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The Question
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Propositional Dynamic Logic
Definition: Syntax

Atomic propositions p, atomic programs a.
I „ := p | ¬„ | „ ‚ „ | „ · „ | „ æ „ | È–Í„ | [–]„
I – := a | –; – | – fi – | –ú | „? | 1 | 0

Definition: Models

A PDL-model M = (W , R, V ) consists of
I W : set of worlds/states
I R = (R›)›: family of binary relations on W such that

I R‰;› = R‰; R› (consecution)
I R‰fi› = R‰ fi R› (union)
I R‰ú = (R‰)ú (reflexive-transitive closure)
I R„? = {(w , w) œ W ◊ W | M, w ✏ „}
I R1 = {(s, t) œ W ◊ W | s = t} (identity on W )
I R0 = ? (empty relation)

I V : Prop æ P(W ): valuation function
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Propositional Dynamic Logic

Definition: Truth

I M, w ✏ p i� w œ V (p)
I M, w ✏ ¬„ i� M, w ”✏ „

I M, w ✏ „ ‚ Â i� M, w ✏ „ or M, w ✏ Â

I M, w ✏ „ · Â i� M, w ✏ „ and M, w ✏ Â

I M, w ✏ „ æ Â i� M, w ”✏ „ or M, w ✏ Â

I M, w ✏ È–Í„ i� there is a w Õ œ W : wR–w Õ and M, w Õ ✏ „.
I M, w ✏ [–]„ i� for all w Õ œ W : wR–w Õ also M, w Õ ✏ „.

Definition: Validity

A formula „ is valid i� it is true at all states in all models.
In this case we write ✏ „.
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Craig Interpolation

Definition: Language

The language of a formula „ is the set L(„) consisting of all
atomic propositions and programs occurring in „.
Example: L([a; b]p æ ÈcÍq) = {a, b, c, p, q}

Definition: Interpolation

A logic has Craig Interpolation i� for all formulas „ and Â such
that ✏ „ æ Â there is a formula ◊ called interpolant such that

I ✏ „ æ ◊

I ✏ ◊ æ Â

I L(◊) ™ L(„) fl L(Â)
Example: q is an interpolant for ✏ (p · q) æ (q ‚ r).

Propositional logic, first-order logic, intuitionistic logic, basic and
multi-modal logic and the µ-calculus have Craig Interpolation.
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Hall of Fame and Failure

Known proof attempts:
1. Daniel Leivant: Proof theoretic methodology for propositional

dynamic logic. LNCS, 1981.
2. Manfred Borzechowski: Tableau–Kalkül für PDL und

Interpolation. Diploma thesis, FU Berlin, 1988. Unpublished.
3. Tomasz Kowalski: PDL has interpolation. JSL, 2002.

Revoked in 2004.
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Hall of Fame and Failure

Other notable references:
1. Marcus Kracht: Chapter The open question in Tools and

techniques in modal logic, 1999.
2. D’Agostino & Hollenberg: Logical questions concerning the

µ-calculus: interpolation, Lyndon and �Loś-Tarski. JSL, 2000.
3. Johan van Benthem: The many faces of Interpolation.

Synthese, 2008.
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Honesty is a Virtue
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Kracht VS. Leivant

“Chapter 10.6: The Unanswered Question

[. . . ] the problem of interpolation for PDL. This is one
of the major open problems in this area. Twice a solution
has been announced, in [Leivant 1981] and [Borzechowski
1988], but in neither case was it possible to verify the
argument.”

Marcus Kracht: Tools and techniques in modal logic (1999)
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It’s a mess.

(It is an open question whether)2 PDL has Craig-Interpolation.

11 / 44



Leivant 1981, revised
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Leivant 1981
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Simplifying the question

Completeness of Segerberg’s axioms is also shown by Leivant, but
not our interest here.

In 2014 we know:
I PDL does not have uniform interpolation. [1]
I Test-free PDL has interpolation i� PDL has. [8]

Hence, reduce the syntax to:
I „ := p | ¬„ | „ æ „ | [–]„
I – := a | –; – | – fi – | –ú | 1 | 0

Ignore tests.
Let ‚, · and È–Í be the appropriate abreviations.
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Steps of the proof

1. Define a sound and complete sequent calculus for PDL.

2. Use Maehara’s method to show Partition-Interpolation.

2.1 Show that the calculus has the “step-by-step property”.

2.2 For the ú case, find a repetitive scheme in long enough proofs.

2.3 Use linear transformations of programs to imply a ú formula.

3. Check that Partition-Interpolation implies Craig Interpolation.
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A sequent calculus for PDL

Notation

X , Y , Z : formulas
f , g : sets of formulas
–, —: programs

Sequent example: f , X „ „

Proof example

[a]p „ [a]p
WEAK[a]p, [b]p „ [b]p

[b]p „ [b]p
WEAK[a]p, [b]p „ [b]p (fiR)[a]p, [b]p „ [a fi b]p (æ R)[a] „ [b]p æ [a fi b]p (æ R)

„ [a]p æ ([b]p æ [a fi b]p)
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A sequent calculus for PDL

Let CD be the following proof system where g is ? or a singleton.
f , X „

(¬R)
f , „ ¬X

f „ X(¬L)
f , ¬X „

f , X „ Y
(æ R)

f „ X æ Y
f „ X f , Y „ g

(æ L)
f , X æ Y „ g

f „ [–][—]X
(; R)

f „ [–; —]X
f , [–][—]X „ g

(; L)
f , [–; —]X „ g

f „ [–]X f „ [—]X
(fiR)

f „ [– fi —]X
f , [–]X , [—]X „ g

(fiL)
f , [– fi —]X „ g

f , X , [–][–ú]X „ g
(úL)

f , [–ú]X „ g
f „ „ f „ [–]„ · · · f „ [–]k „

(úR)
f „ [–ú]„

where k = 2|f |+|„|

f „ X(GEN)
[–]f „ [–]X

f „ g
(WEAK)

f Õ „ gÕ

where f ™ f Õ and g ™ gÕ.
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A sequent calculus for PDL

Theorem (Leivant 1981)
CD is a intuitionistic/constructive variant of D which is a sound an
complete system for PDL, i.e. we have:

✏ X i� „D X i� „CD X 0

where X 0 is the result of inserting ¬¬ in front of everything in X .

NB: CD is not sound and complete for intuitionistic/constructive PDL.

Remaining goal: Show that CD has interpolation.

18 / 44



Maehara’s method

Idea

Find interpolants by going along the proof tree.
Given the previous interpolants, we define the next one.

Example

Suppose the last step is fiR:
...

f „ [–]X

...
f „ [—]X (fiR)f „ [– fi —]X

Given any two interpolants Z1 and Z2 for f „ [–]X and f „ [—]X ,
let Z := Z1 · Z2 = ¬(Z1 æ ¬Z2). This interpolates f „ [– fi —]X .
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Partition-Interpolation

Definition

Given a sequent f „ X and a partition of f into f ≠; f +, we say
that K is an interpolant for f ≠; f + „ X i�

L(K ) ™ L(f ≠) fl L(f +, X ) and f ≠ „ K and f +, K „ X

Lemma 5.3.1 (Leivant 1981)
Let f ≠; f + be any partition of f and q not occur in f .

(i) If f „CD X , then there is an interpolant for f ≠; f + „ X .
(ii) Suppose P is a proof of f „ [–]q from {fi „ q}i<k and let

f ≠
i ; f +

i be the partitions of fi induced by f ≠; f + for all i < k.
If Ki is an interpolant for f ≠

i ; f +
i „ X for all i < k , then

there is an interpolant of the form w
i
[—i ]Ki for f ≠; f + „ [–]X .

Proof. By tree-induction on P, simultaneously for (i) and (ii).
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Partition-Interpolation
An easy warm-up case

Suppose the last step is æ L:

f „ X f , Y „ Z (æ L)f , X æ Y „ Z

Case a) partition f ≠, X æ Y ; f +. By induction hypothesis:
I f +; f ≠ „ X (Note: flipped!) yields K1 such that

L(K1) ™ L(f +) fl L(f ≠, X ) and f + „ K1 and f ≠, K1 „ X

I f ≠, Y ; f + „ Z yields K2 such that

L(K2) ™ L(f ≠, Y ) fl L(f +, Z ) and f ≠, Y „ K2 and f +, K2 „ Z

Let K := K1 æ K2. This is interpolates f ≠, X æ Y ; f + „ Z .

Case b) partition f ≠; X æ Y , f +. Then K := K1 · K2 works.
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Partition-Interpolation
The evil ú case

Suppose the last step of P is (úR). For each h = 1 Æ M let Ph be
the proof of f „ [–]hX occurring in P above this premise:

P0
f „ X

P1
f „ [–]X · · ·

PM
f „ [–]MX (úR)f „ [–ú]X

Note: all active formulas on the right. Hence, only consider the
given partition f ≠, f + without further manipulation.

Given: M many interpolants. Goal: find a formula K such that

L(K ) ™ L(f ≠) fl L(f +, [–ú]X ) and f ≠ „ K and f +, K „ [–ú]X

How?!
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Positive Closure

Definition

The positive closure of f , denoted by PC(f ),
is the smallest set g ´ f such that:

I If (X æ Y ) œ g , then Y œ g .
I If [–]X œ g , then X œ g .
I If [–; —]X œ g , then [–][—]X œ g .
I If [– fi —]X œ g , then [–]X œ g and [—]X œ g .
I If [–ú]X œ g , then [–][–ú]X œ g .

Note: Whenever f is finite, PC(f ) is also finite.
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Nice property 1

In certain proofs, PC(·) is preserved in the following sense.

Lemma 4.2.1 (Leivant 1981, revision Venema 2014)
If P proves f „ [—1] . . . [—k ][–]mq from {fi „ q}i where q ”œ L(f ),
all —is are subprograms of –, r < m and f Õ „ [–]r q is a sequent in
P (under a non-initial leaf) then PC(f Õ) ™ PC(f ).

The case we need is k = 0.
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Nice property 2

Definition

Let P[X/q] be the result of substituting X for q in P.

Lemma 4.2.2 (Leivant 1981)
Suppose P proves f „ [–]r X from {fi „ X}i where X ”œ PC(f ).
Then there is a proof P Õ of f „ [–]r q from {f Õ

i „ q}i such that
P = P Õ[X/q].

Intuitively, this means that P does not take X apart:

{fi „ X}i
...

f „ [–]r X
=

Q

cca

{fi „ q}i
...

f „ [–]r q

R

ddb [X/q]
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Nice property 3: Step by Step

Suppose P is a CD-proof of f „ [–]nX . Then P consists of proof
parts P0, . . . , Pn which build up the [–]s “step by step”:

P0
{fj „ X}jœI0

P1
{fj „ [–]X}jœI1

P2
{fj „ [–]2X}jœI2

...
{fj „ [–]n≠1X}jœIn≠1

Pn
f „ [–]nX

NB: This looks more linear than it actually is!
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Linear Transformations

Think of programs and formulas as a vector space:

(—)Y̨ =

Q

ca
—1,1 · · · —1,k

... . . . ...
—k,1 · · · —k,k

R

db

Q

ca
Y1
...

Yk

R

db :=

Q

ca
[—1,1]Y1 · · · · · [—1,k ]Yk

...
[—k,1]Y1 · · · · · [—k,k ]Yk

R

db

Lemma

For every k ◊ k matrix (—) there exists a (“) such that

(“) © (—)ú = (—)(—)(—) . . .
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Linear Transformations

Example

Let Y̨ = Èp, qÍ and (—) =
A

a b
c d

B

. Then (—)Y̨ =
A

[a]p · [b]q
[c]p · [d ]q

B

and (—)(—)Y̨ =
A

[a]([a]p · [b]q) · [b]([c]p · [d ]q)
[c]([a]p · [b]q) · [d ]([c]q · [d ]q)

B

. . .

Let “ :=
A

(a fi (b; (dú; c)))ú (aú; b)((c; aú; b) fi d)ú

(dú; c)(a fi (b; (dú; c)))ú ((c; aú; b) fi d)ú

B

Then (“) © (—)ú and (—)úY̨ © (“)Y̨ .

This “ can be found systematically. Moreover, it is useful:

p · [a]p · ([a]p · [b]q) · ([a]([a]p · [b]q) · [b]([c]p · [d ]q)) · . . .

© [(a fi (b; (dú; c)))ú]p · [(aú; b)((c; aú; b) fi d)ú]q
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Putting it all together
Back to the evil ú case

Now we can deal with this:

P0
f „ X

P1
f „ [–]X · · ·

PM
f „ [–]MX (úR)f „ [–ú]X

Fix a ridiculously large h := s + v + d where
I d such that [–]dX ”œ PC(f )
I v := 2|PC(f )|·2|f | + 1
I s := 1 (for now).

Apply the step by step property to Ph:

Qi
{f ≠

i ; f +
i „ [–]dX}iœId

...
f ≠; f + „ [–]d+v+sX
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Putting it all together
Finding a repetitive pattern

Now Ph has to look like this:

Qj,i

{f ≠
i ; f +

i „ [–]dX}iœId
R Õ

j [[–]dX/q]
{f ≠

j ; f +
j „ [–]d+v X}jœId+v

U Õ[[–]d+v X/q]
f ≠; f + „ [–]d+v+sX

For all c Æ v , j œ Id+c : fi ™ PC(fi) ™ PC(f ) and |P(fj)| Æ |P(f )|

Hence | fi {P(fj) | c Æ v , j œ Id+c} Æ |P(PC(f )| · |P(f )|
= 2|PC(f )| · 2|f | = v ≠ 1 < v .

Repetitive Pattern

For some m ”= n we have {f +
j ; f ≠

j | j œ Im} = {f +
j ; f ≠

j | j œ In}.
Furthermore, we can assume d < m < n < d + v and Im = In.
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Putting it all together
Applying the induction hypothesis

Let r be such that n = m + r . Now Ph can be divided as follows:
Qi

{f ≠
i ; f +

i „ [–]mX}iœI
R Õ

j [[–]mX/q]
{f ≠

j ; f +
j „ [–]m+r X}jœI

U Õ[[–]m+r X/q]
f ≠
i ; f +

i „ [–]m+r+sX

IH(i) yields K̨ such that Ki interpolates f ≠
i ; f +

i „ [–]mX . Using
IH(ii) r times: If M̨ contains interpolants for f ≠

i ; f +
i „ Y then there

is a matrix (—) such that ((—)M)i interpolates f ≠
i ; f +

i „ [–]r Y .

Thus, for all n, by applying the latter to the former n times:

f ≠
i „ ((—)nK )i and f +

i , ((—)nK )i „ [–]m[–]r◊nX
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Putting it all together
Done, repeat.

By linear transformations there is a “ such that:

f ≠
i „ ((“)K )i and f +

i , ((“)K )i „ [–]m[(–r )ú]X

Now apply IH(ii) to all the ((“)K )is and U Õ.
This yields an interpolant Hs for f ≠; f + „ [–]s [–]m[(–r )ú]X .
Repeat all of the above to obtain H1, . . . , Hv+d .

Finally, let K := w

sÆv+d
Hs . This interpolates f ≠; f + „ [–ú]X .

Lemma

„CD
w

k<w
[–k ][(–w )ú]X æ [–ú]X .
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Putting it all together
This is the end.

Theorem 5.3.2 (i) (Leivant 1981)

PDL has Craig Interpolation.

Proof. Take any ✏ X æ Y . D is complete, hence „D X æ Y .
Then „CD X o æ Y o and thus X o „CD Y o.
Partition-interpolation of X o;? „ Y o yields Z such that

I L(Z ) ™ L(X o) fl L(?, Y o),
I X o æ Z œ PDL and Z æ Y o œ PDL

By X o © X , Y o © Y , L(X o) = L(X ) and L(Y o) = L(Y ):
I L(Z ) ™ L(X ) fl L(Y ),
I X æ Z œ PDL and Z æ Y œ PDL

Hence Z is an interpolant for X æ Y .
2
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Criticism
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Criticism

Marcus Kracht: Tools and techniques in modal logic. (1999)
Chapter 10.6. The Unanswered Question:

“[T]he problem of interpolation for PDL is one of the
major open problems in this area. Twice a solution has
been announced [...], but in neither case was it possible
to verify the argument.
The argument of Leivant makes use of the fact that if
„ „

PDL

Â then we can bound the size of a possible
countermodel so that the star –ú only needs to search up
to a depth d which depends on „ and Â.”[8, p. 493]
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Criticism

Marcus Kracht (continued):
“The argument of Leivant makes use of the fact that if
„ „

PDL

Â then we can bound the size of a possible
countermodel so that the star –ú only needs to search up
to a depth d which depends on „ and Â. Once that is
done, we have reduced PDL to EPDL, which definitely
has interpolation because it is a notational variant of
polymodal K. However, this is tantamount to the
following. Abbreviate by PDL

n the strengthening of PDL

by axioms of the form [aú]p ¡ [aÆn]p for all a. Then, by
the finite model property of PDL, PDL is the intersection
of the logics PDL

n . Unfortunately, it is not so that
interpolation is preserved under intersection.”[8, p. 493]
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PDL and PDL

n

Definition

Semantic closure SCL(A) := {„ | A ✏ „}

[–Æn]„ := „ · [–]„ · [–; –]„ · · · · · [–n]„

PDL

n := SCL
!
PDL fi {[–ú]p ¡ [–Æn]p | – œ PROG , p œ P}

"

Theorem

PDL

0 ´ PDL

1 ´ PDL

2 ´ · · · ´ PDL =
‹

n
PDL

n

Idea / Question

Is there an n, depending on |„ æ Â| such that any
PDL

n-interpolant for „ æ Â is also a PDL-interpolant?
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Criticism

But this is not what Leivant is doing:

f „ „ f „ [–]„ · · · f „ [–]k„(úR) f „ [–ú]„

where k = 2|f |+|„| and therefore depends on f and „.

Theorem: Finite-Model Property

If „ is satisfiable, then there is a model M = (W , R, V ) and a
world w œ W such that M, w ✏ „ and |W | Æ 2size(„).

Lemma

If ✏ w f æ [–]n„ for all n Æ k = 2|f |+|„|, then ✏ w f æ [–ú]„.

Theorem

The finitary rule is admissible.
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Conclusion
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Conclusion

I There is a finitary sequent calculus for PDL.
(In particular, Kracht’s criticism does not apply.)

I This system has the “step by step” property.
I Therefore we can:

I find a repetitive pattern in long enough proofs.
I use linear transformations to build ú interpolants.

I This extends Maehara’s method to show Craig Interpolation.

All this [c fi sh]ould have been known since 1981.

Moreover, can this proof also be done in multi-type calculi?
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Epilogue

Kracht: “Twice a solution has
been announced ...”
Borzechowski 1988: unpublished,
unknown and unread?
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Thank you!

w4eg.de/malvin
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