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conditioning.

Plan

� Stability

� The tracking problem

� No-Go Theorem (Lin&Kelly)

� Threshold-raising

� Recovering AGM from Bayes through Maximum

Entropy
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Setup

Probability spaces (⌦,A, µ). Propositions X,Y, ... 2 A.

�A is the set of all probability measures on A.

Acceptance rule: map ↵ : �A ! A. The agent accepts X 2 A

if and only if ↵(µ) ✓ X: i.e. ↵(µ) is the strongest accepted

proposition.

!1

!2

!3

!4

µ

;

⌦
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Setup 2

Qualitative revision operators ⇤ : A⇥ A! A: first variable

represents the current strongest accepted proposition, and the

second the new revision input.

For any belief state K 2 A and propositions X,Y , the revision ⇤ is
AGM-compliant if

K⇤X ✓ X

K \X ✓ K⇤X (Inclusion)

If K \X 6= ;, then K⇤X ✓ K \X (Preservation)

If K⇤X = ; then K = ; or X = ;
(K⇤X) \ Y ✓ K⇤(X \ Y )

If (K⇤X) \ Y 6= ;, then K⇤(X \ Y ) ✓ (K⇤X) \ Y
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Tracking

Tracking

A qualitative revision policy A maps each µ 2 �A to a proposition

↵(µ) and a revision operator ⇤ applicable to that proposition. It

tracks Bayesian conditioning if:

8µ 2 �A, 8X 2 A with µ(X) > 0, ↵(µ)⇤X = ↵(µX).

µ µX

↵(µ) ↵(µ)⇤X = ↵(µX)

|X
Bayesian conditioning

acceptance rule ↵

⇤X
revision operator

↵
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Old problems with Locke

Lockean rule �t with threshold t:

(!) If �t(µ) ✓ X then µ(X) � t

( ) If µ(X) � t then �t(µ) ✓ X

Acceptance must be reasonable: it must avoid Lottery-style

paradoxes, but it should not require measure 1.

Leitgeb: keep the (!)-direction of the Lockean thesis, but

restrict the ( )-direction.
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Stability (Leitgeb)

Stability

Let (⌦,A, µ) a probability space, and t 2 (0.5, 1].

A set X 2 A is (µ, t)-stable if and only if 8Y 2 A such that

X \ Y 6= ; and µ(Y ) > 0, we have µY (X) � t.

Interpretation: a proposition X is (µ, t)-stable if only learning

a proposition inconsistent with X can bring the probability of

X below the threshold: robustness under new information.

Note that the probability of stable propositions is always

above the threshold.
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Stability (Leitgeb)

Two proposed norms for acceptance:

the Stability Principle (SP) : “Given a threshold t and µ 2 �A,

the strongest accepted proposition must be a (µ, t)-stable set in A.”

The strongest accepted proposition must be robust.

Relativised Lockean Principle (RLP): “Accept as many

propositions X with µ(X) � t as is possible without violating

(SP).”

We want to believe as many propositions above the threshold as

we can, to remain close to Lockean intuitions.

! Together this suggests: “pick the logically strongest (✓-least)
stable set”. Does one always exist?
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Systems of Spheres

Well-ordering (Leitgeb)

Let µ 2 �A a �-additive measure, t 2 (0.5, 1]. Then the set

S⌧
<1(µ) := {X 2 A |µ(X) < 1 and X is (µ, t)-stable} is

well-ordered by set inclusion, and has order type at most !.

We do need �-additivity here to exclude infinitely

descending chains:
�
suppose we have a chain

X0 � ...Xn � Xn+1 � ... with X0 a (µ, t)-stable set and

µ(X0) < 1. Let Ai := Xi \Xi+1. Then

µ(X0) = limn!1(
Pn

i=0 µ(Ai)). The limit of partial sums

converges, so limn!1(µ(An)) = 0. Take the sequence

hµ(X0 |Xc
0 [Ai) : i 2 Ni. Each term is equal to µ(Ai)

µ(Xc
0

)+µ(Ai)
with

µ(Ai)! 0. So there is some N with µ(X0 |Xc
0 [AN ) < t. So X0

is not (µ, t)-stable after all; contradiction.
�
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Systems of Spheres

Problem with stable sets of measure one: a least set of

measure 1 may not exist.

Leitgeb: fix it by postulation. Restrict attention to spaces

having such a set (Least Certain Set property).

Spheres

Let (⌦,A, µ) a space satisfying (LCS), t 2 (0.5, 1]. Let S1 the

least measure-1 set in A. Then the set S⌧ (µ) := S⌧
<1(µ) [ {S1}

is well-ordered by set-inclusion.

Fairly severe restriction, but things work fine for regular

spaces, countable full powerset algebras...
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The ⌧-rule

The ⌧-rule

For any probability measure µ on A which satisfies (LCS), and

any t 2 (0.5, 1], let S⌧ (µ) the system of spheres generated by µ.

Then we define the map ⌧t : �A ! A as

⌧t(µ) := min
✓

S⌧ (µ)

No Lottery paradox.

S⌧ (µ) is a system of spheres: it generates a ranking (total

preorder) on ⌦. Via Grove’s Theorem, each system of spheres

generates and AGM revision operator.

! Leitgeb’s ⌧ -rule (1) is plausible as an acceptance principle,

(2) o↵ers a nice connection with AGM.
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Acceptance zones

⌦

{w1,w2}

{w2,w3}

{w1,w3}

{w1}

{w2} {w3}

Figure: Acceptance zones for Leitgeb’s ⌧ -rule with t = 2/3 and |⌦| = 3.
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Tracking

Observation

Let µ 2 �A, t 2 (0.5, 1], and ⇤ the AGM revision generated by ⌧t.

Then 8X 2 A with µ(X) > 0, the set ⌧(µ)⇤X is (µX , t)-stable.

So the AGM-revised set ⌧(µ)⇤X is always stable after

conditioning. Is it always the least stable set?

No.

⌦ := {!1, ...,!4} and A the full power set algebra over ⌦.

Set t = 0.7.

Take µ = (0.5, 0.12, 0.05, 0.33) and X := {!1,!2,!3}. Then
! ⌧(µ) = {!1,!2,!4} and so ⌧(µ)⇤X = {!1,!2} = ⌧(µ) \X.

! conditioning on X gives µX ⇡ (0.746, 0.179, 0.075, 0), and we

get ⌧(µX) = {!1}. So ⌧(µX) ⇢ ⌧(µ)⇤X: conditioning raises

the probability of !1 just enough to make it (µX , t)-stable.
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conditioning. Is it always the least stable set? No.

⌦ := {!1, ...,!4} and A the full power set algebra over ⌦.

Set t = 0.7.

Take µ = (0.5, 0.12, 0.05, 0.33) and X := {!1,!2,!3}. Then
! ⌧(µ) = {!1,!2,!4} and so ⌧(µ)⇤X = {!1,!2} = ⌧(µ) \X.

! conditioning on X gives µX ⇡ (0.746, 0.179, 0.075, 0), and we

get ⌧(µX) = {!1}. So ⌧(µX) ⇢ ⌧(µ)⇤X: conditioning raises

the probability of !1 just enough to make it (µX , t)-stable.
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No-Go Theorem (Lin&Kelly)

⌧(µ)

R2

R3

R4

R5

R6

Figure: System of spheres centered on X.

In this case, we have ⌧(µX) ⇢ ⌧(µ)⇤X; further, the revision

⌧(µ)! ⌧(µX) is not AGM, as it fails Inclusion.

This example also shows how tracking fails for ⌧ .

Special case

of:

The No-Go Theorem (Lin&Kelly)

Let |⌦| > 2, A a field of sets over ⌦, and let ↵ : �A ! A be any

sensible acceptance rule. Then no AGM revision policy based on

↵ tracks Bayesian conditioning.
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Tracking failure

How tracking fails for the ⌧ -rule: in general, conditioning +

acceptance results in a logically stronger belief set than

acceptance + AGM revision. No commutativity whenever it

is strictly stronger.

µ µX

⌧(µ) ⌧(µ)⇤X

|X
Bayes

acceptance ⌧

⇤X
AGM revision

�⌧(µX)

⌧
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No go.

~ Close, but not quite.

Does not comMute!!
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Urns example

You are given an urn. You know that it is either of the type A –

containing 30% black marbles and 70% white marbles, or B –

containing 70% black and 30% white. Suppose you draw (with

replacement) 10 marbles form the urn. How many black marbles

would you have to draw to be convinced your urn is of type A ?

0,1 or 2 black marbles, for a threshold of 0.5. But drawing 3

marbles yields disagreement between conditioning and

revision: on the Bayesian side, you then believe your urn is of

type A. On the AGM side, you are undecided.

All this assuming a 50-50 prior for urns A, B and using a binomial

distribution to compute conditional probabilities.
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Threshold-raising

When tracking fails for the ⌧ -rule, selecting ⌧(µ)⇤X as

strongest accepted proposition goes against the Lockean

principle (RLP), since ⌧(µX) is logically stronger.

Can we ‘force’ agreement by changing the threshold?

Idea: When tracking fails for a threshold t, raise the

threshold to a new value q > t, so that the AGM-revised set

becomes the least stable set for q. That is: ⌧q(µX) = ⌧t(µ)⇤X,

and so the revision ⌧t(µ) 7! ⌧q(µX) is AGM.
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Threshold-raising

We want a q such that ⌧q(µX) = ⌧t(µ)⇤X.

µ µX

⌧t(µ) ⌧t(µ)⇤X

|X
Bayes

acceptance ⌧t

⇤X
AGM revision

�⌧t(µX)

⌧t

Works only if 9q 2 (0.5, 1], ⌧t(µ)⇤X is the least (µX , q)-stable

set, while ⌧t(µX) is not stable for q.

When do we have such a threshold q?
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Stability comes in degrees

Degree of stability

The degree of stability of X 2 A with respect to a measure

µ 2 �A, denoted S(µ,X) is defined as:

S(µ,X) := sup{q 2 [0, 1] |X is (µ, q)-stable}

When µ(X) > 0, we have

S(µ,X) = inf{µY (X) |µ(Y ) > 0, X \ Y 6= ;}, and

X is (µ, t)-stable if and only if S(µ,X) � t

One can raise the threshold to “correct” the revision process only

if S(µX , ⌧(µX)) < S(µX , ⌧(µ)⇤X)
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Incorrigible

We have t = 0.7, a distribution µ = (0.5, 0.12, 0.05, 0.33), and

X = {!1,!2,!3}. Here ⌧t(µ) = {!1,!2,!4}. Then
µX ⇡ (0.746, 0.179, 0.075, 0), and tracking fails since

⌧t(µX) = {!1} and ⌧t(µ)⇤X = {!1,!2}. We have the following

degrees of stability with respect to µX :

S(⌧t(µX)) =
µX(!1)

µX(!1) + µX(⌦ \ {!1}) =
0.746

1
= 0.746

And

S(⌧t(µ)⇤X) =
µX(!2)

µX(!2) + µX(⌦ \ {!1,!2}) =
0.179

0.179 + 0.075
⇡ 0.705

So any threshold that makes ⌧t(µ)⇤X stable also makes ⌧t(µX)

stable. We cannot force agreement by threshold-raising.
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Thresholds

Lockean vs. stability thresholds

The threshold-raising method does not always work, and for

all su�ciently large probability spaces there exist

‘non-correctible’ counterexamples†.

Non-correctible cases show an incompatibility between the

Lockean and Stability principles and the ⌧ -generated AGM

revision, even if one allows thresholds to vary.

The cautiousness of AGM revision does not mix well with the

fine-grained nature of probability measures.

†
Not negligible. E.g. in a probability simplex, the measures vulnerable to such

non-correctible cases form a neighbourhood of positive Lebesgue measure.
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AGM from Bayes via Max Entropy

What if the probabilistic representation of the agent’s credal

state is not fully specified?

(e.g., information loss, incomplete

description)

Suppose the agent only has a qualitative description of her

credal state, but is strictly committed to Bayesian

conditioning as an update method.

Would like to: use ⌧ to find a measure representing the credal

state; use Bayes; then ⌧ again. This generates a qualitative

revision.
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Max Entropy Principle

Entropy: H(µ) =
P

!2⌦�µ(!) logµ(!)

Entropy as a measure of uncertainty.

Maximum Entropy Principle (MEP):

If all that is known to the agent is that a probability distribution

lies within some zone N ✓ �A, the agent selects a distribution

with maximal entropy among those in N , if such exist.

Max Entropy distribution thought to be least biased

representation of the agent’s credal state, given the

constraints.

Start with a qualitative representation. Use ⌧ and MEP to find a

measure representing the credal state; use Bayes; then ⌧ again.

The resulting revision is always AGM.



Bridging

Bayesian

probability

and AGM

revision

via stability

principles

Chris

Mierzewski

(with

Alexandru

Baltag)

Introduction

Stability

The Tracking

problem

Threshold-

raising

AGM from

Bayes via

Max Entropy

Conclusion

Max Entropy Principle

Entropy: H(µ) =
P

!2⌦�µ(!) logµ(!)

Entropy as a measure of uncertainty.

Maximum Entropy Principle (MEP):

If all that is known to the agent is that a probability distribution

lies within some zone N ✓ �A, the agent selects a distribution

with maximal entropy among those in N , if such exist.

Max Entropy distribution thought to be least biased

representation of the agent’s credal state, given the

constraints.

Start with a qualitative representation. Use ⌧ and MEP to find a

measure representing the credal state; use Bayes; then ⌧ again.

The resulting revision is always AGM.



Bridging

Bayesian

probability

and AGM

revision

via stability

principles

Chris

Mierzewski

(with

Alexandru

Baltag)

Introduction

Stability

The Tracking

problem

Threshold-

raising

AGM from

Bayes via

Max Entropy

Conclusion

Max Entropy Principle

Entropy: H(µ) =
P

!2⌦�µ(!) logµ(!)

Entropy as a measure of uncertainty.

Maximum Entropy Principle (MEP):

If all that is known to the agent is that a probability distribution

lies within some zone N ✓ �A, the agent selects a distribution

with maximal entropy among those in N , if such exist.

Max Entropy distribution thought to be least biased

representation of the agent’s credal state, given the

constraints.

Start with a qualitative representation. Use ⌧ and MEP to find a

measure representing the credal state; use Bayes; then ⌧ again.

The resulting revision is always AGM.



Bridging

Bayesian

probability

and AGM

revision

via stability

principles

Chris

Mierzewski

(with

Alexandru

Baltag)

Introduction

Stability

The Tracking

problem

Threshold-

raising

AGM from

Bayes via

Max Entropy

Conclusion

Max Entropy Principle

Entropy: H(µ) =
P

!2⌦�µ(!) logµ(!)

Entropy as a measure of uncertainty.

Maximum Entropy Principle (MEP):

If all that is known to the agent is that a probability distribution

lies within some zone N ✓ �A, the agent selects a distribution

with maximal entropy among those in N , if such exist.

Max Entropy distribution thought to be least biased

representation of the agent’s credal state, given the

constraints.

Start with a qualitative representation. Use ⌧ and MEP to find a

measure representing the credal state; use Bayes; then ⌧ again.

The resulting revision is always AGM.



Bridging

Bayesian

probability

and AGM

revision

via stability

principles

Chris

Mierzewski

(with

Alexandru

Baltag)

Introduction

Stability

The Tracking

problem

Threshold-

raising

AGM from

Bayes via

Max Entropy

Conclusion

Max Entropy Principle

Entropy: H(µ) =
P

!2⌦�µ(!) logµ(!)

Entropy as a measure of uncertainty.

Maximum Entropy Principle (MEP):

If all that is known to the agent is that a probability distribution

lies within some zone N ✓ �A, the agent selects a distribution

with maximal entropy among those in N , if such exist.

Max Entropy distribution thought to be least biased

representation of the agent’s credal state, given the

constraints.

Start with a qualitative representation. Use ⌧ and MEP to find a

measure representing the credal state; use Bayes; then ⌧ again.

The resulting revision is always AGM.



Bridging

Bayesian

probability

and AGM

revision

via stability

principles

Chris

Mierzewski

(with

Alexandru

Baltag)

Introduction

Stability

The Tracking

problem

Threshold-

raising

AGM from

Bayes via

Max Entropy

Conclusion

Max Entropy Principle

Entropy: H(µ) =
P

!2⌦�µ(!) logµ(!)

Entropy as a measure of uncertainty.

Maximum Entropy Principle (MEP):

If all that is known to the agent is that a probability distribution

lies within some zone N ✓ �A, the agent selects a distribution

with maximal entropy among those in N , if such exist.

Max Entropy distribution thought to be least biased

representation of the agent’s credal state, given the

constraints.

Start with a qualitative representation. Use ⌧ and MEP to find a

measure representing the credal state; use Bayes; then ⌧ again.

The resulting revision is always AGM.



Bridging

Bayesian

probability

and AGM

revision

via stability

principles

Chris

Mierzewski

(with

Alexandru

Baltag)

Introduction

Stability

The Tracking

problem

Threshold-

raising

AGM from

Bayes via

Max Entropy

Conclusion

AGM from Bayes via Max Entropy

For finite probability spaces:

Let K 6= ; a proposition in A, and ⌧ the Leitgeb rule for some

fixed t 2 [0.5, 1). Then there is a unique maximal entropy

distribution µ 2 �A such that ⌧(µ) = K. Moreover, for any

positive probability X 2 A, we have ⌧(µX) = K⇤X, where ⇤ is the
AGM revision operator generated by S⌧ (µ).

K

µ

Max

Entropy

in ⌧�1(K)

µX

Bayesian conditioning

|X

⌧(µX)

⌧ acceptance

K⇤X = ⌧(µX)

⌧ acceptance

⇤X
AGM
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How it works - a sketch:

Restrict attention to rank-uniform measures in ⌧�1(K).

Any µ 2 �A is entropy-dominated by some rank-equivalent,

rank-uniform probability measure.

The desired maximal entropy measure in ⌧�1(K) is the

rank-uniform measure µ with two ranks which assigns the

least possible measure to K.

Finally, the resulting revision K 7! ⌧(µX) is always AGM

because:

If µ is rank-uniform, then for any X 2 A, the revision

⌧(µ) 7! ⌧(µX) is the AGM revision generated by St(µ).
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µ µX

S S � X

Max Entropy

|X

Restriction to X

⌧(µ) = minS ⌧(µX)
AGM

minmin

⌧ ⌧

Figure: Recovering AGM revision from a plausibility ordering.

,! Reduces to a convex optimisation problem, with linear

inequality constraints given by the stability requirement.
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We have seen AGM revision is too coarse-grained to fully

track Bayesian conditioning: it cannot deal with retaining too

much information about the probability measure.

But with an incomplete probabilistic description, AGM can

emerge from the ⌧ -rule + two probabilistic principles. Slogan:

under incomplete information, “AGM = ⌧ -rule + Maximum

Entropy + Bayesian Conditioning”.

One can prove a similar result if more qualitative information

is retained: e.g plausibility orderings.

 How much information must be lost for AGM to emerge from

conditioning in this way? Many geometric/information-theoretic

questions.
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Further questions, applications

Logics

Games

Qualitative probability
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Conclusion

~ Stability principles o↵er a nice acceptance rule which avoids

the Lottery paradox and is closely related to AGM revision.

~ Perfect tracking is impossible for AGM; one can approximate

it, but it comes at a cost.

~ AGM revision could be seen as a special case of Bayesian

reasoning under the constraint of incomplete information.
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