Bayesian Decision Theory



The Bayesian Calculs

* Plausibility Judgments — Bayesian Probability Theory
— Laplace (1774)

* Relevancy Judgments - Bayesian Information Theory
— See introduction (Knuth, 2014):
Information-Based Physics: an observer-centric foundation

* Decision Making - Bayesian Decision Theory [?]
— van Erp, Linger, & van Gelder (2014)



The Bayesian Decision Theory

1. Use the product and sum rule of Bayesian probability theory
to construct outcome probability distributions.

2. If our outcomes are monetary in nature, then by way of the
Bernoulli law we may map utilities to the monetary
outcomes of our outcome probability distributions.

3. Maximize either the lower or upper bounds, depending on
the specific context of the problem of choice we are
studying, of the resulting utility probability distribution.



A Comparison

* Expected utility theory (Bernoulli, 1738):

— criterion for action:

. Compare the means of the utility probability distributions.

* Bayesian decision theory (2014):

— criterion for action:

. Compare the upper and lower bounds of the utility probability distributions.



Degree of Freedom

1. The product and sum rule of the Bayesian probability theory for the
construction of outcome probability distributions are dictated by the
desideratum of consistency.

(Cox 1946, Jaynes 2003, Knuth & Skilling 2010).

2. Bernoulli law only degree of freedom.

3. Positions of utility probability distributions are to be compared by some
function of the cumulants of the utility probability distributions.

More-to-the-Right = More Profitable/Less Disadvantageous

Unity function of the first cumulant (e.g. Expected Utility Theory) leads to Ellsberg and
Allais paradoxes. Cl-bound functions of the cumulants solve for these paradoxes
trivially.



Bernoulli law/Weber-Fechner law/
Steven’s Power law/Thurnstone’s Satisfaction law

A lattice theoretical derivation of the Bernoulli law is given in:

Fact Sheet Research on Bayesian Decision Theory
(van Erp, Linger, & van Gelder, 2014)

The product and sum rule of the probability calculus derived as a quantification, by way of
consistency constraints, on the lattice of statements.

The product and sum rule of the inquiry calculus derived as a quantification , by way of
consistency constraints, on the lattice of questions.

The Bernoulli law derived as a quantification , by way of consistency constraints, on the
lattice of ordering.

We have send the fact sheet to Kevin Knuth for an informal peer review of our derivation
of the Bernoulli law.



Assigning Utilities

* The Weber-Fechner law is a law of experimental

psychology.

 The Weber-Fechner law governs the perception of

increments in stimuli.

* Bernoulli law = Weber-Fechner law



The Weber-Fechner law

* initial stimulus strength: §

* increment stimulus strength: AS

* increment in subjective intensity: u(AS | S0)= qlog S+ A




Controversy?

The Weber-Fechner law:

S+ AS
S

u =qlog

Steven’s Power law:

S+AS
= U
S

S+ AS
VY =
=5

q
) — 10g(v)=q10g



Assumption

* |f monies are stimuli that move us, then we
may use the Bernoulli/Weber-Fechner law to
model the intensity of monetary increments.

e Utilities = Intensity of monetary increments

* Assign utilities by way of Bernoulli/Weber-
Fechner law.



Kahneman and Tversky

e Loss Aversion

— The psychological phenomenon that losses way
heavier than equal gains.

* Loss aversion is felt most strongly as financial
ruin is approached:

AS — -8, if 1nitial wealth 1s §



Poor Man — Rich Man

i = glog> +SAS . for ¢=100 (INTROSPECTION)
Poor man Rich man
5, =300 S, =1.000.000
-200= A5 =200 —100.000 < AS = 100.000



Bernoulli/Weber-Fechner law

e If S>>AS then

S+ AS AS AS

=qglog|l+—|—=qg—
145 g

qlog

* Linearity utility function rich man:

000000000000000000000000




Corollary: the negative Bernoulli
law for the utility of debt

Initial debt of D =40.000 Initial wealth of S =300

OOOOOOOOOO

« For actual income we have loss aversion.
» For debt we have debt relief: the relief of having one’s debt acquitted.

 The New Road to Serfdom; An lllustrated Guide to the Coming Real Estate
Collapse, (Hudson, 20006).



Bayesian Decision Algorithm

Construct outcome probability distributions (decision theoretical

book-keeping phase).

Construct utility probability distributions by assigning utilities to

monetary outcomes, by way of Bernoulli law.

Set-up decision theoretical inequalities, in terms of lower- or upper-

bounds utility probability distribution.



Non-Redundant Supporting Contacts
in Non-Redundant Case Studies

Results have intuitive orders of magnitude.
If black-box is opened, inner machinery of Bayesian algorithm intuitive.

Non-expected, but nonetheless extremely intuitive, interest factor resulting from
Bottomry case study.

Bayesian decision algorithm remains stable under the most severe of tests. And
was two steps ahead of our own intuition.

Severeness of these tests is due to the skewness corrected Cl-bounds.

Empirical data on certainty bets by Kahneman and Tversky is replicated. Moreover,
Bayesian decision algorithm seems to outperform respondents.

Empirically observed probability weighting functions of Kahneman and Tversky are
replicated by the Bayesian decision theory from first principles.



First Case Study

The rationale of investing in flood defenses.



The Case

* |Investment:

I = investment costs associated with improvements in flood defenses

e What is the maximal investment I we are
willing to make to improve our flood
defenses?



Investing in Flood Defenses

° Decisions: l)1 = keep status quo

D, = 1mprove the flood defenses

O, =regular river floodin
e Qutcomes 1= 1ol o s ,
O, = catostrophic river flooding

O, =no flooding

* Costs of outcomes C, =10 million euro
C, =5 billion euro

C, =0 euro



Simple outcome distribution, but Bayes can
model more complex outcome situations

* Probabilities of outcomes under different decisions:

P(O, | D,)=10" D, = keep status quo
P(0,|D,)=10"" D, =1mprove the flood defenses
P(Os |D1>=1_P(01 |D1)_P(02 |D1)

P(Ol |D2)= 107
P(Oz |D2)= 107
P(03 |D2)=1_P<01 |D2)_P(02 |D2)



Negative Weber-Fechner law:
Debt Increments

e |nitial wealth: M =10 billion euro

M + AM
M

 Utility function of monies: u=gqlog

 Unknown g falls away in decision theoretical
(in)equalites. So, we may set q = 1.



Utility Probability Distributions

, M+C

PO,|D),  u=-log ;4
p(”|Dl)=<P(Oz|D1), u=—logM+C2

P(O,ID,),  u=-logM S

, M+C +1

P(Ol |D2)9 u=-log +M1 +
p(uII,D2)=<P(02|D2), u=—10gM+A§2+I

P(0,|D,), u=-logM*&t!




Risk Aversive Criterion of Action

mitigate potential losses = lower bounds action criterion

Ew|I,D,)-k std(u|1,D,)> E(u|D,)-k std(u|D,)

where
D, = keep status quo

D, =1nvest in additional flood defenses

and K is the sigma level of security.



Risk Aversive Criterion of Action

Investment Space: lower bound under additional flood defenses
under no additional costs minus lower bound under status quo:

|E(|1=0,D,)-k std(u|I=0,D,)|-|E(u|D )-k std(u|D,))

where D, = keep status quo

D, =1nvest in additional flood defenses

and K is the sigma level of security.



Chebyshev’s Inequality

Coverage k-sigma confidence interval:

k* -1

k2

coverage =



Results Have Intuitive Orders of Magnitude

/

0 n.a. 0.2 x 108
1 0 19.9 x 10°
2 3/4 39.5 x 10°
3 8/9 59.1 x 10°
4 15/16 78.7 x 106
5 24/25 98.1 x 10°
6 35/36 117.6 x 10°

k =0 corresponds with expected utility theory solution



Non-Redundant Supporting Contacts
in Non-Redundant Case Studies

Results have intuitive orders of magnitude.
If black-box is opened, inner machinery of Bayesian algorithm is intuitive.

Non-expected, but nonetheless extremely intuitive, interest factor resulting from
Bottomry case study.

Bayesian decision algorithm remains stable under the most severe of tests. And
was two steps ahead of our own intuition.

Severeness of these tests is due to the skewness corrected Cl-bounds.

Empirical data on certainty bets by Kahneman and Tversky is replicated. Moreover,
Bayesian decision algorithm seems to outperform respondents.

Empirically observed probability weighting functions of Kahneman and Tversky are
replicated by the Bayesian decision theory from first principles.



Second Case Study

The rationale of insurance, Part |



The Case

n = contingencies covered

L = monetary damage of each contingency
p = probability of a contingency

M = wealth insurer

m = wealth costumer

P =PREMIUM ON INSURENCE

Assumption : P(Cl., C, ) - P(C)) P(Cj)



Insurer: Defensive Profit Maker

D, = provideinsurance plu|D,)= ilog(M ¥ 1\}4) ~ik ) (n) p'(l-p)-
i=1 !

" P_il (n) | _-
s L ik 11_ 71—
21 v (l.)p( p)

D, = donot provide insurence p(u|D,)= ilog(%) (”) p(1=p) = 6(u-0)
i=1 l
E(u|D,)-stdu|D,)>0-0=0

Premium Lower Bound: P > E(ZL) + Std (ZL)



Customer: Defensive ‘Investor’

d, = buy insurance pluld,)= Elog(m ) ( ) p'(l-p)
i=1

m l

i m—il\ (n\ »
d, = donot buy insurence pluld,)= Zlog( ) ( ) p'(l-pf

m

Ew|d)-std(u|d)>Eu|d,)-stdu|d,)

Premium Upper Bound: P < E(iL)+ g Std(iL)

1 Varlvar(iL )J
4 Var(z'L) m’

where ge\/lﬂ/ Std(iL)+



Margin of Profit (MoP) Insurer

E(iL)+std(iL)< P < E(L)+ g std(iL)

0 < MoP < (g - 1) Std(iL)

1 Varlvar(iL )J
4 Var(iL) m’

g— \/1+)/ Std(iL) +



Poor Man — Rich Man

1 Varlvar(iL )J
4 Var(iL) m’

g%\/1+}/ Std(iL) +

Poor man Rich man

000000000000000000000000

g>>1



Implication

* People need not overestimate probabilities of
contingencies to want to buy insurance.

« Kahneman and Tversky are wrong on this
Issue.

* The concavity of their utility function + risk
represented in Std(iL) is enough motivation



N Customers for Insurance Company

* Concavity Weber-Fechner law: ¢
* Risk represented by spread monetary damage Std(iL)
* Law of large Numbers: N

MoP < gNSm’(iL)— \/Nstd(iL)

(VN -1)VNsaa(iL)



intuitive orders of magnitude.
» n=10, L=50.000, p=0.0001, N=10.000
* in. wealth cust. m= 1.000.000

MoP =40 MoP-N =16.000.000

° in. wealth cust. m = 100.000

MoP =624 MoP-N =22.000.000



Implication

Insurance companies may take sigma-levels greater than 1
and still make a good profit.

Concavity utility customer + spread risk + law large
numbers equals profit.

Neglecting second moment utility distribution leads to
unawareness of effect of risk Std(iLB on margin of profit

Kahneman and Tversky neglect second moment utility
distribution. They are wrong in doing this.



Non-Redundant Supporting Contacts
in Non-Redundant Case Studies

Results have intuitive orders of magnitude.
If black-box is opened, inner machinery of Bayesian algorithm is intuitive.

Non-expected, but nonetheless extremely intuitive, interest factor resulting from
Bottomry case study.

Bayesian decision algorithm remains stable under the most severe of tests. And
was two steps ahead of our own intuition.

Severeness of these tests is due to the skewness corrected Cl-bounds.

Empirical data on certainty bets by Kahneman and Tversky is replicated. Moreover,
Bayesian decision algorithm seems to outperform respondents.

Empirically observed probability weighting functions of Kahneman and Tversky are
replicated by the Bayesian decision theory from first principles.



The rationale of insurance, Part Il



The Case

* Bottomry

— 16 century insurance/finance construction.

— A loan is taken out, which is only to be repaid if the
vessel or merchandise arrives safely at the port of
destination.

— The premium paid for bottomry can amount to as
much as 30 to 70 percent of the value of the loan



The Insurer

Initial wealth of insurer: M

Cost of loss of cargo: L

Interest factor: ¢

Probability cargo lost on sea: P



Insurer: Potential Wealth

D, = provide bottomrycontract

M_La P

M |D, =
D {M—L+(1+C)L, 1-p

D, = donot provide bottomrycontract

M|D,={M, p=1



Insurer: Utility pdf’s

D, = provide bottomrycontract

P, u=log L
p(u|D1)=< M
- p u=10gM+CL
M

D, =donot provide contract
plu |D2)={ , u =logM=O
M

Defensiveprofitmaking: £ (u | D, ) — std (u | D, ) >0



Solve for Interest Factor ¢

p+yp(l-p)

(1-p)-p(1-p)

Risk aversive criterion of action insurer results in: ¢ = adjusted odds-ratio.

C >

The insurer is effectively placing a bet by providing a bottomry contract:

Minimally (1 + c) L must be paid by merchant for his loan L, which would

have been forgiven had his cargo been lost



Non-Redundant Supporting Contacts
in Non-Redundant Case Studies

Results have intuitive orders of magnitude.
If black-box is opened, inner machinery of Bayesian algorithm is intuitive.

Non-expected, but nonetheless extremely intuitive, interest factor resulting from
Bottomry case study.

Bayesian decision algorithm remains stable under the most severe of tests. And
was two steps ahead of our own intuition.

Severeness of these tests is due to the skewness corrected Cl-bounds.

Empirical data on certainty bets by Kahneman and Tversky is replicated. Moreover,
Bayesian decision algorithm seems to outperform respondents.

Empirically observed probability weighting functions of Kahneman and Tversky are
replicated by the Bayesian decision theory from first principles.



The Merchant

Initial wealth merchant: m

Cost of loss of cargo: L

Potential profit multiplier: C

Probability cargo lost on sea: P



Merchant: Potential Wealth

e Decision d, :take out loan

d m—-L+L, p
m =
1 m—L+L+(C—c)L, l-p

* Decision d, : do not take out loan



Merchant: Utility pdf’s

D, u=log—=0
D, = take out loan uld,)=. "
1 plu] 1) m+(C—c)L
l-p u =log
m
m— L
p u = qlog
m
d, = donot takeout loan pluld,)= m+CL
m+CL,  u=qlog
m

E(u|d1)—std(u|d1)>E(u|d2)—std(u|d2)



Solve for Interest Factor ¢

_ p+ypli-p) -
c<(c_1+ﬂ) 1_(m_-L)<l—p>—m
L m

* The risk aversive criterion of action for the merchant results in an

interest factor ¢ which factors in the adjusted odds-ratio.

e Interest upper bound c is linearin C (slope = 0.078)



Summarize

 |Insurer: lower bound interest factor c

p+4p(l-p)

(1-p)-p(1-p)

C >

 Merchant: upper bound interest factor

p+pl-p) ]

c<(c_1+ﬂ) 1_(m—L)<l-p>-¢p<l-p>
L m




intuitive orders of magnitude.

Wealth merchant: m =1000 guilders

Value cargo: L =200 guilders  Return factor:C =2
Interest upper bound c¢ is linear in C (slope =0.078)
Historical: 30 to 70 percent of the value of the loan.

0.8}
0.6}
0.2/

: 0.02 0.04 0.0€ 0.08 0.1 0.12 0.14

n




As the Merchant Gets Richer

e As initial wealth merchant m vastly exceeds value of cargo L:

p++p(l-p) 7

(C-1+ﬂ) 1_(L—m)<1-p>-ﬂ—5pl-p . p++/pll-p)

m (1-p)-/p(1-p)

* The margin of profit evaporates for the insurer.

* This would seem to be fundamental property for all insurance problem:s.



Break-down Lower Bound Insurer

* As probability of a shipwreck is 27=0.5 the
lower bound of the interest factor for the

insurer breaks down:

p++p(l-p)

(1-p)-ypl-p)




Risk Seeking Criterion of Action

Indicative of impossibility of risk-aversive profit-seeking (e.g. maximizing lower

bounds utility probability distributions).

But investments can still be had, as for example in the first merchant expeditions

to find the spice sea routes.
16t century spice trade had initial potential return factors of C =350,

If the return factor Cis large enough we transition from risk-aversive to risk-
seeking profit-seeking (e.g. maximizing upper bounds utility probability
distributions).



Skewness Corrected Confidence Interval



Skewness Corrected Confidence
Interval

An important statistical discovery in its own right.

Correcting for skewness in our Cl-bounds allows for a
richer structure in the Bayesian decision theory.

By taking the effect of skewness on our Cl-bounds
into account, we come to better informed decisions.



Skewness Corrected Cl-bounds

» Sigma Confidence Interval: (u-o,u+o0)

e Skewness Confidence Interval for positive skewness:

o

1+

Jr

; S u+ |1+ I
N/ I+y+
1 1
l+y+—

I+y

e Skewness Confidence Interval for negative

skewness:

Jr

o

Y




Excellent Coverage Skewness-Cl

Normal distribution coverage is 0.68 (by construction)

Exponential distribution coverage is 0.67 (compare with coverage of 0.68
for normal distribution)

Beta distribution, r =1 and n = 10, coverage is 0.63 (as n = oo coverage
goes to 0.67)

Chi-square, r = 2, coverage is 0.67

Gamma, o =2 and & =1, coverage is 0.65 (as o = o= coverage goes to
0.67)

Comparable results for 1.96 ‘sigma’ intervals



Fact Sheet Research on Bayesian
Decision Theory

e QOutline of the finding of the skewness interval.

* Description of the severity of the test that this
skewness interval poses for the Bayesian decision
theory (when re-analyzing results of case studies).

* A test which the Bayesian decision theory passes
with flying colors.



Non-Redundant Supporting Contacts
in Non-Redundant Case Studies

Results have intuitive orders of magnitude.
If black-box is opened, inner machinery of Bayesian algorithm is intuitive.

Non-expected, but nonetheless extremely intuitive, interest factor resulting from
Bottomry case study.

Bayesian decision algorithm remains stable under the most severe of tests. And
was two steps ahead of our own intuition.

Severeness of these tests is due to the skewness corrected Cl-bounds.

Empirical data on certainty bets by Kahneman and Tversky is replicated. Moreover,
Bayesian decision algorithm seems to outperform respondents.

Empirically observed probability weighting functions of Kahneman and Tversky are
replicated by the Bayesian decision theory from first principles.



Certainty Bets

. A certain gain vs. a possible greater gain or no gain.
. A certain loss vs. a possible greater loss or no loss.

. What is the fair probability for the uncertainty
choice?

e fair means that we are undecided between the
certainty and uncertainty choices.



Positive Certainty Bets

Let 27 be the probability of the uncertainty bet.

Let O, be the positive uncertainty outcome
also possibility of a zero gain, with probability 1- p

Let O be the smaller positive certainty outcome.

e Let u(OC) be the utility of the positive certainty outcome

gain = UButil.pdf (p, O, )_ ”(OC) loss = U(Oc ) - LBuﬁz,pdf (p, O, )

Solve for P UButil.pdf (p9 0u ) - z/t(Oc ) = Z/l(Oc ) - LButil.pdf (p9 Ou)



Fact Sheet Research on Bayesian
Decision Theory

Most preferences for certainty bets replicated by Bayesian decision algorithm.
Effect of initial wealth is taken into account (which is not done by Kahneman and
Tversky)

For a discussion of a pathological preference see Discussion section of the Fact
Sheet.

This pathological preference was our tipping point, where we came to trust our
decision algorithm more than our intuition.

In cases were a clear plausibility resolution is lacking, a Bayesian will trust his
probability theory to provide this resolution (Jaynes’ thinking computer [2003]).

In the case were a clear decision resolution was lacking, we came to trust our
decision theory to provide this resolution (the decision making computer).



Non-Redundant Supporting Contacts
in Non-Redundant Case Studies

Results have intuitive orders of magnitude.
If black-box is opened, inner machinery of Bayesian algorithm is intuitive.

Non-expected, but nonetheless extremely intuitive, interest factor resulting from
Bottomry case study.

Bayesian decision algorithm remains stable under the most severe of tests. And
was two steps ahead of our own intuition.

Severeness of these tests is due to the skewness corrected Cl-bounds.

Empirical data on certainty bets by Kahneman and Tversky is replicated. Moreover,
Bayesian decision algorithm seems to outperform respondents.

Empirically observed probability weighting functions of Kahneman and Tversky are
replicated by the Bayesian decision theory from first principles.



Fair Probability Functions for
Linear Utilities

skewness-Cl fair probability, skewness-Cl fair probability
as a function of certain outcome, _ + N
given a possible uncertain gain of sigma-Cl fair probability

5000



fair probability as a function of
certain outcome, given a possible
uncertain gain of 5000

ratio O_./ O, as a function of the fair
probability p

-s000 -3000 -a000 -2000 -1000

fair probability as a function of
certain outcome, given a possible
uncertain loss of -5000



Linear utility
Pos. + Neg. outcomes

M >> 5000

Positive and
negative outcome
bets are
symmetrical.

Non-linear utility
Positive outcomes

M = 1000

Low outcome ratios imply
great uncertainty gain.

For low outcome ratios
we are relatively quick
to accept uncertainty
bet.

Non-linear utility
Negative outcomes

M = 6000

Low outcome ratios imply
great uncertainty loss.

For low outcome ratios
we are relatively slow
to accept uncertainty
bet.



Linear utility Non-linear utility Non-linear utility
Positive outcomes Negative outcomes

Kahneman and Tversky’s probability
weighing, a corner stone of their prospect 1 '
theory, corroborates the intuitive relevance
of the skewness corrected Cl’s

We derive from first principles what
Kahneman and Tversky have empirically
observed in their artificial betting

experiments (artificiality tends to linear utility).




Non-Redundant Supporting Contacts
in Non-Redundant Case Studies

Results have intuitive orders of magnitude.
If black-box is opened, inner machinery of Bayesian algorithm is intuitive.

Non-expected, but nonetheless extremely intuitive, interest factor resulting from
Bottomry case study.

Bayesian decision algorithm remains stable under the most severe of tests. And
was two steps ahead of our own intuition.

Severeness of these tests is due to the skewness corrected Cl-bounds.

Empirical data on certainty bets by Kahneman and Tversky is replicated. Moreover,
Bayesian decision algorithm seems to outperform respondents.

Empirically observed probability weighting functions of Kahneman and Tversky are
replicated by the Bayesian decision theory from first principles.



Fact Sheet Research on Bayesian Decision Theory
(van Erp, Linger, & van Gelder, 2014)

First draft:

— polemics towards Kahneman and Tversky’s will be polished in future drafts (polemics
need excessive attention for detail, lest one misrepresent).

— Some infidelities need to be addressed

1. discussion Bayesian toy problem (needs explicit conditionalizing on back ground information of Fred)

2. discussion graphs of outcome ratios as a function of the fair bets (highly non-intuitive graphs, but we had to
accommodate Kahneman and Tversky)



