a}_2$, is NP-complete.

Question

- Two approaches:
 - ► Start from well-known well-behaved fragments, such as acyclic conjunctive queries.
 - ▶ Start from tractable relations such as simulation and bisimulation.

- So invariance under homomorphisms seems the "right" notion of indistinguishability.
- But very expensive: deciding if given databases db_1 and db_2 and tuples \overline{a}_1 and \overline{a}_2 , there exists a homomorphism f from db_1 to db_2 such that $f(\overline{a}_1) = \overline{a}_2$, is NP-complete.

Question

- Two approaches:
 - Start from well-known well-behaved fragments, such as acyclic conjunctive queries.
 - ▶ Start from tractable relations such as simulation and bisimulation.
- Main informal result: leads to the same answer.

Note: We give here alternative definitions of guarded (bi)similarity which

- are equivalent to the original ones, but
- illustrate better the link with labeled graphs.

Note: We give here alternative definitions of guarded (bi)similarity which

- are equivalent to the original ones, but
- illustrate better the link with labeled graphs.

Intuitive idea

Note: We give here alternative definitions of guarded (bi)similarity which

- are equivalent to the original ones, but
- illustrate better the link with labeled graphs.

Intuitive idea

 A database = set of facts over a fixed relational schema.

```
r(a, b, c)

r(d, a, e)

r(f, a, g)

s(e, h, i)

s(d, j, k)

s(f, l, m)
```

Note: We give here alternative definitions of guarded (bi)similarity which

- are equivalent to the original ones, but
- illustrate better the link with labeled graphs.

r(a, b, c) r(d, a, e) r(f, a, g) s(e, h, i) s(d, j, k)s(f, l, m)

Intuitive idea

- A database = set of facts over a fixed relational schema.
- Facts are the basic units of information (not data values)

Note: We give here alternative definitions of guarded (bi)similarity which

- are equivalent to the original ones, but
- illustrate better the link with labeled graphs.

r(a, b, c) r(d, a, e) r(f, a, g) s(e, h, i) s(d, j, k)s(f, l, m)

Intuitive idea

- A database = set of facts over a fixed relational schema.
- Facts are the basic units of information (not data values)
- So the facts become our nodes

Note: We give here alternative definitions of guarded (bi)similarity which

- are equivalent to the original ones, but
- illustrate better the link with labeled graphs.

r(a, b, c) r(d, a, e) r(f, a, g) s(e, h, i) s(d, j, k)s(f, l, m)

Intuitive idea

- A database = set of facts over a fixed relational schema.
- Facts are the basic units of information (not data values)
- So the facts become our nodes
- But what are then the edges?

Definition (Equality type)

For tuples $\overline{a} = (a_1, \dots, a_k)$ and $\overline{b} = (b_1, \dots, b_l)$ their equality type is $eqtp(\overline{a}, \overline{b}) := \{(i, j) \mid a_i = b_j\}.$

Definition (Equality type)

For tuples $\overline{a} = (a_1, \dots, a_k)$ and $\overline{b} = (b_1, \dots, b_l)$ their equality type is $eqtp(\overline{a}, \overline{b}) := \{(i, j) \mid a_i = b_i\}.$

D_1	
t_1	r(a,b,c)
t_2	r(d, a, e)
t_3	r(f, a, g)
t_4	s(e, h, i)
t_5	s(d,j,k)
t_6	s(f, l, m)

	D_2
s_1	r(n, o, p)
<i>s</i> ₂	r(q, n, r)
<i>S</i> ₃	r(r,s,t)
<i>S</i> ₄	r(q, u, v)

Definition (Equality type)

For tuples $\overline{a} = (a_1, \dots, a_k)$ and $\overline{b} = (b_1, \dots, b_l)$ their equality type is $eqtp(\overline{a}, \overline{b}) := \{(i, j) \mid a_i = b_j\}.$

D_1	
t_1	r(a,b,c)
t_2	$r(d, \mathbf{a}, e)$
t_3	r(f, a, g)
t_4	s(e,h,i)
t_5	s(d,j,k)
t_6	s(f, l, m)

$$\begin{array}{c|c}
D_2 \\
s_1 & r(n, o, p) \\
s_2 & r(q, n, r) \\
s_3 & r(r, s, t) \\
s_4 & r(q, u, v)
\end{array}$$

$$eqtp(t_1, t_2) = \{(1, 2)\}$$

Definition (Equality type)

For tuples $\overline{a} = (a_1, \dots, a_k)$ and $\overline{b} = (b_1, \dots, b_l)$ their equality type is $eqtp(\overline{a}, \overline{b}) := \{(i, j) \mid a_i = b_j\}.$

D_1	
t_1	r(a,b,c)
t_2	r(d, a, e)
t_3	r(f, a, g)
t_4	s(e,h,i)
t_5	s(d,j,k)
t_6	s(f, I, m)

$$\begin{array}{c|c}
D_2 \\
s_1 & r(n, o, p) \\
s_2 & r(q, n, r) \\
s_3 & r(r, s, t) \\
s_4 & r(q, u, v)
\end{array}$$

$$eqtp(t_1, t_2) = \{(1, 2)\}\ and\ eqtp(t_1, t_1) = \{(1, 1), (2, 2), (3, 3)\}.$$

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

D_2	
s_1	r(n, o, p)

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

	$r(s_1)$
{(1,	2) }∯
	$r(s_2)$

	D_2
s_1	r(n, o, p)
<i>s</i> ₂	r(q, n, r)

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

	D_2
5 ₁ 5 ₂ 5 ₃	r(n, o, p) $r(q, n, r)$ $r(r, s, t)$

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

D_1		
t_1	r(a,b,c)	
t_2	r(d, a, e)	
t_3	r(f,a,g)	
t_4	s(e, h, i)	
t_5	s(d,j,k)	
t_6	s(f, I, m)	

D_2		
s_1	r(n, o, p)	
<i>s</i> ₂	r(q, n, r)	
<i>5</i> 3	r(r, s, t)	
<i>S</i> ₄	r(q, u, v)	

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

(forth) for every $(r(\overline{a}), r(\overline{b})) \in T$ and every $s(\overline{c}) \in D_1$ there exists $s(\overline{d}) \in D_2$ such that $(s(\overline{c}), s(\overline{d})) \in T$ and $eqtp(\overline{a}, \overline{c}) \subseteq eqtp(\overline{b}, \overline{d})$.

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

(forth) for every $(r(\overline{a}), r(\overline{b})) \in T$ and every $s(\overline{c}) \in D_1$ there exists $s(\overline{d}) \in D_2$ such that $(s(\overline{c}), s(\overline{d})) \in T$ and $eqtp(\overline{a}, \overline{c}) \subseteq eqtp(\overline{b}, \overline{d})$.

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

(forth) for every $(r(\overline{a}), r(\overline{b})) \in T$ and every $s(\overline{c}) \in D_1$ there exists $s(\overline{d}) \in D_2$ such that $(s(\overline{c}), s(\overline{d})) \in T$ and $eqtp(\overline{a}, \overline{c}) \subseteq eqtp(\overline{b}, \overline{d})$.

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

(forth) for every $(r(\overline{a}), r(\overline{b})) \in T$ and every $s(\overline{c}) \in D_1$ there exists $s(\overline{d}) \in D_2$ such that $(s(\overline{c}), s(\overline{d})) \in T$ and $eqtp(\overline{a}, \overline{c}) \subseteq eqtp(\overline{b}, \overline{d})$.

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

(forth) for every $(r(\overline{a}), r(\overline{b})) \in T$ and every $s(\overline{c}) \in D_1$ there exists $s(\overline{d}) \in D_2$ such that $(s(\overline{c}), s(\overline{d})) \in T$ and $eqtp(\overline{a}, \overline{c}) \subseteq eqtp(\overline{b}, \overline{d})$.

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

(forth) for every $(r(\overline{a}), r(\overline{b})) \in T$ and every $s(\overline{c}) \in D_1$ there exists $s(\overline{d}) \in D_2$ such that $(s(\overline{c}), s(\overline{d})) \in T$ and $eqtp(\overline{a}, \overline{c}) \subseteq eqtp(\overline{b}, \overline{d})$.

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

(forth) for every $(r(\overline{a}), r(\overline{b})) \in T$ and every $s(\overline{c}) \in D_1$ there exists $s(\overline{d}) \in D_2$ such that $(s(\overline{c}), s(\overline{d})) \in T$ and $eqtp(\overline{a}, \overline{c}) \subseteq eqtp(\overline{b}, \overline{d})$.

	D_2
s_1	r(n, o, p)
<i>s</i> ₂	r(q, n, r)
<i>5</i> 3	r(r,s,t)
54	r(q, u, v)

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

(forth) for every $(r(\overline{a}), r(\overline{b})) \in T$ and every $s(\overline{c}) \in D_1$ there exists $s(\overline{d}) \in D_2$ such that $(s(\overline{c}), s(\overline{d})) \in T$ and $eqtp(\overline{a}, \overline{c}) \subseteq eqtp(\overline{b}, \overline{d})$.

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

(forth) for every $(r(\overline{a}), r(\overline{b})) \in T$ and every $s(\overline{c}) \in D_1$ there exists $s(\overline{d}) \in D_2$ such that $(s(\overline{c}), s(\overline{d})) \in T$ and $eqtp(\overline{a}, \overline{c}) \subseteq eqtp(\overline{b}, \overline{d})$.

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

(forth) for every $(r(\overline{a}), r(\overline{b})) \in T$ and every $s(\overline{c}) \in D_1$ there exists $s(\overline{d}) \in D_2$ such that $(s(\overline{c}), s(\overline{d})) \in T$ and $eqtp(\overline{a}, \overline{c}) \subseteq eqtp(\overline{b}, \overline{d})$.

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

(forth) for every $(r(\overline{a}), r(\overline{b})) \in T$ and every $s(\overline{c}) \in D_1$ there exists $s(\overline{d}) \in D_2$ such that $(s(\overline{c}), s(\overline{d})) \in T$ and $eqtp(\overline{a}, \overline{c}) \subseteq eqtp(\overline{b}, \overline{d})$.

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

(forth) for every $(r(\overline{a}), r(\overline{b})) \in T$ and every $s(\overline{c}) \in D_1$ there exists $s(\overline{d}) \in D_2$ such that $(s(\overline{c}), s(\overline{d})) \in T$ and $eqtp(\overline{a}, \overline{c}) \subseteq eqtp(\overline{b}, \overline{d})$.

	D_2
s_1	r(n, o, p)
<i>s</i> ₂	r(q, n, r)
<i>5</i> 3	r(r,s,t)
<i>S</i> ₄	r(q, u, v)

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

(forth) for every $(r(\overline{a}), r(\overline{b})) \in T$ and every $s(\overline{c}) \in D_1$ there exists $s(\overline{d}) \in D_2$ such that $(s(\overline{c}), s(\overline{d})) \in T$ and $eqtp(\overline{a}, \overline{c}) \subseteq eqtp(\overline{b}, \overline{d})$.

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

(forth) for every $(r(\overline{a}), r(\overline{b})) \in T$ and every $s(\overline{c}) \in D_1$ there exists $s(\overline{d}) \in D_2$ such that $(s(\overline{c}), s(\overline{d})) \in T$ and $eqtp(\overline{a}, \overline{c}) \subseteq eqtp(\overline{b}, \overline{d})$.

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

(forth) for every $(r(\overline{a}), r(\overline{b})) \in T$ and every $s(\overline{c}) \in D_1$ there exists $s(\overline{d}) \in D_2$ such that $(s(\overline{c}), s(\overline{d})) \in T$ and $eqtp(\overline{a}, \overline{c}) \subseteq eqtp(\overline{b}, \overline{d})$.

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

(forth) for every $(r(\overline{a}), r(\overline{b})) \in T$ and every $s(\overline{c}) \in D_1$ there exists $s(\overline{d}) \in D_2$ such that $(s(\overline{c}), s(\overline{d})) \in T$ and $eqtp(\overline{a}, \overline{c}) \subseteq eqtp(\overline{b}, \overline{d})$.

The (bi)simulation relations

Definition

A guarded simulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

(forth) for every $(r(\overline{a}), r(\overline{b})) \in T$ and every $s(\overline{c}) \in D_1$ there exists $s(\overline{d}) \in D_2$ such that $(s(\overline{c}), s(\overline{d})) \in T$ and $eqtp(\overline{a}, \overline{c}) \subseteq eqtp(\overline{b}, \overline{d})$.

The (bi)simulation relations

Definition

A guarded bisimulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

- (lab) it relates only facts with the same relation name, and
- (forth) for every $(r(\overline{a}), r(\overline{b})) \in T$ and every $s(\overline{c}) \in D_1$ there exists $s(\overline{d}) \in D_2$ such that $(s(\overline{c}), s(\overline{d})) \in T$ and $eqtp(\overline{a}, \overline{c}) = eqtp(\overline{b}, \overline{d})$.
- (back) for every $(r(\overline{a}), r(\overline{b})) \in T$ and every $s(\overline{d}) \in D_2 \dots$

D_2	
<i>s</i> ₁	r(n, o, p)
<i>s</i> ₂	r(q, n, r)
<i>5</i> 3	r(r,s,t)
<i>S</i> 4	r(q, u, v)

The (bi)simulation relations

Definition

A guarded bisimulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

(forth) for every
$$(r(\overline{a}), r(\overline{b})) \in T$$
 and every $s(\overline{c}) \in D_1$ there exists $s(\overline{d}) \in D_2$ such that $(s(\overline{c}), s(\overline{d})) \in T$ and $eqtp(\overline{a}, \overline{c}) = eqtp(\overline{b}, \overline{d})$.

(back) for every $(r(\overline{a}), r(\overline{b})) \in T$ and every $s(\overline{d}) \in D_2 \dots$

Nodes n and m are called guarded bisimilar if there is a guarded bisimulation from G_1 to G_2 that maps n to m.

The (bi)simulation relations

Definition

A guarded bisimulation of D_1 in D_2 is a binary relation $T \subseteq D_1 \times D_2$ s.t.

(lab) it relates only facts with the same relation name, and

(forth) for every
$$(r(\overline{a}), r(\overline{b})) \in T$$
 and every $s(\overline{c}) \in D_1$ there exists $s(\overline{d}) \in D_2$ such that $(s(\overline{c}), s(\overline{d})) \in T$ and $eqtp(\overline{a}, \overline{c}) = eqtp(\overline{b}, \overline{d})$.

(back) for every $(r(\overline{a}), r(\overline{b})) \in T$ and every $s(\overline{d}) \in D_2 \ldots$

Nodes n and m are called guarded bisimilar if there is a guarded bisimulation from G_1 to G_2 that maps n to m. None are!!

For the Guarded Fragment of FOL:

Theorem ([Andréka, Németi & van Benthem 1998][Otto 2012])

The GF is invariant under guarded bisimulation. Moreover, a query expressible in FO is invariant under guarded bisimulation on finite structures if, and only if, it is equivalent in the finite to a query expressible in GF.

For the Guarded Fragment of FOL:

Theorem ([Andréka, Németi & van Benthem 1998][Otto 2012])

The GF is invariant under guarded bisimulation. Moreover, a query expressible in FO is invariant under guarded bisimulation on finite structures if, and only if, it is equivalent in the finite to a query expressible in GF.

Subsequently equivalence in expressive power was shown for:

For the Guarded Fragment of FOL:

Theorem ([Andréka, Németi & van Benthem 1998][Otto 2012])

The GF is invariant under guarded bisimulation. Moreover, a query expressible in FO is invariant under guarded bisimulation on finite structures if, and only if, it is equivalent in the finite to a query expressible in GF.

Subsequently equivalence in expressive power was shown for:

strict GF and strict acyclic FO [Flum, Frick & Grohe, 2002]

For the Guarded Fragment of FOL:

Theorem ([Andréka, Németi & van Benthem 1998][Otto 2012])

The GF is invariant under guarded bisimulation. Moreover, a query expressible in FO is invariant under guarded bisimulation on finite structures if, and only if, it is equivalent in the finite to a query expressible in GF.

Subsequently equivalence in expressive power was shown for:

- strict GF and strict acyclic FO [Flum, Frick & Grohe, 2002]
- strict GF and the semi-join algebra [Leinders, Marx, Tyszkiewicz & Van den Bussche, 2005]

For the Guarded Fragment of FOL:

Theorem ([Andréka, Németi & van Benthem 1998][Otto 2012])

The GF is invariant under guarded bisimulation. Moreover, a query expressible in FO is invariant under guarded bisimulation on finite structures if, and only if, it is equivalent in the finite to a query expressible in GF.

Subsequently equivalence in expressive power was shown for:

- strict GF and strict acyclic FO [Flum, Frick & Grohe, 2002]
- strict GF and the semi-join algebra [Leinders, Marx, Tyszkiewicz & Van den Bussche, 2005]
- primitive positive fragment of strict GF and acyclic strict conjunctive queries [Gottlob, Leone & Scarcello, 2003]

• We define FACQ: the class of freely acyclic conjunctive queries:

- We define FACQ: the class of freely acyclic conjunctive queries:
 - ▶ A conjunctive query of the form *head* ← *body* is freely acyclic if the boolean conjunctive query () ← *head*, *body* is acyclic.

- We define FACQ: the class of freely acyclic conjunctive queries:
 - ▶ A conjunctive query of the form *head* ← *body* is freely acyclic if the boolean conjunctive query () ← *head*, *body* is acyclic.
 - FACQ includes acyclic boolean CQs and acyclic strict CQs, but not all acyclic CQs

- We define FACQ: the class of freely acyclic conjunctive queries:
 - ► A conjunctive query of the form *head* ← *body* is freely acyclic if the boolean conjunctive query () ← *head*, *body* is acyclic.
 - FACQ includes acyclic boolean CQs and acyclic strict CQs, but not all acyclic CQs

Theorem (Main Result)

FACQs are invariant under guarded simulation. Moreover, a query expressible in FO is invariant under guarded simulation on finite structures if, and only if, it is equivalent in the finite to a union of FACQs.

Why are cyclic strict CQs not invariant under guarded simulations?

Why are cyclic strict CQs not invariant under guarded simulations?

• Consider $\varphi(x,y) \leftarrow r(x,y), r(y,z), r(x,z)$.

Why are cyclic strict CQs not invariant under guarded simulations?

• Consider $\varphi(x,y) \leftarrow r(x,y), r(y,z), r(x,z)$.

Dual graph of φ

Why are cyclic strict CQs not invariant under guarded simulations?

• Consider $\varphi(x,y) \leftarrow r(x,y), r(y,z), r(x,z)$.

Dual graph of φ

r(x,y) r(y,z) r(x,z)

frozen body of φ (r(x,y)) $\{2=1\}$ $\{1=1\}$

Why are cyclic strict CQs not invariant under guarded simulations?

• Consider $\varphi(x,y) \leftarrow r(x,y), r(y,z), r(x,z)$.

Dual graph of φ

frozen body of φ

$$\begin{cases}
(x,y) \\
(1=1)
\end{cases}$$

$$\begin{cases}
(x,y) \\
(1=1)
\end{cases}$$

$$\begin{cases}
(x,y) \\
(x,z)
\end{cases}$$

 D_2

Why are cyclic strict CQs not invariant under guarded simulations?

• Consider $\varphi(x,y) \leftarrow r(x,y), r(y,z), r(x,z)$.

Why are cyclic strict CQs not invariant under guarded simulations?

• Consider $\varphi(x,y) \leftarrow r(x,y), r(y,z), r(x,z)$.

Dual graph of φ

Why are cyclic strict CQs not invariant under guarded simulations?

• Consider $\varphi(x,y) \leftarrow r(x,y), r(y,z), r(x,z)$.

Dual graph of φ

• We denote the fact that tuple \bar{a} in db_1 is guarded similar to \bar{b} in db_2 as db_1 , $\bar{a} \sim_f db_2$, \bar{b}

• We denote the fact that tuple \bar{a} in db_1 is guarded similar to \bar{b} in db_2 as db_1 , $\bar{a} \sim_f db_2$, \bar{b}

Definition (Guarded Simulation Index)

The guarded simulation index for db is a guarded structural index $sim_g(db) = (db_{\downarrow}, lab)$ such that:

• We denote the fact that tuple \bar{a} in db_1 is guarded similar to \bar{b} in db_2 as $db_1, \bar{a} \sim_f db_2, \bar{b}$

Definition (Guarded Simulation Index)

The guarded simulation index for db is a guarded structural index $sim_g(db) = (db_{\downarrow}, lab)$ such that:

1 db_{\downarrow} is the smallest database such that for every $t \in db$ there exists a fact $u \in db_{\downarrow}$ with $db, t \sim_f db_{\downarrow}, u$.

• We denote the fact that tuple \overline{a} in db_1 is guarded similar to \overline{b} in db_2 as $db_1, \overline{a} \sim_f db_2, \overline{b}$

Definition (Guarded Simulation Index)

The guarded simulation index for db is a guarded structural index $sim_g(db) = (db_{\downarrow}, lab)$ such that:

- **1** db_{\downarrow} is the smallest database such that for every $t \in db$ there exists a fact $u \in db_{\downarrow}$ with $db, t \sim_f db_{\downarrow}, u$.
- ② lab is the function that maps each fact $u \in db_{\downarrow}$ to the set $\{s \in db \mid db, s \sim_f db_{\downarrow}, u\}$.

• We denote the fact that tuple \bar{a} in db_1 is guarded similar to \bar{b} in db_2 as $db_1, \bar{a} \sim_f db_2, \bar{b}$

Definition (Guarded Simulation Index)

The guarded simulation index for db is a guarded structural index $sim_g(db) = (db_{\downarrow}, lab)$ such that:

- **1** db_{\downarrow} is the smallest database such that for every $t \in db$ there exists a fact $u \in db_{\downarrow}$ with $db, t \sim_f db_{\downarrow}, u$.
- ② lab is the function that maps each fact $u \in db_{\downarrow}$ to the set $\{s \in db \mid db, s \sim_f db_{\downarrow}, u\}$.
 - This indeed can be shown to be a cover for strict ACQs, i.e., if these are evaluated on $sim_g(db)$ then from the lab of the retrieved nodes we get the query result up to projection.

• In practice it sometimes happens that in a database most tuples/nodes are only similar to themselves.

- In practice it sometimes happens that in a database most tuples/nodes are only similar to themselves.
- In that case we can use instead an approximate simulation relation that considers only the neighbourhood of nodes within a distance k

- In practice it sometimes happens that in a database most tuples/nodes are only similar to themselves.
- In that case we can use instead an approximate simulation relation that considers only the neighbourhood of nodes within a distance *k*
 - ► The fact that tuple \overline{a} in db_1 is k-simulated by \overline{b} in db_2 is denoted as db_1 , $\overline{a} \leq_f^k db_2$, \overline{b}

- In practice it sometimes happens that in a database most tuples/nodes are only similar to themselves.
- In that case we can use instead an approximate simulation relation that considers only the neighbourhood of nodes within a distance k
 - ► The fact that tuple \overline{a} in db_1 is k-simulated by \overline{b} in db_2 is denoted as db_1 , $\overline{a} \leq_f^k db_2$, \overline{b}
- Has an interesting relationship with the height of queries, if this is defined for query head ← body as the minimum height of all join trees for () ← head, body that are rooted at head.

- In practice it sometimes happens that in a database most tuples/nodes are only similar to themselves.
- In that case we can use instead an approximate simulation relation that considers only the neighbourhood of nodes within a distance k
 - ► The fact that tuple \overline{a} in db_1 is k-simulated by \overline{b} in db_2 is denoted as db_1 , $\overline{a} \leq_f^k db_2$, \overline{b}
- Has an interesting relationship with the height of queries, if this is defined for query head ← body as the minimum height of all join trees for () ← head, body that are rooted at head.

Proposition

Let $k \ge 0$ be a natural number. The following are equivalent.

- (1) $db_1, \overline{a} \preceq_f^k db_2, \overline{b}$
- (2) For all FACQs Q of height $\leq k$, if $\overline{a} \in Q(db_1)$ then $\overline{b} \in Q(db_2)$.

• Results:

- Results:
 - Structural characterization of query invariance for strict acyclic conjunctive queries.

- Structural characterization of query invariance for strict acyclic conjunctive queries.
 - Plus a characterization of the guarded simulation invariant fragment of FO, in analogy to results of Andréka et al. for guarded bisimilar FO, and Rossman for homomorphically invariant FO.

- Structural characterization of query invariance for strict acyclic conjunctive queries.
 - Plus a characterization of the guarded simulation invariant fragment of FO, in analogy to results of Andréka et al. for guarded bisimilar FO, and Rossman for homomorphically invariant FO.
- Accompanying results for structural indexes based on this characterization.

- Results:
 - Structural characterization of query invariance for strict acyclic conjunctive queries.
 - ★ Plus a characterization of the guarded simulation invariant fragment of FO, in analogy to results of Andréka et al. for guarded bisimilar FO, and Rossman for homomorphically invariant FO.
 - Accompanying results for structural indexes based on this characterization.
- Further research:

- Structural characterization of query invariance for strict acyclic conjunctive queries.
 - Plus a characterization of the guarded simulation invariant fragment of FO, in analogy to results of Andréka et al. for guarded bisimilar FO, and Rossman for homomorphically invariant FO.
- Accompanying results for structural indexes based on this characterization.
- Further research:
 - Efficient algorithms for computing and maintaining indexes on large real-world databases.

- Structural characterization of query invariance for strict acyclic conjunctive queries.
 - Plus a characterization of the guarded simulation invariant fragment of FO, in analogy to results of Andréka et al. for guarded bisimilar FO, and Rossman for homomorphically invariant FO.
- Accompanying results for structural indexes based on this characterization.
- Further research:
 - Efficient algorithms for computing and maintaining indexes on large real-world databases.
 - Investigate evaluation strategies that profit from these indexes.

- Structural characterization of query invariance for strict acyclic conjunctive queries.
 - * Plus a characterization of the guarded simulation invariant fragment of FO, in analogy to results of Andréka et al. for guarded bisimilar FO, and Rossman for homomorphically invariant FO.
- Accompanying results for structural indexes based on this characterization.
- Further research:
 - Efficient algorithms for computing and maintaining indexes on large real-world databases.
 - Investigate evaluation strategies that profit from these indexes.
 - ► Extend characterisation for other relaxations of GF such as the loosely guarded fragment.

Results:

- Structural characterization of query invariance for strict acyclic conjunctive queries.
 - Plus a characterization of the guarded simulation invariant fragment of FO, in analogy to results of Andréka et al. for guarded bisimilar FO, and Rossman for homomorphically invariant FO.
- Accompanying results for structural indexes based on this characterization.

Further research:

- Efficient algorithms for computing and maintaining indexes on large real-world databases.
- Investigate evaluation strategies that profit from these indexes.
- Extend characterisation for other relaxations of GF such as the loosely guarded fragment.
- ► Acyclicity is known to be generalizable to hypertree decompositions; can our results be similarly extended?

Results:

- Structural characterization of query invariance for strict acyclic conjunctive queries.
 - ★ Plus a characterization of the guarded simulation invariant fragment of FO, in analogy to results of Andréka et al. for guarded bisimilar FO, and Rossman for homomorphically invariant FO.
- Accompanying results for structural indexes based on this characterization.

Further research:

- Efficient algorithms for computing and maintaining indexes on large real-world databases.
- Investigate evaluation strategies that profit from these indexes.
- ► Extend characterisation for other relaxations of GF such as the loosely guarded fragment.
- ► Acyclicity is known to be generalizable to hypertree decompositions; can our results be similarly extended?

Thank You

