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Plan
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" No-Go Theorem (Lin&Kelly)

! Threshold-raising
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Setup

Probability spaces (! , A, µ). Propositions X, Y, ... $ A.

" A is the set of all probability measures onA.

Acceptance rule: map! : " A % A. The agent acceptsX $ A
if and only if ! (µ) & X : i.e. ! (µ) is the strongest accepted
proposition.

" 1

" 2

" 3

" 4

µ

'

!
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Setup 2

Qualitative revision operators # : A ( A % A: Þrst variable
represents the current strongest accepted proposition, and the
second the new revision input.

For any belief state K $ A and propositions X, Y , the revision # is
AGM-compliant if

K ! X & X

K ) X & K ! X (Inclusion)

If K ) X *= ' , then K ! X & K ) X (Preservation)

If K ! X = ' then K = ' or X = '

(K ! X ) ) Y & K ! (X ) Y )

If ( K ! X ) ) Y *= ' , then K ! (X ) Y ) & (K ! X ) ) Y
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Tracking

Tracking

A qualitative revision policy A maps eachµ $ " A to a proposition
! (µ) and a revision operator # applicable to that proposition. It
tracks Bayesian conditioning if:

+µ $ " A , +X $ A with µ(X ) > 0, ! (µ)! X = ! (µX ).

µ µX

! (µ) ! (µ)! X = ! (µX )

|X

Bayesian conditioning

acceptance rule !

#X

revision operator

!
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Old problems with Locke

Lockean rule #t with threshold t:

(%) If #t (µ) & X then µ(X ) , t

(- ) If µ(X ) , t then #t (µ) & X

Acceptance must be reasonable: it must avoid Lottery-style
paradoxes, but it should not require measure 1.

Leitgeb: keep the (%)-direction of the Lockean thesis, but
restrict the ( - )-direction.
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Stability (Leitgeb)

Stability

Let (! , A, µ) a probability space, and t $ (0.5, 1].
A set X $ A is (µ, t )-stable if and only if +Y $ A such that
X ) Y *= ' and µ(Y ) > 0, we haveµY (X ) , t.

Interpretation: a proposition X is (µ, t )-stable if only learning
a proposition inconsistent with X can bring the probability of
X below the threshold: robustness under new information.

Note that the probability of stable propositions is always
above the threshold.
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Stability (Leitgeb)

Two proposed norms for acceptance:

the Stability Principle (SP) : ÒGiven a thresholdt and µ $ " A ,
the strongest accepted proposition must be a(µ, t )-stable set inA.Ó

The strongest accepted proposition must be robust.

Relativised Lockean Principle (RLP): ÒAccept as many
propositions X with µ(X ) , t as is possible without violating
(SP).Ó

We want to believe as many propositions above the threshold as
we can, to remain close to Lockean intuitions.

% Together this suggests: Òpick the logically strongest (&-least)
stable setÓ. Does one always exist?
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Systems of Spheres

Well-ordering (Leitgeb)

Let µ $ " A a $-additive measure,t $ (0.5, 1]. Then the set
S !

< 1(µ) := { X $ A |µ(X ) < 1 and X is (µ, t )-stable} is
well-ordered by set inclusion, and has order type at most" .

We do need $-additivity here to exclude inÞnitely
descending chains :

!
suppose we have a chain

X 0 . ...X n . X n +1 . ... with X 0 a (µ, t )-stable set and
µ(X 0) < 1. Let Ai := X i \ X i +1 . Then
µ(X 0) = lim n "# (

" n
i =0 µ(Ai )). The limit of partial sums

converges, so limn "# (µ(An )) = 0. Take the sequence
/µ(X 0 | X c

0 0 Ai ) : i $ N1. Each term is equal to µ(A i )
µ (X c

0 )+ µ (A i ) with
µ(Ai ) % 0. So there is someN with µ(X 0 | X c

0 0 AN ) < t . So X 0

is not (µ, t )-stable after all; contradiction.
#
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Systems of Spheres

Problem with stable sets of measure one: a least set of
measure 1 may not exist.

Leitgeb: Þx it by postulation. Restrict attention to spaces
having such a set (Least Certain Set property).

Spheres

Let (! , A, µ) a space satisfying(LCS), t $ (0.5, 1]. Let S# the
least measure-1 set inA. Then the set S ! (µ) := S !

< 1(µ) 0 { S# }
is well-ordered by set-inclusion.

Fairly severe restriction, but things work Þne for regular
spaces, countable full powerset algebras...
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The ! -rule

The %-rule

For any probability measure µ on A which satisÞes (LCS), and
any t $ (0.5, 1], let S ! (µ) the system of spheres generated byµ.
Then we deÞne the map%t : " A % A as

%t (µ) := min
$

S ! (µ)

No Lottery paradox.

S ! (µ) is a system of spheres: it generates a ranking (total
preorder) on !. Via GroveÕs Theorem, each system of spheres
generates and AGM revision operator.

% LeitgebÕs%-rule (1) is plausible as an acceptance principle,
(2) o#ers a nice connection with AGM.
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Acceptance zones

!

{ w 1 ,w 2 }

{ w 2 ,w 3 }

{ w 1 ,w 3 }

{ w 1 }

{ w 2 } { w 3 }

Figure: Acceptance zones for LeitgebÕs! -rule with t = 2 / 3 and |! | = 3.
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Tracking

Observation

Let µ $ " A , t $ (0.5, 1], and # the AGM revision generated by%t .
Then +X $ A with µ(X ) > 0, the set %(µ)! X is (µX , t)-stable.

So the AGM-revised set%(µ)! X is always stable after
conditioning. Is it always the least stable set?

No.

! := { " 1, ..., " 4} and A the full power set algebra over !.

Set t = 0 .7.

Take µ = (0 .5, 0.12, 0.05, 0.33) and X := { " 1, " 2, " 3} . Then

% %(µ) = { " 1, " 2, " 4} and so%(µ)! X = { " 1, " 2} = %(µ) ) X .

% conditioning on X gives µX 2 (0.746, 0.179, 0.075, 0), and we
get %(µX ) = { " 1} . So %(µX ) 3 %(µ)! X : conditioning raises
the probability of " 1 just enough to make it (µX , t)-stable.
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No-Go Theorem (Lin&Kelly)

%(µ)

R2

R3

R4

R5
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Figure: System of spheres centered onX .

In this case, we have%(µX ) 3 %(µ)! X ; further, the revision
%(µ) % %(µX ) is not AGM, as it fails Inclusion.

This example also shows howtracking fails for %.

Special case
of:

The No-Go Theorem (Lin&Kelly)

Let |! | > 2, A a Þeld of sets over !, and let ! : " A % A be any
sensibleacceptance rule. Then no AGM revision policy based on
! tracks Bayesian conditioning.
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Tracking failure

How tracking fails for the %-rule: in general, conditioning +
acceptance results in a logicallystronger belief set than
acceptance + AGM revision. No commutativity whenever it
is strictly stronger.

µ µX

%(µ) %(µ)! X

|X

Bayes

acceptance %

#X

AGM revision

. %(µX )
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No go.

! Close, but not quite.

Does not comMute!!
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Urns example

You are given an urn. You know that it is either of the type A Ð
containing 30% black marbles and 70% white marbles, orB Ð
containing 70% black and 30% white. Suppose you draw (with
replacement) 10 marbles form the urn. How many black marbles
would you have to draw to be convinced your urn is of typeA ?

0,1 or 2 black marbles, for a threshold of 0.5. But drawing 3
marbles yields disagreement between conditioning and
revision: on the Bayesian side, you then believe your urn is of
type A . On the AGM side, you are undecided.

All this assuming a 50-50 prior for urns A, B and using a binomial

distribution to compute conditional probabilities.
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Threshold-raising

When tracking fails for the %-rule, selecting%(µ)! X as
strongest accepted proposition goes against the Lockean
principle (RLP), since %(µX ) is logically stronger.

Can we ÔforceÕ agreement by changing the threshold?

Idea: When tracking fails for a threshold t, raise the
threshold to a new valueq > t , so that the AGM-revised set
becomes the least stable set forq. That is: %q(µX ) = %t (µ)! X ,
and so the revision%t (µ) 4%%q(µX ) is AGM.
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Threshold-raising

We want a q such that %q(µX ) = %t (µ)! X .

µ µX

%t (µ) %t (µ)! X

|X

Bayes

acceptance %t

#X

AGM revision
. %t (µX )

%t

Works only if 5q $ (0.5, 1], %t (µ)! X is the least (µX , q)-stable
set, while %t (µX ) is not stable for q.

When do we have such a thresholdq?
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Stability comes in degrees

Degree of stability

The degree of stability of X $ A with respect to a measure
µ $ " A , denoted S(µ, X ) is deÞned as:

S(µ, X ) := sup { q $ [0, 1] | X is (µ, q)-stable}

When µ(X ) > 0, we have
S(µ, X ) = inf { µY (X ) | µ(Y ) > 0, X ) Y *= '} , and

X is (µ, t )-stable if and only if S(µ, X ) , t

One can raise the threshold to ÒcorrectÓ the revision processonly
if S(µX , %(µX )) < S(µX , %(µ)! X )
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Incorrigible

We have t = 0 .7, a distribution µ = (0 .5, 0.12, 0.05, 0.33), and
X = { " 1, " 2, " 3} . Here %t (µ) = { " 1, " 2, " 4} . Then
µX 2 (0.746, 0.179, 0.075, 0), and tracking fails since
%t (µX ) = { " 1} and %t (µ)! X = { " 1, " 2} . We have the following
degrees of stability with respect toµX :

S(%t (µX )) =
µX (" 1)

µX (" 1) + µX (! \ { " 1} )
=

0.746
1

= 0 .746

And

S(%t (µ)! X ) =
µX (" 2)

µX (" 2) + µX (! \ { " 1, " 2} )
=

0.179
0.179 + 0.075

2 0.705

So any threshold that makes%t (µ)! X stable also makes%t (µX )
stable. We cannot force agreement by threshold-raising.
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Thresholds

Lockean vs. stability thresholds

The threshold-raising method does not always work, and for
all su$ciently large probability spaces there exist
Ônon-correctibleÕ counterexamples  .

Non-correctible cases show an incompatibility between the
Lockean and Stability principles and the %-generated AGM
revision, even if one allows thresholds to vary.

The cautiousness of AGM revision does not mix well with the
Þne-grained nature of probability measures.

  Not negligible. E.g. in a probability simplex, the measures vulnerable to such

non-correctible cases form a neighbourhood of positive Lebesgue measure.
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AGM from Bayes via Max Entropy

What if the probabilistic representation of the agentÕs credal
state is not fully speciÞed?

(e.g., information loss, incomplete
description)

Suppose the agent only has a qualitative description of her
credal state, but is strictly committed to Bayesian
conditioning as an update method.

Would like to: use %to Þnd a measure representing the credal
state; use Bayes; then %again. This generates a qualitative
revision.



Bridging
Bayesian

probability
and AGM
revision

via stability
principles

Chris
Mierzewski

(with
Alexandru

Baltag)

Introduction

Stability

The Tracking
problem

Threshold-
raising

AGM from
Bayes via
Max Entropy

Conclusion

AGM from Bayes via Max Entropy

What if the probabilistic representation of the agentÕs credal
state is not fully speciÞed?(e.g., information loss, incomplete
description)

Suppose the agent only has a qualitative description of her
credal state, but is strictly committed to Bayesian
conditioning as an update method.

Would like to: use %to Þnd a measure representing the credal
state; use Bayes; then %again. This generates a qualitative
revision.



Bridging
Bayesian

probability
and AGM
revision

via stability
principles

Chris
Mierzewski

(with
Alexandru

Baltag)

Introduction

Stability

The Tracking
problem

Threshold-
raising

AGM from
Bayes via
Max Entropy

Conclusion

AGM from Bayes via Max Entropy

What if the probabilistic representation of the agentÕs credal
state is not fully speciÞed?(e.g., information loss, incomplete
description)

Suppose the agent only has a qualitative description of her
credal state, but is strictly committed to Bayesian
conditioning as an update method.

Would like to: use %to Þnd a measure representing the credal
state; use Bayes; then %again. This generates a qualitative
revision.



Bridging
Bayesian

probability
and AGM
revision

via stability
principles

Chris
Mierzewski

(with
Alexandru

Baltag)

Introduction

Stability

The Tracking
problem

Threshold-
raising

AGM from
Bayes via
Max Entropy

Conclusion

AGM from Bayes via Max Entropy

What if the probabilistic representation of the agentÕs credal
state is not fully speciÞed?(e.g., information loss, incomplete
description)

Suppose the agent only has a qualitative description of her
credal state, but is strictly committed to Bayesian
conditioning as an update method.

Would like to: use %to Þnd a measure representing the credal
state

; use Bayes; then %again. This generates a qualitative
revision.



Bridging
Bayesian

probability
and AGM
revision

via stability
principles

Chris
Mierzewski

(with
Alexandru

Baltag)

Introduction

Stability

The Tracking
problem

Threshold-
raising

AGM from
Bayes via
Max Entropy

Conclusion

AGM from Bayes via Max Entropy

What if the probabilistic representation of the agentÕs credal
state is not fully speciÞed?(e.g., information loss, incomplete
description)

Suppose the agent only has a qualitative description of her
credal state, but is strictly committed to Bayesian
conditioning as an update method.

Would like to: use %to Þnd a measure representing the credal
state; use Bayes

; then %again. This generates a qualitative
revision.



Bridging
Bayesian

probability
and AGM
revision

via stability
principles

Chris
Mierzewski

(with
Alexandru

Baltag)

Introduction

Stability

The Tracking
problem

Threshold-
raising

AGM from
Bayes via
Max Entropy

Conclusion

AGM from Bayes via Max Entropy

What if the probabilistic representation of the agentÕs credal
state is not fully speciÞed?(e.g., information loss, incomplete
description)

Suppose the agent only has a qualitative description of her
credal state, but is strictly committed to Bayesian
conditioning as an update method.

Would like to: use %to Þnd a measure representing the credal
state; use Bayes; then %again

. This generates a qualitative
revision.



Bridging
Bayesian

probability
and AGM
revision

via stability
principles

Chris
Mierzewski

(with
Alexandru

Baltag)

Introduction

Stability

The Tracking
problem

Threshold-
raising

AGM from
Bayes via
Max Entropy

Conclusion

AGM from Bayes via Max Entropy

What if the probabilistic representation of the agentÕs credal
state is not fully speciÞed?(e.g., information loss, incomplete
description)

Suppose the agent only has a qualitative description of her
credal state, but is strictly committed to Bayesian
conditioning as an update method.

Would like to: use %to Þnd a measure representing the credal
state; use Bayes; then %again. This generates a qualitative
revision.



Bridging
Bayesian

probability
and AGM
revision

via stability
principles

Chris
Mierzewski

(with
Alexandru

Baltag)

Introduction

Stability

The Tracking
problem

Threshold-
raising

AGM from
Bayes via
Max Entropy

Conclusion

Max Entropy Principle

Entropy: H(µ) =
"

" %! 6 µ(" ) log µ(" )

Entropy as a measure of uncertainty.

Maximum Entropy Principle (MEP) :
If all that is known to the agent is that a probability distribution
lies within some zoneN & " A , the agent selects a distribution

with maximal entropy among those inN , if such exist.

Max Entropy distribution thought to be least biased
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Start with a qualitative representation. Use %and MEP to Þnd a
measure representing the credal state; use Bayes; then%again.
The resulting revision is always AGM.



Bridging
Bayesian

probability
and AGM
revision

via stability
principles

Chris
Mierzewski

(with
Alexandru

Baltag)

Introduction

Stability

The Tracking
problem

Threshold-
raising

AGM from
Bayes via
Max Entropy

Conclusion

Max Entropy Principle

Entropy: H(µ) =
"

" %! 6 µ(" ) log µ(" )

Entropy as a measure of uncertainty.

Maximum Entropy Principle (MEP) :
If all that is known to the agent is that a probability distribution
lies within some zoneN & " A , the agent selects a distribution

with maximal entropy among those inN , if such exist.

Max Entropy distribution thought to be least biased
representation of the agentÕs credal state, given the
constraints.

Start with a qualitative representation. Use %and MEP to Þnd a
measure representing the credal state; use Bayes; then%again.
The resulting revision is always AGM.



Bridging
Bayesian

probability
and AGM
revision

via stability
principles

Chris
Mierzewski

(with
Alexandru

Baltag)

Introduction

Stability

The Tracking
problem

Threshold-
raising

AGM from
Bayes via
Max Entropy

Conclusion

Max Entropy Principle

Entropy: H(µ) =
"

" %! 6 µ(" ) log µ(" )

Entropy as a measure of uncertainty.

Maximum Entropy Principle (MEP) :
If all that is known to the agent is that a probability distribution
lies within some zoneN & " A , the agent selects a distribution

with maximal entropy among those inN , if such exist.

Max Entropy distribution thought to be least biased
representation of the agentÕs credal state, given the
constraints.

Start with a qualitative representation. Use %and MEP to Þnd a
measure representing the credal state; use Bayes; then%again.
The resulting revision is always AGM.



Bridging
Bayesian

probability
and AGM
revision

via stability
principles

Chris
Mierzewski

(with
Alexandru

Baltag)

Introduction

Stability

The Tracking
problem

Threshold-
raising

AGM from
Bayes via
Max Entropy

Conclusion

Max Entropy Principle

Entropy: H(µ) =
"

" %! 6 µ(" ) log µ(" )

Entropy as a measure of uncertainty.

Maximum Entropy Principle (MEP) :
If all that is known to the agent is that a probability distribution
lies within some zoneN & " A , the agent selects a distribution

with maximal entropy among those inN , if such exist.

Max Entropy distribution thought to be least biased
representation of the agentÕs credal state, given the
constraints.

Start with a qualitative representation. Use %and MEP to Þnd a
measure representing the credal state; use Bayes; then%again.
The resulting revision is always AGM.



Bridging
Bayesian

probability
and AGM
revision

via stability
principles

Chris
Mierzewski

(with
Alexandru

Baltag)

Introduction

Stability

The Tracking
problem

Threshold-
raising

AGM from
Bayes via
Max Entropy

Conclusion

Max Entropy Principle

Entropy: H(µ) =
"

" %! 6 µ(" ) log µ(" )

Entropy as a measure of uncertainty.

Maximum Entropy Principle (MEP) :
If all that is known to the agent is that a probability distribution
lies within some zoneN & " A , the agent selects a distribution

with maximal entropy among those inN , if such exist.

Max Entropy distribution thought to be least biased
representation of the agentÕs credal state, given the
constraints.

Start with a qualitative representation. Use %and MEP to Þnd a
measure representing the credal state; use Bayes; then%again.

The resulting revision is always AGM.



Bridging
Bayesian

probability
and AGM
revision

via stability
principles

Chris
Mierzewski

(with
Alexandru

Baltag)

Introduction

Stability

The Tracking
problem

Threshold-
raising

AGM from
Bayes via
Max Entropy

Conclusion

Max Entropy Principle

Entropy: H(µ) =
"

" %! 6 µ(" ) log µ(" )

Entropy as a measure of uncertainty.

Maximum Entropy Principle (MEP) :
If all that is known to the agent is that a probability distribution
lies within some zoneN & " A , the agent selects a distribution

with maximal entropy among those inN , if such exist.

Max Entropy distribution thought to be least biased
representation of the agentÕs credal state, given the
constraints.

Start with a qualitative representation. Use %and MEP to Þnd a
measure representing the credal state; use Bayes; then%again.
The resulting revision is always AGM.



Bridging
Bayesian

probability
and AGM
revision

via stability
principles

Chris
Mierzewski

(with
Alexandru

Baltag)

Introduction

Stability

The Tracking
problem

Threshold-
raising

AGM from
Bayes via
Max Entropy

Conclusion

AGM from Bayes via Max Entropy

For Þnite probability spaces:

Let K *= ' a proposition in A, and %the Leitgeb rule for some
Þxed t $ [0.5, 1). Then there is a unique maximal entropy
distribution µ $ " A such that %(µ) = K . Moreover, for any
positive probability X $ A, we have%(µX ) = K ! X , where # is the
AGM revision operator generated byS ! (µ).

K

µ

Max
Entropy

in %& 1(K )

µX

Bayesian conditioning

|X

%(µX )

%acceptance

K ! X = %(µX )

%acceptance

#X

AGM
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AGM from Bayes via Max Entropy

How it works - a sketch:

Restrict attention to rank-uniform measures in %& 1(K ).

Any µ $ " A is entropy-dominated by some rank-equivalent,
rank-uniform probability measure.

The desired maximal entropy measure in%& 1(K ) is the
rank-uniform measureµ with two ranks which assigns the
least possible measure toK .

Finally, the resulting revision K 4%%(µX ) is always AGM
because:

If µ is rank-uniform, then for any X $ A, the revision
%(µ) 4%%(µX ) is the AGM revision generated by S t (µ).
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AGM from Bayes via Max Entropy

µ µX

S S " X

Max Entropy

|X

Restriction to X

%(µ) = min S %(µX )
AGM

minmin

% %

Figure: Recovering AGM revision from a plausibility ordering.

&% Reduces to a convex optimisation problem, with linear
inequality constraints given by the stability requirement.
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AGM from Bayes via Max Entropy

We have seen AGM revision is too coarse-grained to fully
track Bayesian conditioning: it cannot deal with retaining too
much information about the probability measure.

But with an incomplete probabilistic description, AGM can
emerge from the%-rule + two probabilistic principles. Slogan:
under incomplete information, ÒAGM = %-rule + Maximum
Entropy + Bayesian ConditioningÓ.

One can prove a similar result if more qualitative information
is retained: e.g plausibility orderings.

# How much information must be lost for AGM to emerge from

conditioning in this way? Many geometric/information-theoretic

questions.
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Further questions, applications

Logics

Games

Qualitative probability
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Conclusion

! Stability principles o#er a nice acceptance rule which avoids
the Lottery paradox and is closely related to AGM revision.

! Perfect tracking is impossible for AGM; one can approximate
it, but it comes at a cost.

! AGM revision could be seen as a special case of Bayesian
reasoning under the constraint of incomplete information.
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