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The main tools for establishing the finite model property for
modal and superintuitionistic logics are the methods of standard
and selective filtrations.

If a model M refutes a formula ϕ, then we wish to filter it out so
that the resulting model N is finite and still refutes ϕ.

The model N can be constructed as a factor-model of M
(standard filtration) or as a submodel of M (selective filtration).
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Tarski (1944),
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The model-theoretic approach became a standard tool for
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The method of selective filtration in modal logic was first
discussed by Gabbay (1970),

and further developed by Fine and Zakharyaschev (1970’s and
80’s)

Zakharyaschev (1980’s) also applied the method to
superintuitionistic logics.
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Standard filtrations for modal logics

Standard filtrations for superintuionistic logics

Selective filtrations for superintuionistic logics
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Standard filtration model theoretically

Let Σ be a finite set of formulas closed under subformulas, and
let M = (F,V) be a modal model.

Define an equivalence
relation ∼ on W by

w ∼ v if (∀ϕ ∈ Σ)(w ∈ V(ϕ) iff v ∈ V(ϕ)). (1)

Let W′ = W/∼. Then |W′| 6 2|Σ|.

Let R′ be a relation on W′ satisfying the following two
conditions for all w, v ∈ W and ϕ ∈ Σ:

wRv ⇒ [w]R′[v]. (2)

[w]R′[v] ⇒ (∀♦ϕ ∈ Σ) (w ∈ V(ϕ) ⇒ v ∈ V(♦ϕ)). (3)
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It is easy to see that V′ is well defined, so M′ = (F′,V′) is a finite
model called a standard filtration (or simply a filtration) of the
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If ϕ ∈ Σ is refuted in M, then in order to refute ϕ in M′, we
only need that condition (4) is satisfied.

Requiring condition (2) is not necessary. Such a situation
appears, for example, when proving the finite model property
for modal logics GL and Grz via standard filtration.

However, it is common to require (2), so we will assume (2)
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Stable homomorphisms and CDC

Lemma. Let A = (A,♦) and B = (B,♦) be modal algebras and
let h : A→ B be a Boolean homomorphism. We call h a stable
homomorphism provided ♦h(a) 6 h(♦a) for each a ∈ A.

It is easy to see that h : A→ B is stable iff h(�a) ≤ �h(a) for
each a ∈ A.

Stable homomorphisms were considered under the name of
semi-homomorphisms and under the name of continuous
morphisms (Ghilardi, 2010).
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The least filtration of M = (W,R,V) through Σ is
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where
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Define ♦l and ♦g on A′ by

♦la =
∧
{b ∈ A′ : ♦a 6 b} and ♦ga =

∧
{♦b : a 6 b & b ∈ D∨}.

where D∨ is the closure of D in A under finite joins.

Theorem.
1 If A′ = (A′,♦′) is a filtration of A through Σ, then
♦la 6 ♦′a 6 ♦ga for each a ∈ A′.

2 (A′,♦l) is the least filtration and (A′,♦g) is the greatest
filtration of A through the finite set of formulas Σ.

3 Let (W,R) be the ultrafilter frame of A. Then (W′,Rl) is the
ultrafilter frame of (A′,♦l) and (W′,Rg) is the
ultrafilterframe of (A′,♦g).
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2 (A′,♦l) is the least filtration and (A′,♦g) is the greatest
filtration of A through the finite set of formulas Σ.

3 Let (W,R) be the ultrafilter frame of A. Then (W′,Rl) is the
ultrafilter frame of (A′,♦l) and (W′,Rg) is the
ultrafilterframe of (A′,♦g).
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Standard filtration model theoretically

Let Σ be a finite set of formulas closed under subformulas, and
let M = (F, ν) be an intuitionistic model. Define an equivalence
relation ∼ on W by

w ∼ v if (∀ϕ ∈ Σ)(w ∈ ν(ϕ) iff v ∈ ν(ϕ)). (5)

Let W′ = W/∼. Then |W′| 6 2|Σ|.

Let 6′ be a partial order on W′ satisfying the following two
conditions for all w, v ∈ W and ϕ ∈ Σ:

w 6 v implies [w] 6′ [v]. (6)

[w] 6′ [v] and w ∈ ν(ϕ) imply v ∈ ν(ϕ). (7)



Standard filtration model theoretically

Define a valuation ν ′ on F′ = (W′,6′) by

ν ′(p) = {[w] : w ∈ ν(p)} for each p ∈ Σ.

It is easy to see that ν ′ is well defined, so M′ = (F′, ν ′) is a finite
model called a standard filtration (or simply a filtration) of the
model M through Σ.



Standard filtrations model theoretically

It is well known that for each ϕ ∈ Σ and w ∈ W, we have

Truth lemma.

w ∈ ν(ϕ) iff [w] ∈ ν ′(ϕ), (8)

so if ϕ ∈ Σ is refuted on M, then it is refuted on M′.
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Leats and greatest filtrations

Among the filtrations of M through Σ, there always exist the
least and greatest filtrations.

In other words, among the partial orders on W′ that satisfy (6)
and (7), there always exist the least and greatest ones. The least
filtration is defined as follows. Let

[w] � [v] iff there exist w′ ∼ w and v′ ∼ v such that w′ 6 v′, (9)

and let 6l be the transitive closure of �. The greatest filtration
is given by

[w] 6g [v] iff (∀ϕ ∈ Σ)(w ∈ ν(ϕ)⇒ v ∈ ν(ϕ)). (10)
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Duality for Heyting algebras

For a Heyting algebra A, let FA = (WA,⊆) be the frame of prime
filters of A ordered by inclusion.

We call FA the prime filter frame of A.

Then A embeds into the Heyting algebra Up(FA) of upward
closed subsets of FA by α(a) = {w ∈ WA : a ∈ w}.
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Standard filtrations algebraically

Let Σ be a finite set of formulas closed under subformulas.

Since Σ is finite, ν[Σ] is a finite subset of A.

Let S be the bounded sublattice of A generated by ν[Σ].

As bounded distributive lattices are locally finite, S is finite.
Therefore, S is a Heyting algebra, where

a→S b =
∨
{s ∈ S : a ∧ s 6 b}

for each a, b ∈ S.

Clearly a→S b 6 a→ b, and a→S b = a→ b provided
a→ b ∈ S.
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Standard filtrations algebraically

Define a valuation νS on S by νS(p) = ν(p) for each p ∈ Σ.

Truth Lemma. νS(ϕ) = ν(ϕ) for each ϕ ∈ Σ.

Proof. By induction on the complexity of ϕ ∈ Σ. The case ϕ = p
follows from the definition of νS. The cases ϕ = ⊥, ϕ = ψ ∧ χ,
and ϕ = ψ ∨ χ follow from the fact that S is a bounded
sublattice of A. Finally, let ϕ = ψ → χ. Then
ν(ψ)→ ν(χ) = ν(ψ → χ) ∈ ν(Σ) ⊆ S. Therefore,
ν(ψ)→ ν(χ) = ν(ψ)→S ν(χ). Thus,
νS(ψ → χ) = νS(ψ)→S νS(χ) = ν(ψ)→ ν(χ) = ν(ψ → χ).
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Standard filtrations algebraically I

Standard filtration algebraically I. Let A be a Heyting algebra,
ν be a valuation on A, and Σ be a finite set of formulas closed
under subformulas.

Suppose L is a finite bounded sublattice of A such that ν[Σ] ⊆ L.

Define a valuation of Σ on L by νL(p) = ν(p) for each p ∈ Σ. We
call the pair (L, νL) a filtration of (A, ν) through Σ.

Truth Lemma. If (L, νL) is a filtration of (A, ν) through Σ, then
νL(ϕ) = ν(ϕ) for each ϕ ∈ Σ.

Problem: This definition does not match the model theoretic
one!



Standard filtrations algebraically I

Standard filtration algebraically I. Let A be a Heyting algebra,
ν be a valuation on A, and Σ be a finite set of formulas closed
under subformulas.

Suppose L is a finite bounded sublattice of A such that ν[Σ] ⊆ L.

Define a valuation of Σ on L by νL(p) = ν(p) for each p ∈ Σ. We
call the pair (L, νL) a filtration of (A, ν) through Σ.

Truth Lemma. If (L, νL) is a filtration of (A, ν) through Σ, then
νL(ϕ) = ν(ϕ) for each ϕ ∈ Σ.

Problem: This definition does not match the model theoretic
one!



Standard filtrations algebraically I

Standard filtration algebraically I. Let A be a Heyting algebra,
ν be a valuation on A, and Σ be a finite set of formulas closed
under subformulas.

Suppose L is a finite bounded sublattice of A such that ν[Σ] ⊆ L.

Define a valuation of Σ on L by νL(p) = ν(p) for each p ∈ Σ. We
call the pair (L, νL) a filtration of (A, ν) through Σ.

Truth Lemma. If (L, νL) is a filtration of (A, ν) through Σ, then
νL(ϕ) = ν(ϕ) for each ϕ ∈ Σ.

Problem: This definition does not match the model theoretic
one!



Standard filtrations algebraically I

Standard filtration algebraically I. Let A be a Heyting algebra,
ν be a valuation on A, and Σ be a finite set of formulas closed
under subformulas.

Suppose L is a finite bounded sublattice of A such that ν[Σ] ⊆ L.

Define a valuation of Σ on L by νL(p) = ν(p) for each p ∈ Σ. We
call the pair (L, νL) a filtration of (A, ν) through Σ.

Truth Lemma. If (L, νL) is a filtration of (A, ν) through Σ, then
νL(ϕ) = ν(ϕ) for each ϕ ∈ Σ.

Problem: This definition does not match the model theoretic
one!



Standard filtrations algebraically I

Standard filtration algebraically I. Let A be a Heyting algebra,
ν be a valuation on A, and Σ be a finite set of formulas closed
under subformulas.

Suppose L is a finite bounded sublattice of A such that ν[Σ] ⊆ L.

Define a valuation of Σ on L by νL(p) = ν(p) for each p ∈ Σ. We
call the pair (L, νL) a filtration of (A, ν) through Σ.

Truth Lemma. If (L, νL) is a filtration of (A, ν) through Σ, then
νL(ϕ) = ν(ϕ) for each ϕ ∈ Σ.

Problem: This definition does not match the model theoretic
one!



Standard filtrations algebraically

Lemma. S gives rise to a filtration M′A = (F′A, ν
′) of

MA = (FA, ν) through Σ.

Proof idea. Define ∼ on WA by w ∼ v iff w ∩ S = v ∩ S.

Since ν[Σ] generates S, it is easy to see that

w ∼ v iff w ∩ ν[Σ] = v ∩ ν[Σ] iff (∀ϕ ∈ Σ)(w ∈ ν(ϕ) iff v ∈ ν(ϕ))
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Standard filtration algebraically

Suppose L as above is given.

In order to obtain a filtration of MA we have to ensure that
w ∩ L = v ∩ L is equivalent to w ∩ ν[Σ] = v ∩ ν[Σ].

In other words, we have to ensure that w ∩ L = v ∩ L is
equivalent to w ∩ S = v ∩ S.

Lemma. Let L be a finite bounded sublattice of A that contains S
as a bounded sublattice.

Then w∩ L = v∩ L is equivalent to w∩ S = v∩ S iff α[L] and α[S]
generate the same Boolean subalgebra of the powerset of the
prime filter frame of A.
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generate the same Boolean subalgebra of the powerset of the
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Standard filtration algebraically

Standard filtration algebraically II. Let A be a Heyting
algebra, ν be a valuation on A, and Σ be a finite set of formulas
closed under subformulas.

Suppose LE A such that ν[Σ] ⊆ L and S and L have isomorphic
free Boolean extensions.

Define a valuation of Σ on L by νL(p) = ν(p) for each p ∈ Σ.

We call the pair (L, νL) a filtration of (A, ν) through Σ.

Truth Lemma. If (L, νL) is a filtration of (A, ν) through Σ, then
νL(ϕ) = ν(ϕ) for each ϕ ∈ Σ.
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Theorem. Let A be a Heyting algebra, ν be a valuation on A,
and Σ be a finite set of formula closed under subformulas.
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MA = (FA, µ) through Σ.
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Σ and M′A, M′′A are the corresponding filtrations of MA through
Σ, then

LE K iff [w] 6′′ [v] implies [w] 6′ [v].
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Among the filtrations (L, νL) of (A, ν), the filtration (S, νS) is
clearly the least one.

There is also the greatest filtration (T, νT) given by T = α−1[B].

Then (S, νS) corresponds to the greatest filtration
Mg = (W′A,6

g, µ′) of MA through Σ,

while (T, νT) corresponds to the least filtration
Ml = (W′A,6
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Selective filtration

We next give an algebraic description of selective filtrations.

Let A be a Heyting algebra, ν be a valuation on A, and Σ be a
finite set of formulas closed under subformulas.

Then ν[Σ] is a finite subset of A. Let S be the bounded
implicative subsemilattice of A generated by ν[Σ] (so S is closed
under ∧,→,0, but not necessarily under ∨).

By Diego’s Theorem, S is finite. Therefore, S is a Heyting
algebra, where

a ∨S b =
∧
{s ∈ S : a, b 6 s}

for each a, b ∈ S. It follows from the definition that
a ∨ b 6 a ∨S b, and that a ∨ b = a ∨S b provided a ∨ b ∈ S.
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Selective filtration algebraically. Let A be a Heyting algebra, ν
be a valuation on A, and Σ be a finite set of formulas closed
under subformulas.

Suppose L is a finite bounded implicative subsemilattice of A
containing ν[Σ].

Define a valuation νL on L by νL(p) = ν(p) for each p ∈ Σ.

We call (L, νL) a selective filtration of (A, ν) through Σ.

Truth Lemma. If (L, νL) is a selective filtration of (A, ν) through
Σ, then νL(ϕ) = ν(ϕ) for each ϕ ∈ Σ.
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Consequences

For each (subdirectly irreducible) Heyting algebra A and D ⊆ A2

we can write canonical formulas β(A,D) and γ(A,D) such that

For each Heyting algebra B we have:

B 6|= β(A,D) iff (A,D) is a selective filtration of B.

B 6|= γ(A,D) iff (A,D) is a standard filtration of B.

These formulas axiomatize all superintuionistic logics.
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Selective filtration

Let L be a superintuionistic logic.

We say that L admits filtration if for each non-theorem ϕ of L
and some countermodel M = (F, ν) of ϕ, there is a filtration
M′ = (F′, ν ′) of M through some finite set Σ closed under
subformulas and containing ϕ such that F′ |= L.

Every superintuitionistic logic admitting filtration has the finite
model property.

This notion depends on at least three different parameters:
formulas, models, frames.
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Stable logics

Stable superinutionistic logics are introduced as the logics that
are sound and complete with respect to a class of frames closed
under order-preserving images.

Every stable logic admits filtration, and hence has the finite
model property.

Thus, stable logics in some way formalize the notion of
admitting filtration by avoiding mentioning models and
formulas.
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Stable logics

These logics correspond to varieties of Heyting algebras “closed
under (∧,∨,1,0)-subalgebras”.

However, since a notion of filtration is not unique (there is a
whole spectrum of them between the least and greatest one),
not every logic that admits filtration is stable.

Stable logics are those that admit all filtratons.

These logics are axiomatized by special types of canonical
formulas, called stable formulas.
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Subframe logics

Similarly, we can define when a superintuitionistic logic admits
selective filtration.

Fine (1985) formalizes this notion by defining subframe
transitive modal logics,

and Zakharyaschev (1989, 96) defines subframe and cofinal
subframe modal and superintuitionistic logics.

These are logics that are sound and complete with respect to a
class of frames closed under subframes or cofinal subframes.

Algebraically these logics correspond to varieties of Heyting
algebras closed under (∧,→) and (∧,→,0)-subalgebras.

These logics are axiomatized by special types of canonical
formulas, called subframe formulas and cofinal subframe
formulas.
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These logics are axiomatized by special types of canonical
formulas, called subframe formulas and cofinal subframe
formulas.



Conclusions

There are two standard model-theoretic methods for proving
the finite model property for modal and superintuionistic logics,
the standard filtration and the selective filtration.

We gave algebraic descriptions of filtrations for
superintuitionistic logics via locally finite reducts of Heyting
algebras.

We showed that the algebraic description of the standard
filtration is based on the→-free reduct of Heyting algebras,
while that of selective filtration on the ∨-free reduct.
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Thank you!


