BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewski (with Alexandru Baltag)

INTRODUCTION

Stability

The Tracking problem

Threshold raising

AGM from Bayes via Max Entropy

Conclusion

BRIDGING BAYESIAN PROBABILITY AND AGM REVISION VIA STABILITY PRINCIPLES

Chris Mierzewski (with Alexandru Baltag)

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

OVERVIEW

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris
Mierzewski
(with
Alexandru
Baltag)

INTRODUCTION

Stability

The Trackin

Threshold

AGM from Bayes via Max Entrop

Conclusion

Compare the behaviour of AGM revision and Bayesian conditioning.

OVERVIEW

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandru Baltag)

Introductio

Stability

problem

Thresholdraising

AGM from Bayes via Max Entropy

Conclusion

Compare the behaviour of AGM revision and Bayesian conditioning.

Plan

- Stability
- The tracking problem
- No-Go Theorem (Lin&Kelly)
- Threshold-raising
- Recovering AGM from Bayes through Maximum Entropy

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Chris
Mierzewski
(with
Alexandru

Introduction

Stability

The Trackin problem

Threshol

AGM from Bayes via

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris
Mierzewsk
(with
Alexandru
Baltag)

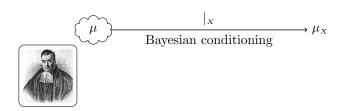
Introduction

Stability

The Trackin

Thresholo

AGM from Bayes via Max Entropy



BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Chris
Mierzewsk
(with
Alexandru
Baltag)

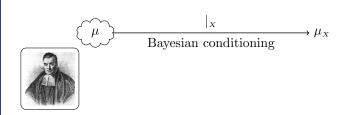
Introduction

Stability

The Trackin problem

Threshold raising

AGM from Bayes via Max Entropy



BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris
Mierzewsk
(with
Alexandru
Baltag)

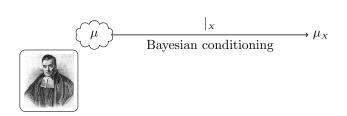
INTRODUCTION

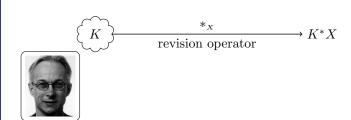
Stability

The Trackin

Thresh

AGM from Bayes via Max Entropy





BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewski (with Alexandru Baltag)

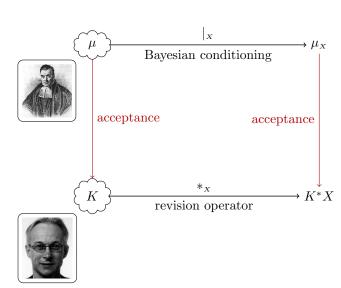
Introduction

Stability

The Trackin problem

Thresh

AGM from Bayes via Max Entropy



HARMONY AND ACCEPTANCE

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Chris Mierzewski (with Alexandru

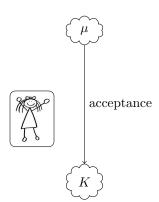
Introduction

Stability

The Trackin problem

Thresholo

AGM from Bayes via Max Entropy



HARMONY AND ACCEPTANCE

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Chris Mierzewski (with Alexandru Baltag)

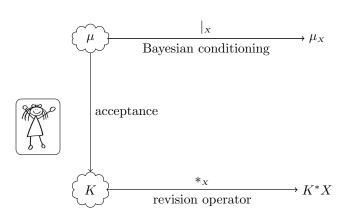
INTRODUCTION

Stability

The Trackin problem

Threshold raising

AGM from Bayes via Max Entropy



HARMONY AND ACCEPTANCE

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Chris Mierzewski (with Alexandru Baltag)

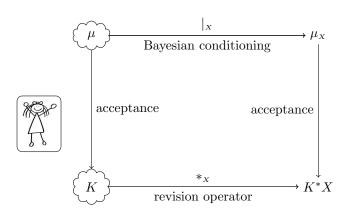
Introduction

Stability

The Trackin problem

Threshold raising

AGM from Bayes via Max Entropy



SETUP

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewski (with Alexandru Baltag)

Introduction

Stability

The Trackin

Threshold raising

AGM from Bayes via Max Entropy

- Probability spaces $(\Omega, \mathfrak{A}, \mu)$. Propositions $X, Y, ... \in \mathfrak{A}$.
- $\Delta_{\mathfrak{A}}$ is the set of all probability measures on \mathfrak{A} .

SETUP

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
//IA STABILITY

Chris Mierzewsk (with Alexandru Baltag)

Introduction

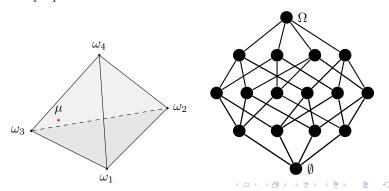
Stability

The Tracki problem

Threshold raising

AGM from Bayes via Max Entropy

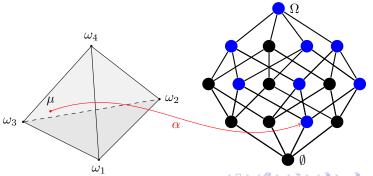
- Probability spaces $(\Omega, \mathfrak{A}, \mu)$. Propositions $X, Y, ... \in \mathfrak{A}$.
- $\Delta_{\mathfrak{A}}$ is the set of all probability measures on \mathfrak{A} .
- Acceptance rule: map $\alpha : \Delta_{\mathfrak{A}} \to \mathfrak{A}$. The agent accepts $X \in \mathfrak{A}$ if and only if $\alpha(\mu) \subseteq X$: i.e. $\alpha(\mu)$ is the strongest accepted proposition.



SETUP

BRIDGING BAYESIAN PROBABILITY AND AGM

- Probability spaces $(\Omega, \mathfrak{A}, \mu)$. Propositions $X, Y, ... \in \mathfrak{A}$.
- $\Delta_{\mathfrak{A}}$ is the set of all probability measures on \mathfrak{A} .
- Acceptance rule: map $\alpha: \Delta_{\mathfrak{A}} \to \mathfrak{A}$. The agent accepts $X \in \mathfrak{A}$ if and only if $\alpha(\mu) \subseteq X$: i.e. $\alpha(\mu)$ is the strongest accepted proposition.



Setup 2

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandru Baltag)

Introduction

Stabilit

problem

raising

AGM from Bayes via Max Entropy

Conclusion

• Qualitative revision operators $*: \mathfrak{A} \times \mathfrak{A} \to \mathfrak{A}$: first variable represents the current strongest accepted proposition, and the second the new revision input.

For any belief state $K \in \mathfrak{A}$ and propositions X,Y, the revision * is AGM-compliant if

- $K^*X \subseteq X$
- $K \cap X \subseteq K^*X$ (Inclusion)
- If $K \cap X \neq \emptyset$, then $K^*X \subseteq K \cap X$ (Preservation)
- If $K^*X = \emptyset$ then $K = \emptyset$ or $X = \emptyset$
- $\bullet \ (K^*X) \cap Y \subseteq K^*(X \cap Y)$
- If $(K^*X) \cap Y \neq \emptyset$, then $K^*(X \cap Y) \subseteq (K^*X) \cap Y$

Tracking

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandru Baltag)

Introductio

Stability

The Trackin problem

Threshold raising

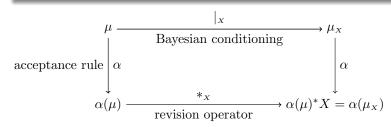
AGM from Bayes via Max Entropy

Conclusion

Tracking

A qualitative revision policy A maps each $\mu \in \Delta_{\mathfrak{A}}$ to a proposition $\alpha(\mu)$ and a revision operator * applicable to that proposition. It tracks Bayesian conditioning if:

$$\forall \mu \in \Delta_{\mathfrak{A}}, \forall X \in \mathfrak{A} \text{ with } \mu(X) > 0, \alpha(\mu)^* X = \alpha(\mu_X).$$



OLD PROBLEMS WITH LOCKE

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewski (with Alexandru Baltag)

Introduction

Stability

The Trackin

Threshole

AGM from Bayes via Max Entropy

Conclusion

Lockean rule λ_t with threshold t:

$$(\rightarrow)$$
 If $\lambda_t(\mu) \subseteq X$ then $\mu(X) \ge t$

$$(\leftarrow)$$
 If $\mu(X) \geq t$ then $\lambda_t(\mu) \subseteq X$

OLD PROBLEMS WITH LOCKE

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewski (with Alexandru Baltag)

Introductio

Stability

The Tracking

Threshold raising

AGM from Bayes via Max Entropy

Conclusion

Lockean rule λ_t with threshold t:

$$(\rightarrow)$$
 If $\lambda_t(\mu) \subseteq X$ then $\mu(X) \ge t$

$$(\leftarrow)$$
 If $\mu(X) \geq t$ then $\lambda_t(\mu) \subseteq X$

- Acceptance must be reasonable: it must avoid Lottery-style paradoxes, but it should not require measure 1.
- Leitgeb: keep the (\rightarrow) -direction of the Lockean thesis, but restrict the (\leftarrow) -direction.

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewski (with

(with Alexandru Baltag)

Introduction

Stability

The Trackin

Threshold raising

AGM from Bayes via Max Entropy

Conclusion

Stability

Let $(\Omega, \mathfrak{A}, \mu)$ a probability space, and $t \in (0.5, 1]$.

A set $X \in \mathfrak{A}$ is (μ, t) -stable if and only if $\forall Y \in \mathfrak{A}$ such that

 $X \cap Y \neq \emptyset$ and $\mu(Y) > 0$, we have $\mu_Y(X) \geq t$.

Bridging BAYESIAN PROBABILITY AND AGM

Stability

Stability

Let $(\Omega, \mathfrak{A}, \mu)$ a probability space, and $t \in (0.5, 1]$. A set $X \in \mathfrak{A}$ is (μ, t) -stable if and only if $\forall Y \in \mathfrak{A}$ such that $X \cap Y \neq \emptyset$ and $\mu(Y) > 0$, we have $\mu_Y(X) \geq t$.

- Interpretation: a proposition X is (μ, t) -stable if only learning a proposition inconsistent with X can bring the probability of X below the threshold: robustness under new information.
- Note that the probability of stable propositions is always above the threshold.

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Chris Mierzewsk (with Alexandru Baltag)

Introductio

Stability

The Trackin

Threshold raising

AGM from Bayes via Max Entropy

Conclusion

Two proposed norms for acceptance:

the Stability Principle (SP): "Given a threshold t and $\mu \in \Delta_{\mathfrak{A}}$, the strongest accepted proposition must be a (μ, t) -stable set in \mathfrak{A} ."

The strongest accepted proposition must be robust.

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Chris Mierzewsk (with Alexandru Baltag)

Introduction

Stability

rne tracki problem

raising

AGM from Bayes via Max Entrop

Conclusion

Two proposed norms for acceptance:

the Stability Principle (SP): "Given a threshold t and $\mu \in \Delta_{\mathfrak{A}}$, the strongest accepted proposition must be a (μ, t) -stable set in \mathfrak{A} ."

The strongest accepted proposition must be robust.

Relativised Lockean Principle (RLP): "Accept as many propositions X with $\mu(X) \geq t$ as is possible without violating (SP)."

We want to believe as many propositions above the threshold as we can, to remain close to Lockean intuitions.

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Chris Mierzewsk (with Alexandru Baltag)

INTRODUCTION

Stability

problem

Threshold raising

AGM from Bayes via Max Entropy

Conclusion

Two proposed norms for acceptance:

the Stability Principle (SP): "Given a threshold t and $\mu \in \Delta_{\mathfrak{A}}$, the strongest accepted proposition must be a (μ, t) -stable set in \mathfrak{A} ."

The strongest accepted proposition must be robust.

Relativised Lockean Principle (RLP): "Accept as many propositions X with $\mu(X) \geq t$ as is possible without violating (SP)."

We want to believe as many propositions above the threshold as we can, to remain close to Lockean intuitions.

 \rightarrow Together this suggests: "pick the logically strongest (\subseteq -least) stable set". Does one always exist?

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandru Baltag)

Introduction

Stability

The Trackin

Threshol raising

AGM from Bayes via Max Entrop

Conclusion

Well-ordering (Leitgeb)

Let $\mu \in \Delta_{\mathfrak{A}}$ a σ -additive measure, $t \in (0.5, 1]$. Then the set $\mathfrak{S}^{\tau}_{<1}(\mu) := \{X \in \mathfrak{A} \mid \mu(X) < 1 \text{ and } X \text{ is } (\mu, t)\text{-stable}\}$ is well-ordered by set inclusion, and has order type at most ω .

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
DDINGUIDLES

Chris Mierzewsk (with Alexandru Baltag)

INTRODUCTION

Stability

problem

Threshold raising

AGM from Bayes via Max Entropy

Conclusion

Well-ordering (Leitgeb)

Let $\mu \in \Delta_{\mathfrak{A}}$ a σ -additive measure, $t \in (0.5, 1]$. Then the set $\mathfrak{S}^{\tau}_{<1}(\mu) := \{X \in \mathfrak{A} \mid \mu(X) < 1 \text{ and } X \text{ is } (\mu, t)\text{-stable}\}$ is well-ordered by set inclusion, and has order type at most ω .

We do need σ -additivity here to exclude infinitely descending chains: (suppose we have a chain $X_0 \supset ... X_n \supset X_{n+1} \supset ...$ with X_0 a (μ, t) -stable set and $\mu(X_0) < 1$. Let $A_i := X_i \setminus X_{i+1}$. Then $\mu(X_0) = \lim_{n \to \infty} (\sum_{i=0}^n \mu(A_i))$. The limit of partial sums converges, so $\lim_{n \to \infty} (\mu(A_n)) = 0$. Take the sequence $\langle \mu(X_0 \mid X_0^c \cup A_i) : i \in \mathbb{N} \rangle$. Each term is equal to $\frac{\mu(A_i)}{\mu(X_0^c) + \mu(A_i)}$ with $\mu(A_i) \to 0$. So there is some N with $\mu(X_0 \mid X_0^c \cup A_N) < t$. So X_0 is not (μ, t) -stable after all; contradiction.)

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris
Mierzewski
(with
Alexandru

Introduction

Stability

The Trackin

Threshol

AGM from Bayes via

Conclusion

 Problem with stable sets of measure one: a least set of measure 1 may not exist.

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Mierzewsk (with Alexandru Baltag)

Introduction

Stability

The Trackin

Thresholo

AGM from Bayes via Max Entropy

- Problem with stable sets of measure one: a least set of measure 1 may not exist.
- Leitgeb: fix it by postulation. Restrict attention to spaces having such a set (Least Certain Set property).

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandru Baltag)

Introduction

Stability

problem

Threshold raising

AGM from Bayes via Max Entropy

Conclusion

- Problem with stable sets of measure one: a least set of measure 1 may not exist.
- Leitgeb: fix it by postulation. Restrict attention to spaces having such a set (Least Certain Set property).

Spheres

Let $(\Omega, \mathfrak{A}, \mu)$ a space satisfying *(LCS)*, $t \in (0.5, 1]$. Let S_{∞} the least measure-1 set in \mathfrak{A} . Then the set $\mathfrak{S}^{\tau}(\mu) := \mathfrak{S}^{\tau}_{<1}(\mu) \cup \{S_{\infty}\}$ is well-ordered by set-inclusion.

• Fairly severe restriction, but things work fine for regular spaces, countable full powerset algebras...

The τ -rule

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
DDINGUIDLES

Chris Mierzewsk (with Alexandru Baltag)

Introduction

Stability

The Trackin problem

Threshold

AGM from Bayes via Max Entropy

Conclusion

The τ -rule

For any probability measure μ on \mathfrak{A} which satisfies (LCS), and any $t \in (0.5, 1]$, let $\mathfrak{S}^{\tau}(\mu)$ the system of spheres generated by μ . Then we define the map $\tau_t : \Delta_{\mathfrak{A}} \to \mathfrak{A}$ as

$$\tau_t(\mu) := \min_{\subseteq} \mathfrak{S}^{\tau}(\mu)$$

Threshold raising

AGM from Bayes via Max Entropy

Conclusion

The τ -rule

For any probability measure μ on $\mathfrak A$ which satisfies (LCS), and any $t \in (0.5, 1]$, let $\mathfrak S^{\tau}(\mu)$ the system of spheres generated by μ . Then we define the map $\tau_t : \Delta_{\mathfrak A} \to \mathfrak A$ as

$$\tau_t(\mu) := \min_{\subseteq} \mathfrak{S}^{\tau}(\mu)$$

• No Lottery paradox.

Threshold raising

AGM from Bayes via Max Entropy

Conclusion

The τ -rule

For any probability measure μ on $\mathfrak A$ which satisfies (LCS), and any $t \in (0.5,1]$, let $\mathfrak S^{\tau}(\mu)$ the system of spheres generated by μ . Then we define the map $\tau_t : \Delta_{\mathfrak A} \to {\mathfrak A}$ as

$$\tau_t(\mu) := \min_{\subseteq} \mathfrak{S}^{\tau}(\mu)$$

- No Lottery paradox.
- $\mathfrak{S}^{\tau}(\mu)$ is a system of spheres: it generates a ranking (total preorder) on Ω . Via Grove's Theorem, each system of spheres generates and AGM revision operator.

AGM from Bayes via Max Entropy

Conclusion

The τ -rule

For any probability measure μ on $\mathfrak A$ which satisfies (LCS), and any $t \in (0.5, 1]$, let $\mathfrak S^{\tau}(\mu)$ the system of spheres generated by μ . Then we define the map $\tau_t : \Delta_{\mathfrak A} \to \mathfrak A$ as

$$\tau_t(\mu) := \min_{\subseteq} \mathfrak{S}^{\tau}(\mu)$$

- No Lottery paradox.
- $\mathfrak{S}^{\tau}(\mu)$ is a system of spheres: it generates a ranking (total preorder) on Ω . Via Grove's Theorem, each system of spheres generates and AGM revision operator.
- \rightarrow Leitgeb's τ -rule (1) is plausible as an acceptance principle, (2) offers a nice connection with AGM.

ACCEPTANCE ZONES

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandro Baltag)

Introductio

Stability

The Trackin problem

Threshol raising

AGM from Bayes via Max Entropy

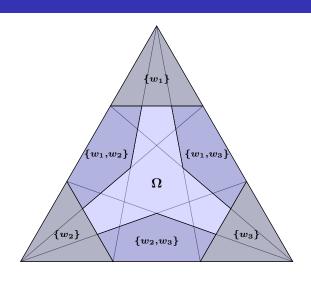


Figure: Acceptance zones for Leitgeb's τ -rule with t=2/3 and $|\Omega|=3$.

Tracking

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandri Baltag)

Introductio

Stability

The Tracking problem

Threshold raising

AGM from Bayes via Max Entrop

Conclusion

Observation

Let $\mu \in \Delta_{\mathfrak{A}}$, $t \in (0.5, 1]$, and * the AGM revision generated by τ_t . Then $\forall X \in \mathfrak{A}$ with $\mu(X) > 0$, the set $\tau(\mu)^*X$ is (μ_X, t) -stable.

• So the AGM-revised set $\tau(\mu)^*X$ is always stable after conditioning. Is it always the *least* stable set?

Tracking

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Mierzewsk (with Alexandru Baltag)

Introductio

Stability

The Tracking problem

Thresholo

AGM from Bayes via Max Entropy

Conclusion

Observation

Let $\mu \in \Delta_{\mathfrak{A}}$, $t \in (0.5, 1]$, and * the AGM revision generated by τ_t . Then $\forall X \in \mathfrak{A}$ with $\mu(X) > 0$, the set $\tau(\mu)^*X$ is (μ_X, t) -stable.

• So the AGM-revised set $\tau(\mu)^*X$ is always stable after conditioning. Is it always the *least* stable set? **No.**

TRACKING

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandri Baltag)

Introductio

Stability

The Tracking problem

AGM from Bayes via

AGM from Bayes via Max Entropy

Conclusion

Observation

Let $\mu \in \Delta_{\mathfrak{A}}$, $t \in (0.5, 1]$, and * the AGM revision generated by τ_t . Then $\forall X \in \mathfrak{A}$ with $\mu(X) > 0$, the set $\tau(\mu)^* X$ is (μ_X, t) -stable.

- So the AGM-revised set $\tau(\mu)^*X$ is always stable after conditioning. Is it always the *least* stable set? **No.**
- $\Omega := \{\omega_1, ..., \omega_4\}$ and \mathfrak{A} the full power set algebra over Ω .
- Set t = 0.7.
- Take $\mu = (0.5, 0.12, 0.05, 0.33)$ and $X := \{\omega_1, \omega_2, \omega_3\}$. Then
- $\rightarrow \tau(\mu) = \{\omega_1, \omega_2, \omega_4\}$ and so $\tau(\mu)^*X = \{\omega_1, \omega_2\} = \tau(\mu) \cap X$.
- \rightarrow conditioning on X gives $\mu_X \approx (0.746, 0.179, 0.075, 0)$, and we get $\tau(\mu_X) = \{\omega_1\}$. So $\tau(\mu_X) \subset \tau(\mu)^*X$: conditioning raises the probability of ω_1 just enough to make it (μ_X, t) -stable.

No-Go Theorem (Lin&Kelly)

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Chris Mierzewsk (with Alexandru Baltag)

Introduction

Stability

The Tracking problem

Threshold raising

AGM from Bayes via Max Entrop

Conclusion

Figure: System of spheres centered on X.

In this case, we have $\tau(\mu_X) \subset \tau(\mu)^*X$; further, the revision $\tau(\mu) \to \tau(\mu_X)$ is not AGM, as it fails Inclusion.

• This example also shows how tracking fails for τ .

No-Go Theorem (Lin&Kelly)

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Chris Mierzewsk (with Alexandru Baltag)

Introduction

Stability

The Tracking problem

Threshold raising

AGM from Bayes via Max Entropy

Conclusion

Figure: System of spheres centered on X.

In this case, we have $\tau(\mu_X) \subset \tau(\mu)^*X$; further, the revision $\tau(\mu) \to \tau(\mu_X)$ is not AGM, as it fails Inclusion.

• This example also shows how tracking fails for τ . Special case of:

No-Go Theorem (Lin&Kelly)

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Chris Mierzewsk (with Alexandro Baltag)

INTRODUCTION

Stability

The Tracking problem

raising

AGM from Bayes via Max Entropy

Conclusion

Figure: System of spheres centered on X.

In this case, we have $\tau(\mu_X) \subset \tau(\mu)^*X$; further, the revision $\tau(\mu) \to \tau(\mu_X)$ is not AGM, as it fails Inclusion.

• This example also shows how tracking fails for τ . Special case of:

The No-Go Theorem (Lin&Kelly)

Let $|\Omega| > 2$, \mathfrak{A} a field of sets over Ω , and let $\alpha : \Delta_{\mathfrak{A}} \to \mathfrak{A}$ be any sensible acceptance rule. Then no AGM revision policy based on α tracks Bayesian conditioning.

Tracking failure

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandru Baltag)

INTRODUCTION

Stability

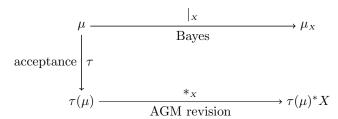
The Tracking problem

Threshol

AGM from Bayes via Max Entropy

Conclusion

How tracking fails for the τ-rule: in general, conditioning +
acceptance results in a logically stronger belief set than
acceptance + AGM revision. No commutativity whenever it
is strictly stronger.



Tracking failure

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandru Baltag)

Introduction

Stability

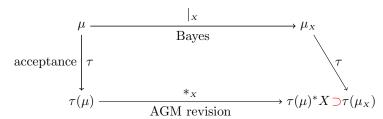
The Tracking problem

Thresho raising

AGM from Bayes via Max Entropy

Conclusion

• How tracking fails for the τ -rule: in general, conditioning + acceptance results in a logically **stronger** belief set than acceptance + AGM revision. No commutativity whenever it is strictly stronger.



No go.

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewski (with Alexandru

Introductio

Stability

The Tracking problem

Threshold

AGM from Bayes via Max Entropy

Conclusion

* Close, but not quite.

Does not comMute!!

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Chris Mierzewski (with Alexandru

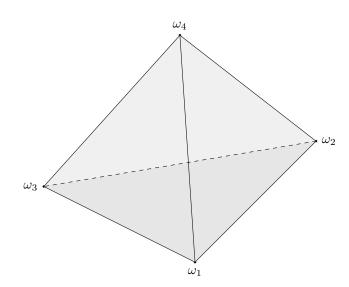
Introduction

Stability

The Tracking

Threshold

AGM from Bayes via Max Entropy



BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewski (with Alexandru Baltag)

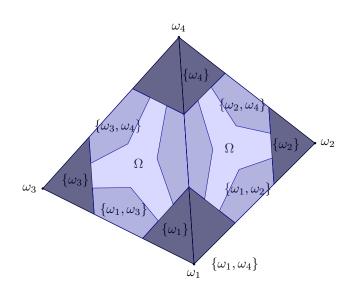
Introduction

Stability

The Tracking problem

Threshold raising

AGM from Bayes via Max Entropy



BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewski (with Alexandru Baltag)

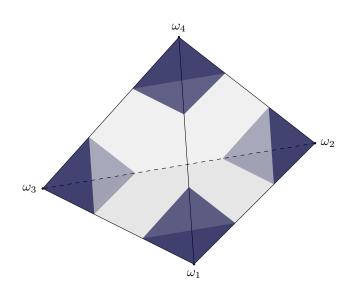
INTRODUCTION

Stability

The Tracking problem

Threshold

AGM from Bayes via Max Entropy



BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewski (with Alexandru Baltag)

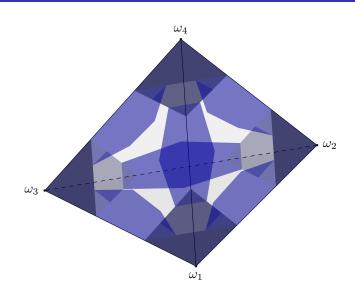
INTRODUCTION

Stability

The Tracking problem

Threshold

AGM from Bayes via Max Entropy



BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewski (with Alexandru Baltag)

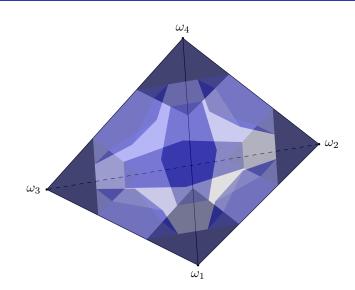
Introductio

Stability

The Tracking problem

Threshold

AGM from Bayes via Max Entropy



URNS EXAMPLE

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandru Baltag)

Introduction

Stability

The Tracking problem

Thresholdraising

AGM from Bayes via Max Entropy

Conclusion

You are given an urn. You know that it is either of the type ${\bf A}$ – containing 30% black marbles and 70% white marbles, or ${\bf B}$ – containing 70% black and 30% white. Suppose you draw (with replacement) 10 marbles form the urn. How many black marbles would you have to draw to be convinced your urn is of type ${\bf A}$?

0,1 or 2 black marbles, for a threshold of 0.5. But drawing 3
marbles yields disagreement between conditioning and
revision: on the Bayesian side, you then believe your urn is of
type A. On the AGM side, you are undecided.

All this assuming a 50-50 prior for urns A, B and using a binomial distribution to compute conditional probabilities.

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Mierzewski (with Alexandru Baltag)

Introductio

Stability

The Trackin

Threshold-

AGM from Bayes via Max Entropy

Conclusion

• When tracking fails for the τ -rule, selecting $\tau(\mu)^*X$ as strongest accepted proposition goes against the Lockean principle (RLP), since $\tau(\mu_X)$ is logically stronger.

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Chris Mierzewsk (with Alexandru Baltag)

Introduction

Stability

The Trackin problem

Thresholdraising

AGM from Bayes via Max Entropy

- When tracking fails for the τ -rule, selecting $\tau(\mu)^*X$ as strongest accepted proposition goes against the Lockean principle (RLP), since $\tau(\mu_X)$ is logically stronger.
- Can we 'force' agreement by changing the threshold?
- Idea: When tracking fails for a threshold t, raise the threshold to a new value q > t, so that the AGM-revised set becomes the least stable set for q.

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Chris Mierzewsk (with Alexandru Baltag)

Introduction

Stability

problem
Threshold-

AGM from

AGM from Bayes via Max Entropy

- When tracking fails for the τ-rule, selecting τ(μ)*X as strongest accepted proposition goes against the Lockean principle (RLP), since τ(μ_X) is logically stronger.
- Can we 'force' agreement by changing the threshold?
- Idea: When tracking fails for a threshold t, raise the threshold to a new value q > t, so that the AGM-revised set becomes the least stable set for q. That is: $\tau_q(\mu_X) = \tau_t(\mu)^* X$, and so the revision $\tau_t(\mu) \mapsto \tau_q(\mu_X)$ is AGM.

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewski (with Alexandru Baltag)

INTRODUCTION

Stability

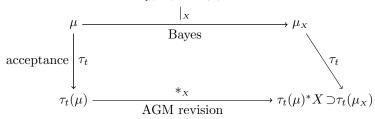
The Trackin

Threshold-

AGM from Bayes via Max Entropy

Conclusion

We want a q such that $\tau_q(\mu_X) = \tau_t(\mu)^* X$.



BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandru Baltag)

INTRODUCTION

Stability

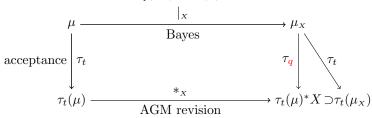
The Trackin

Threshold-

AGM from Bayes via Max Entropy

Conclusion

We want a q such that $\tau_q(\mu_X) = \tau_t(\mu)^* X$.



BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandru Baltag)

Introduction

Stability

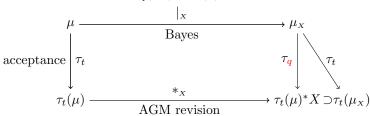
problem

Threshold-

AGM from Bayes via Max Entrop

Conclusion

We want a q such that $\tau_q(\mu_X) = \tau_t(\mu)^* X$.



• Works only if $\exists q \in (0.5, 1], \tau_t(\mu)^* X$ is the least (μ_X, q) -stable set, while $\tau_t(\mu_X)$ is not stable for q.

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandru Baltag)

Introduction

Stability

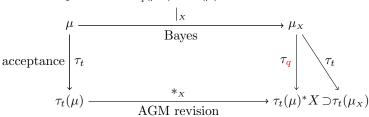
problem

Thresholdraising

AGM from Bayes via Max Entropy

Conclusion

We want a q such that $\tau_q(\mu_X) = \tau_t(\mu)^* X$.



- Works only if $\exists q \in (0.5, 1], \tau_t(\mu)^*X$ is the least (μ_X, q) -stable set, while $\tau_t(\mu_X)$ is not stable for q.
- When do we have such a threshold q?

STABILITY COMES IN DEGREES

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandru Baltag)

Introductio

Stability

problem

Thresholdraising

AGM from Bayes via Max Entropy

Conclusion

Degree of stability

The degree of stability of $X \in \mathfrak{A}$ with respect to a measure $\mu \in \Delta_{\mathfrak{A}}$, denoted $\mathcal{S}(\mu, X)$ is defined as:

$$\mathcal{S}(\mu, X) := \sup\{q \in [0, 1] \,|\, X \text{ is } (\mu, q)\text{-stable}\}$$

When $\mu(X) > 0$, we have

$$\mathcal{S}(\mu, X) = \inf\{\mu_Y(X) \,|\, \mu(Y) > 0, \, X \cap Y \neq \emptyset\}, \text{ and }$$

X is (μ, t) -stable if and only if $S(\mu, X) \geq t$

STABILITY COMES IN DEGREES

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandru Baltag)

Introductio

Stability

Threshold-

AGM from Bayes via Max Entropy

Conclusion

Degree of stability

The degree of stability of $X \in \mathfrak{A}$ with respect to a measure $\mu \in \Delta_{\mathfrak{A}}$, denoted $\mathcal{S}(\mu, X)$ is defined as:

$$\mathcal{S}(\mu,X) := \sup\{q \in [0,1] \,|\, X \text{ is } (\mu,q)\text{-stable}\}$$

When $\mu(X) > 0$, we have

$$S(\mu, X) = \inf\{\mu_Y(X) \mid \mu(Y) > 0, X \cap Y \neq \emptyset\}, \text{ and }$$

X is
$$(\mu, t)$$
-stable if and only if $S(\mu, X) \ge t$

One can raise the threshold to "correct" the revision process only if $S(\mu_X, \tau(\mu_X)) < S(\mu_X, \tau(\mu)^*X)$

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewski (with Alexandru Baltag)

Introduction

Stability

The Trackin

Thresholdraising

AGM from Bayes via Max Entropy

Conclusion

We have t=0.7, a distribution $\mu=(0.5,0.12,0.05,0.33)$, and $X=\{\omega_1,\omega_2,\omega_3\}$. Here $\tau_t(\mu)=\{\omega_1,\omega_2,\omega_4\}$. Then $\mu_X\approx(0.746,0.179,0.075,0)$, and tracking fails since $\tau_t(\mu_X)=\{\omega_1\}$ and $\tau_t(\mu)^*X=\{\omega_1,\omega_2\}$. We have the following degrees of stability with respect to μ_X :

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
//A STABILITY
PRINCIPLES

Chris Mierzewski (with Alexandru Baltag)

INTRODUCTION

Stability

The Trackir problem

Thresholdraising

AGM from Bayes via Max Entropy

Conclusion

We have t = 0.7, a distribution $\mu = (0.5, 0.12, 0.05, 0.33)$, and $X = \{\omega_1, \omega_2, \omega_3\}$. Here $\tau_t(\mu) = \{\omega_1, \omega_2, \omega_4\}$. Then $\mu_X \approx (0.746, 0.179, 0.075, 0)$, and tracking fails since $\tau_t(\mu_X) = \{\omega_1\}$ and $\tau_t(\mu)^*X = \{\omega_1, \omega_2\}$. We have the following degrees of stability with respect to μ_X :

$$S(\tau_t(\mu_X)) = \frac{\mu_X(\omega_1)}{\mu_X(\omega_1) + \mu_X(\Omega \setminus \{\omega_1\})} = \frac{0.746}{1} = 0.746$$

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewski (with Alexandru Baltag)

INTRODUCTIO

Stability

problem

Threshold-

raising

AGM from Bayes via Max Entropy

Conclusion

We have t=0.7, a distribution $\mu=(0.5,0.12,0.05,0.33)$, and $X=\{\omega_1,\omega_2,\omega_3\}$. Here $\tau_t(\mu)=\{\omega_1,\omega_2,\omega_4\}$. Then $\mu_X\approx(0.746,0.179,0.075,0)$, and tracking fails since $\tau_t(\mu_X)=\{\omega_1\}$ and $\tau_t(\mu)^*X=\{\omega_1,\omega_2\}$. We have the following degrees of stability with respect to μ_X :

$$S(\tau_t(\mu_X)) = \frac{\mu_X(\omega_1)}{\mu_X(\omega_1) + \mu_X(\Omega \setminus \{\omega_1\})} = \frac{0.746}{1} = 0.746$$

And

$$S(\tau_t(\mu)^*X) = \frac{\mu_X(\omega_2)}{\mu_X(\omega_2) + \mu_X(\Omega \setminus \{\omega_1, \omega_2\})} = \frac{0.179}{0.179 + 0.075} \approx 0.705$$

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandru Baltag)

11,111,020,0110

Stability

Threshold-

AGM from Baves via

Bayes via Max Entropy

Conclusion

We have t = 0.7, a distribution $\mu = (0.5, 0.12, 0.05, 0.33)$, and $X = \{\omega_1, \omega_2, \omega_3\}$. Here $\tau_t(\mu) = \{\omega_1, \omega_2, \omega_4\}$. Then $\mu_X \approx (0.746, 0.179, 0.075, 0)$, and tracking fails since $\tau_t(\mu_X) = \{\omega_1\}$ and $\tau_t(\mu)^*X = \{\omega_1, \omega_2\}$. We have the following degrees of stability with respect to μ_X :

$$S(\tau_t(\mu_X)) = \frac{\mu_X(\omega_1)}{\mu_X(\omega_1) + \mu_X(\Omega \setminus \{\omega_1\})} = \frac{0.746}{1} = 0.746$$

And

$$S(\tau_t(\mu)^*X) = \frac{\mu_X(\omega_2)}{\mu_X(\omega_2) + \mu_X(\Omega \setminus \{\omega_1, \omega_2\})} = \frac{0.179}{0.179 + 0.075} \approx 0.705$$

So any threshold that makes $\tau_t(\mu)^*X$ stable also makes $\tau_t(\mu_X)$ stable. We cannot force agreement by threshold-raising.

Thresholds

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Chris Mierzewsk (with Alexandru Baltag)

Introductio

Stability

The Trackin

Thresholdraising

AGM from Bayes via Max Entropy

Conclusion

- Lockean vs. stability thresholds
- The threshold-raising method does not always work, and for all sufficiently large probability spaces there exist 'non-correctible' counterexamples[†].

 † Not negligible. E.g. in a probability simplex, the measures vulnerable to such non-correctible cases form a neighbourhood of positive Lebesgue measure.

Thresholds

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Chris Mierzewsk (with Alexandru Baltag)

Introduction

Stability

тпе тгаскіг problem

Threshold-raising

AGM from Bayes via Max Entropy

Conclusion

- Lockean vs. stability thresholds
- The threshold-raising method does not always work, and for all sufficiently large probability spaces there exist 'non-correctible' counterexamples[†].
- Non-correctible cases show an incompatibility between the Lockean and Stability principles and the τ -generated AGM revision, even if one allows thresholds to vary.

[†]Not negligible. E.g. in a probability simplex, the measures vulnerable to such non-correctible cases form a neighbourhood of positive Lebesgue measure.

Thresholds

Bridging BAYESIAN PROBABILITY AND AGM

Thresholdraising

• Lockean vs. stability thresholds

- The threshold-raising method does not always work, and for all sufficiently large probability spaces there exist 'non-correctible' counterexamples[†].
- Non-correctible cases show an incompatibility between the Lockean and Stability principles and the τ -generated AGM revision, even if one allows thresholds to vary.
- The cautiousness of AGM revision does not mix well with the fine-grained nature of probability measures.

[†]Not negligible. E.g. in a probability simplex, the measures vulnerable to such non-correctible cases form a neighbourhood of positive Lebesgue measure.

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Chris Mierzewski (with Alexandru Baltag)

Introduction

Stability

The Trackin

Threshold

AGM from Bayes via Max Entropy

Conclusion

• What if the probabilistic representation of the agent's credal state is not fully specified?

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Mierzewski (with Alexandru

INTRODUCTION

Stability

The Trackin problem

Threshold

AGM from Bayes via Max Entropy

Conclusion

Bridging BAYESIAN PROBABILITY AND AGM

AGM from Bayes via Max Entropy

- What if the probabilistic representation of the agent's credal state is not fully specified? (e.g., information loss, incomplete description)
- Suppose the agent only has a qualitative description of her credal state, but is strictly committed to Bayesian conditioning as an update method.

Bridging BAYESIAN PROBABILITY AND AGM

AGM from Bayes via

Max Entropy

- What if the probabilistic representation of the agent's credal state is not fully specified? (e.g., information loss, incomplete description)
- Suppose the agent only has a qualitative description of her credal state, but is strictly committed to Bayesian conditioning as an update method.
- Would like to: use τ to find a measure representing the credal state

Bridging BAYESIAN PROBABILITY AND AGM

AGM from Bayes via

Max Entropy

- Suppose the agent only has a qualitative description of her credal state, but is strictly committed to Bayesian conditioning as an update method.
- Would like to: use τ to find a measure representing the credal state; use Bayes

Bridging BAYESIAN PROBABILITY AND AGM

Bayes via

AGM from Max Entropy

- Suppose the agent only has a qualitative description of her credal state, but is strictly committed to Bayesian conditioning as an update method.
- Would like to: use τ to find a measure representing the credal state; use Bayes; then τ again

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Chris
Mierzewsk
(with
Alexandru
Baltag)

INTRODUCTIO

Stability

The Tracking problem

Threshold raising

AGM from Bayes via Max Entropy

- Suppose the agent only has a qualitative description of her credal state, but is strictly committed to Bayesian conditioning as an update method.
- Would like to: use τ to find a measure representing the credal state; use Bayes; then τ again. This generates a qualitative revision.

MAX ENTROPY PRINCIPLE

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Chris Mierzewski (with Alexandru Baltag)

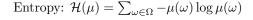
Introduction

Stability

The Tracking

Threshold

AGM from Bayes via Max Entropy



BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandru Baltag)

Introduction

Stability

The Trackin problem

Threshold

AGM from Bayes via Max Entropy

Conclusion

Entropy:
$$\mathcal{H}(\mu) = \sum_{\omega \in \Omega} -\mu(\omega) \log \mu(\omega)$$

• Entropy as a measure of uncertainty.

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewski (with Alexandru Baltag)

Introduction

Stability

The Trackin problem

Threshol raising

AGM from Bayes via Max Entropy

Conclusion

Entropy:
$$\mathcal{H}(\mu) = \sum_{\omega \in \Omega} -\mu(\omega) \log \mu(\omega)$$

• Entropy as a measure of uncertainty.

Maximum Entropy Principle (MEP):

If all that is known to the agent is that a probability distribution lies within some zone $\mathcal{N} \subseteq \Delta_{\mathfrak{A}}$, the agent selects a distribution with maximal entropy among those in \mathcal{N} , if such exist.

Bridging BAYESIAN PROBABILITY AND AGM

AGM from

Bayes via Max Entropy

Entropy:
$$\mathcal{H}(\mu) = \sum_{\omega \in \Omega} -\mu(\omega) \log \mu(\omega)$$

• Entropy as a measure of uncertainty.

Maximum Entropy Principle (MEP):

If all that is known to the agent is that a probability distribution lies within some zone $\mathcal{N} \subseteq \Delta_{\mathfrak{N}}$, the agent selects a distribution with maximal entropy among those in \mathcal{N} , if such exist.

• Max Entropy distribution thought to be least biased representation of the agent's credal state, given the constraints.

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandru Baltag)

INTRODUCTIO

Stability

The Trackii problem

raising

AGM from Bayes via Max Entropy

Conclusion

Entropy:
$$\mathcal{H}(\mu) = \sum_{\omega \in \Omega} -\mu(\omega) \log \mu(\omega)$$

• Entropy as a measure of uncertainty.

Maximum Entropy Principle (MEP):

If all that is known to the agent is that a probability distribution lies within some zone $\mathcal{N} \subseteq \Delta_{\mathfrak{A}}$, the agent selects a distribution with maximal entropy among those in \mathcal{N} , if such exist.

 Max Entropy distribution thought to be least biased representation of the agent's credal state, given the constraints.

Start with a qualitative representation. Use τ and MEP to find a measure representing the credal state; use Bayes; then τ again.

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewski (with Alexandru Baltag)

INTRODUCTIO

Stability

problem

Thresholdraising

AGM from Bayes via Max Entropy

Conclusion

Entropy:
$$\mathcal{H}(\mu) = \sum_{\omega \in \Omega} -\mu(\omega) \log \mu(\omega)$$

• Entropy as a measure of uncertainty.

Maximum Entropy Principle (MEP):

If all that is known to the agent is that a probability distribution lies within some zone $\mathcal{N} \subseteq \Delta_{\mathfrak{A}}$, the agent selects a distribution with maximal entropy among those in \mathcal{N} , if such exist.

 Max Entropy distribution thought to be least biased representation of the agent's credal state, given the constraints.

Start with a qualitative representation. Use τ and MEP to find a measure representing the credal state; use Bayes; then τ again. The resulting revision is always AGM.

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandru Baltag)

INTRODUCTION

Stability

The Trackin problem

Threshol raising

AGM from Bayes via Max Entropy

Conclusion

For finite probability spaces:

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandru Baltag)

INTRODUCTION

Stability

The Trackin problem

Threshol

AGM from Bayes via Max Entropy

Conclusion

For finite probability spaces:

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandru Baltag)

INTRODUCTIO

Stability

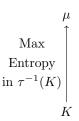
The Trackii problem

Threshold raising

AGM from Bayes via Max Entropy

Conclusion

For finite probability spaces:



BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Chris Mierzewsk (with Alexandru Baltag)

INTRODUCTION

Stability

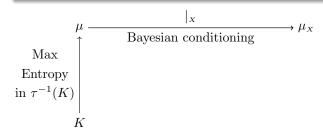
The Tracking problem

Threshold-raising

AGM from Bayes via Max Entropy

Conclusion

For finite probability spaces:



BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Chris Mierzewsk (with Alexandru Baltag)

INTRODUCTION

Stability

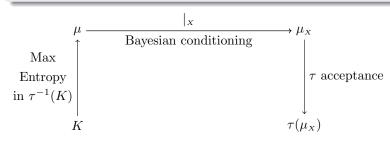
The Trackin problem

Threshold-raising

AGM from Bayes via Max Entropy

Conclusion

For finite probability spaces:



BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Chris Mierzewsk (with Alexandru Baltag)

INTRODUCTION

Stability

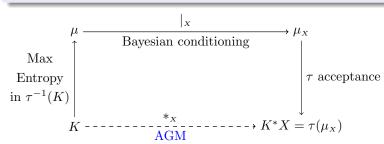
problem

Threshold-raising

AGM from Bayes via Max Entropy

Conclusion

For finite probability spaces:



BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Chris Mierzewsk (with Alexandri Baltag)

Introductio

Stability

The Trackin problem

Threshol

AGM from Bayes via Max Entropy

Conclusion

How it works - a sketch:

• Restrict attention to rank-uniform measures in $\tau^{-1}(K)$.

Any $\mu \in \Delta_{\mathfrak{A}}$ is entropy-dominated by some rank-equivalent, rank-uniform probability measure.

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Chris Mierzewsk (with Alexandru Baltag)

Introduction

Stability

problem

Threshold raising

AGM from Bayes via Max Entropy

Conclusion

How it works - a sketch:

• Restrict attention to rank-uniform measures in $\tau^{-1}(K)$.

Any $\mu \in \Delta_{\mathfrak{A}}$ is entropy-dominated by some rank-equivalent, rank-uniform probability measure.

- The desired maximal entropy measure in $\tau^{-1}(K)$ is the rank-uniform measure μ with two ranks which assigns the least possible measure to K.
- Finally, the resulting revision $K \mapsto \tau(\mu_X)$ is always AGM because:

If μ is rank-uniform, then for any $X \in \mathfrak{A}$, the revision $\tau(\mu) \mapsto \tau(\mu_X)$ is the AGM revision generated by $\mathfrak{S}^t(\mu)$.

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandru Baltag)

Introduction

Stability

The Trackin problem

AGM from

AGM from Bayes via Max Entropy

Conclusion

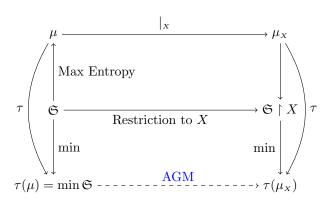


Figure: Recovering AGM revision from a plausibility ordering.

 \hookrightarrow Reduces to a convex optimisation problem, with linear inequality constraints given by the stability requirement.

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewski (with Alexandru Baltag)

Introduction

Stability

The Trackin problem

Threshol raising

AGM from Bayes via Max Entropy

Conclusion

• We have seen AGM revision is too coarse-grained to fully track Bayesian conditioning: it cannot deal with retaining too much information about the probability measure.

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandru Baltag)

Introduction

Stability

The Trackin problem

Threshol raising

AGM from Bayes via Max Entropy

- We have seen AGM revision is too coarse-grained to fully track Bayesian conditioning: it cannot deal with retaining too much information about the probability measure.
- But with an incomplete probabilistic description, AGM can emerge from the τ-rule + two probabilistic principles. Slogan: under incomplete information, "AGM = τ-rule + Maximum Entropy + Bayesian Conditioning".

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandru Baltag)

Introduction

Stability

The Trackin problem

Threshold raising

AGM from Bayes via Max Entropy • We have seen AGM revision is too coarse-grained to fully track Bayesian conditioning: it cannot deal with retaining too much information about the probability measure.

- But with an incomplete probabilistic description, AGM can emerge from the τ -rule + two probabilistic principles. Slogan: under incomplete information, "AGM = τ -rule + Maximum Entropy + Bayesian Conditioning".
- One can prove a similar result if more qualitative information is retained: e.g plausibility orderings.

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris
Mierzewsk
(with
Alexandru
Baltag)

INTRODUCTION

Stability

problem

Threshold raising

AGM from Bayes via Max Entropy • We have seen AGM revision is too coarse-grained to fully track Bayesian conditioning: it cannot deal with retaining too much information about the probability measure.

- But with an incomplete probabilistic description, AGM can emerge from the τ -rule + two probabilistic principles. Slogan: under incomplete information, "AGM = τ -rule + Maximum Entropy + Bayesian Conditioning".
- One can prove a similar result if more qualitative information is retained: e.g plausibility orderings.
- ~> How much information must be lost for AGM to emerge from conditioning in this way? Many geometric/information-theoretic questions.

FURTHER QUESTIONS, APPLICATIONS

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY

Chris Mierzewski (with Alexandru

Introduction

Stability

The Trackin

Threshol

AGM from Bayes via Max Entropy

- Logics
- Games
- Qualitative probability

CONCLUSION

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandri Baltag)

INTRODUCTIO

Stability

problem

Threshold raising

AGM from Bayes via Max Entrop

- Stability principles offer a nice acceptance rule which avoids the Lottery paradox and is closely related to AGM revision.
- Perfect tracking is impossible for AGM; one can approximate it, but it comes at a cost.
- « AGM revision could be seen as a special case of Bayesian reasoning under the constraint of incomplete information.

References

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris
Mierzewsk
(with
Alexandru
Baltag)

Introductio

Stability

The Tracking problem

Threshoraising

AGM from Bayes via Max Entropy

- Alchourrón, C., Gärdenfors, P. and Makinson, D., 1985, "On the logic of theory change: partial meet contraction and revision functions", Journal of Symbolic Logic, 50(2): pp.510–530.
- HALPERN, J., 2003, Reasoning About Uncertainty, MIT Press, Cambridge.
- JAYNES, E. T, 1957, "Information Theory and Statistical Mechanics", Physical Review Series II 106 (4): pp. 620-663.
- Kelly, K. and Lin, H., 2012, "Propositional Reasoning that Tracks Probabilistic Reasoning", Journal of Philosophical Logic, 41(6): pp. 957–981.

References 2

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Chris Mierzewsk (with Alexandri Baltag)

INTRODUCTIO

Stability

The Tracking problem

AGM from

AGM from Bayes via Max Entropy

- Kelly, K. and Lin, H., 2012, "A geo-logical solution to the lottery-paradox, with applications to conditional logic", Synthese, Vol. 186 (2), pp. 531–575.
- Leitgeb, H., 2013, "Reducing Belief Simpliciter to Degrees of Belief", Annals of Pure and Applied Logic, 164, pp. 1338–1389.
- Leitgeb, H, 2012, "A Joint Theory of Belief and Probability: Comparing the Theories", talk given at the MCMP Round Table on Acceptance, February 3rd, 2012. Slides at URL=http://www.mcmp.philosophie.uni-muenchen.de/events/archive/2012/add_act/r_t_accept/round_tables.

References 3

BRIDGING
BAYESIAN
PROBABILITY
AND AGM
REVISION
VIA STABILITY
PRINCIPLES

Mierzewski (with Alexandru

Introduction

Stability

The Trackin problem

Threshold raising

AGM from Bayes via Max Entropy

Conclusion

PARIS J.B., 1994, The uncertain reasoner's companion: a mathematical perspective, Cambridge Tracts in Theoretical Computer Science 39, Cambridge University Press.

ROMAN, S., 1997, Coding and Information Theory, Graduate Texts in Mathematics, Springer.