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Introduction and motivation

I Proof theory for logics weaker than basic modal logic.

I Hilbert-style axioms and neighborhood semantics.

I Gentzen-rules and relational semantics.

I Analysis of formal derivations and proof search of theorems.

I Sequent system for logics with Kripke semantics.

I Simulation of non-normal logics by normal ones.
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Language L1

Let Var be a countable set of propositional variables.

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 2ϕ

for p in Var

3ϕ := ¬2¬ϕ
ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)
ϕ→ ψ := ¬ϕ ∨ ψ
ϕ↔ ψ := ϕ→ ψ ∧ ψ → ϕ
> := ϕ ∨ ¬ϕ
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Hilbert systems

E consists of

I Propositional tautologies

I Modus Ponens: From ϕ and ϕ→ ψ follows ψ

I RE: from ϕ↔ ψ follows 2ϕ↔ 2ψ

M consists of

I E

I M : 2(ϕ ∧ ψ)→ (2ϕ ∧2ψ)
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Hilbert systems

C consists of

I E

I (2ϕ ∧2ψ)→ 2(ϕ ∧ ψ)

N consists of

I E

I N : 2>
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Semantics of L1

A neighborhood model M = 〈W,n, V 〉 where

I W is a set

I n : W −→ ℘(℘(W ))

I V : Var −→ ℘(W )

M,w � 2ϕ iff JϕK ∈ n(w)

where JϕK = {w ∈W |M,w � ϕ}
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Characterization

Let F = 〈W,n〉 be a neighborhood frame.

I E is sound and complete w.r.t. all F

I M is sound and complete w.r.t. all F s.t.

a ∈ n(w) and a ⊆ b implies b ∈ n(w)

I C is sound and complete w.r.t. all F s.t.

a ∈ n(w) and b ∈ n(w) implies a ∩ b ∈ n(w)

I N is sound and complete w.r.t. all F s.t.

W ∈ n(w)
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Toward a Kripke Semantics for 2

I w � 2ϕ iff JϕK ∈ n(w)

I JϕK ∈ n(w) means a ∈ n(w) and a = JϕK, for some a

I in turn, a = JϕK stands for x ∈ a iff x � ϕ, for all x

I w � 2ϕ there is a ∈ n(w) such that x � ϕ iff x ∈ a, for all x

I w � 2ϕ iff there is a s.t. a ∈ n(w) and for all x

I x ∈ a implies x � ϕ
I x /∈ a implies x 6� ϕ
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Language L5

Let Var be a countable set of propositional variables.

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 3Nϕ | 23ϕ | 263ϕ | σ | τ

for p in Var

I Three normal modalities: 3N , 23 and 263
I σ and τ are a nullary modalities (constant)

I σ is true at worlds, τ is true at neighborhoods
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Translation of L1 into L5

I Translation ∗ by Kracht & Wolter, JSL, 1999.

p∗ := p
(¬ϕ)∗ := ¬ϕ∗

(ϕ ∧ ψ)∗ := (ϕ∗ ∧ ψ∗)
(2ϕ)∗ := 3N (23ϕ

∗ ∧263¬ϕ∗)
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Semantics of L5

Let M be neighborhood model. A relational model

M◦ = 〈W ◦, N,3, 63, σ, τ, V 〉

I W ◦ := W ∪ ℘(W )

I N := {〈w, a〉 ∈W × 2W | a ∈ n(w)}
I 3:= {〈a,w〉 ∈ 2W ×W | w ∈ a}
I 63:= {〈a,w〉 ∈ 2W ×W | w /∈ a}
I σ := W

I τ := ℘(W )

I V : Var −→ ℘(W )
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Semantics of L5

Truth in a model M◦

M◦, w � 23ϕ iff for all v, w 3 v implies v � ϕ
M◦, w � 2 63ϕ iff for all v, w 63 v implies v � ϕ
M◦, w � 3Nϕ iff for some v, wNv and v � ϕ
M◦, w � σ iff σ(w)
M◦, w � τ iff τ(w)

Theorem
Let M be a neighborhood model. For all ϕ in L1

M � ϕ iff M◦ � σ → ϕ∗
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From Kripke semantics to sequent calculus

The semantics is made explicit part of the calculus:

I Multisets of labelled formulas w : ϕ or relations wRv;

I Logical rules for w : ϕ;

I Structural rules for wRv;

I Weakening, contraction and cut.

Our aim is to:

I Convert the definition of � into logical rules;

I Convert properties of F ◦ into structural rules;

I Prove that weakening, contraction and cut are admissible.
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From Kripke semantics to sequent calculus

From the definition of M◦, w � 23ϕ (if direction)

w 3 v,Γ⇒ ∆, v : ϕ

Γ⇒ ∆, w : 23ϕ
R23

with v not in the conclusion. From the only-if direction

v : ϕ,w : 23ϕ,w 3 v,Γ⇒ ∆

w : 23ϕ,w 3 v,Γ⇒ ∆
L23

The rules for 2 63 are similar. Analogy with ∀ rules.
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From Kripke semantics to sequent calculus

From the definition of M◦, w � 3Nϕ (if direction)

w 3 v, v : ϕ,Γ⇒ ∆

w : 3Nϕ,Γ⇒ ∆

with v not in the conclusion. From the only-if direction

w 3 v,Γ⇒ ∆, w : 3Nϕ, v : ϕ

w 3 v,Γ⇒ ∆, w : 3Nϕ

Analogy with ∃ rules.
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From Kripke semantics to sequent calculus

From the definition of M◦, w � σ

σ(w), w : σ,Γ⇒ ∆

w : σ,Γ⇒ ∆
σ

From the definition of M◦, w � τ

τ(w), w : τ,Γ⇒ ∆

w : τ,Γ⇒ ∆
τ
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Cut elimination in presence of axioms

I Rules of accessibility relations

I Problem: cut-free Gentzen system with new rules, i.e.

I criteria for a new rule to be good˝ w.r.t cut elimination.

I Example: ∼ is an equivalence relation

I Reflexivity and Euclideaness of ∼ as axioms

⇒ x ∼ x x ∼ y, x ∼ z ⇒ y ∼ z

I No cut-free derivation of the symmetry of ∼

⇒ x ∼ x x ∼ y, x ∼ x⇒ y ∼ x
x ∼ y ⇒ y ∼ x CUT
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From Kripke semantics to sequent calculus

I Nothing is both a world and a neighborhood

∀w¬(σ(w) ∧ τ(w))  σ(w), τ(w),Γ⇒ ∆

I Everything is either a world or a neighborhood

∀w(σ(w) ∨ τ(w))  
σ(w),Γ⇒ ∆ τ(w),Γ⇒ ∆

Γ⇒ ∆
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From Kripke semantics to sequent calculus

I If w 3 v then w is a neighborhood and v is a world

∀w, v(w 3 v → τ(w) ∧ σ(v))  
τ(w), σ(v), w 3 v,Γ⇒ ∆

w 3 v,Γ⇒ ∆

I For no w and v both w 3 v and w 63 v

∀w, v¬(w 3 v ∧ w 63 v)  w 3 v, w 63 v,Γ⇒ ∆
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From Kripke semantics to sequent calculus

I What (classes of) frame conditions are inferentializable˝?

I Universal conditions (Pi atom, Mj conjunction of atoms):

∀x(P1 ∧ · · · ∧ Pm →M1 ∨ · · · ∨Mn)

I Geometric conditions (Pi atom, Mj conjunction of atoms):

∀x(P1 ∧ · · · ∧ Pm → ∃y1M1 ∨ · · · ∨ ∃ynMn)
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Structural Properties of GE

In GE

I Weakening is admissible;

I Contraction is admissible;

I Cut is admissible.

If `E ϕ then `GE ⇒ w : σ → ϕ∗ X

If `GE ⇒ w : σ → ϕ∗ then `E ϕ ?
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Correspondence with the Hilbert system E

I E be the class of all neighborhood frames

I E◦ be the class of all relational frames

`E `GE

E◦ �E �
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Extensions of GE: a system for N

I N-systems for N

I Frame conditions do not immediately correspond to rules

I From neighborhood conditions to relational conditions

I From relational conditions to inference rules

24 / 40



Extensions of GE: a system for N

I N-systems for N

I Frame conditions do not immediately correspond to rules

I From neighborhood conditions to relational conditions

I From relational conditions to inference rules

24 / 40



Extensions of GE: a system for N

I N-systems for N

I Frame conditions do not immediately correspond to rules

I From neighborhood conditions to relational conditions

I From relational conditions to inference rules

24 / 40



Extensions of GE: a system for N

I N-systems for N

I Frame conditions do not immediately correspond to rules

I From neighborhood conditions to relational conditions

I From relational conditions to inference rules

24 / 40



F contains the unit

I Neighborhood condition

W ∈ n(w)

I Relational condition

∀w(σ(w)→ ∃a(wNa & ∀x(σ(x)→ a 3 x)))

I The condition does not follow the geometric scheme

I Nevertheless . . .
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General Geometric Condition

I This corresponds to the system of rules

a 3 x, σ(x),Γ′ ⇒ ∆′

σ(x),Γ′ ⇒ ∆′
N2

....
wNa, σ(w),Γ⇒ ∆

σ(w),Γ⇒ ∆
N1

I Condition on variable: a in common and not in Γ, ∆

I Condition on application: N2 applied above N1

I Generalized Geometric frame condition (see Negri, forth.)
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The system GN

I Derivability of the (translation of) axiom N, 2>, i.e.

σ → 3N (23> ∧2 63¬>)

X

a 3 x, τ(a), σ(x), a 63 x,wNa, σ(w) ⇒ w : χ, x : ¬>
Excl

τ(a), σ(x), a 63 x,wNa, σ(w) ⇒ w : χ, x : ¬>
N2

a 63 x,wNa, σ(w) ⇒ w : χ, x : ¬>
Typ63

wNa, σ(w) ⇒ w : χ, a : 263¬>
R263

wNa, σ(w) ⇒ w : χ, a : 23> ∧ 263¬>
R∧

wNa, σ(w) ⇒ w : χ
R3N

σ(w) ⇒ w : χ
N1

w : σ ⇒ w : 3N (23> ∧ 263¬>)︸ ︷︷ ︸
χ

σ
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Monotonic Modal Logic

I Convert the neighborhood condition

a ∈ n(w) and a ⊆ b implies b ∈ n(w)

I Change the truth-condition of 2
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Toward a Kripke Semantics for (Monotonic) 2

I w � 2ϕ iff JϕK ∈ n(w)

I JϕK ∈ n(w) means a ∈ n(w) and a ⊆ JϕK, for some a

I in turn, a ⊆ JϕK stands for x ∈ a implies x � ϕ, for all x

I w � 2ϕ there is a ∈ n(w) such that x � ϕ, for all x ∈ a

I w � 2ϕ iff there is a s.t. a ∈ n(w) and for all x

I x ∈ a implies x � ϕ
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Language L2

Let Var be a countable set of propositional variables.

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 3Nϕ | 23ϕ

for p in Var
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Translation of L1 into L2

I Translation ∗ by Kracht & Wolter, JSL, 1999.

p∗ := p
(¬ϕ)∗ := ¬ϕ∗

(ϕ ∧ ψ)∗ := (ϕ∗ ∧ ψ∗)
(2ϕ)∗ := 3N23ϕ

∗
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Semantics of L2

Let M be neighborhood model. A relational model

M◦ = 〈W ◦, N,3, V 〉

I W ◦ := W ∪ ℘(W )

I N := {〈w, a〉 ∈W × 2W | a ∈ n(w)}
I 3:= {〈a,w〉 ∈ 2W ×W | w ∈ a}
I V : Var −→ ℘(W )
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I V : Var −→ ℘(W )
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The system GM

wNa, a : ϕ,Γ⇒ ∆

w : 3Nϕ,Γ⇒ ∆
L3N

wNa,Γ⇒ ∆, w : 3Nϕ, a : ϕ

wNa,Γ⇒ ∆, w : 3Nϕ
R3N

x : ϕ, a : 23ϕ, a 3 x,Γ⇒ ∆

a : 23ϕ, a 3 x,Γ⇒ ∆
L23

a 3 x,Γ⇒ ∆, x : ϕ

Γ⇒ ∆, a : 23ϕ
R23

33 / 40



The system GM

wNa, a : ϕ,Γ⇒ ∆

w : 3Nϕ,Γ⇒ ∆
L3N

wNa,Γ⇒ ∆, w : 3Nϕ, a : ϕ

wNa,Γ⇒ ∆, w : 3Nϕ
R3N

x : ϕ, a : 23ϕ, a 3 x,Γ⇒ ∆

a : 23ϕ, a 3 x,Γ⇒ ∆
L23

a 3 x,Γ⇒ ∆, x : ϕ

Γ⇒ ∆, a : 23ϕ
R23

33 / 40



Correspondence w.r.t axiomatic system

⇒ w : ϕ→ ψ

x : ψ ⇒ x : ϕ

x : ϕ, a 3 x,wNa, a : 23ϕ⇒ w : 3N23ψ, x : ψ

x : ϕ, a 3 x,wNa, a : 23ϕ⇒ w : 3N23ψ, x : ψ

a 3 x,wNa, a : 23ϕ⇒ w : 3N23ψ, x : ψ

wNa, a : 23ϕ⇒ w : 3N23ψ, a : 23ψ

wNa, a : 23ϕ⇒ w : 3N23ψ

w : 3N23ϕ⇒ w : 3N23ψ

⇒ w : 3N23ϕ→ 3N23ψ
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Awareness and Local Reasoning

I Awareness is necessary condition for (explicit) knowledge.

I One cannot know something which (s)he is unaware of.

I Without awareness knowledge can only be implicit.

I K is the implicit-knowledge operator

I A is the awareness operator

I X is the explicit-knowledge operator

I Xϕ↔ Aϕ ∧ Kϕ
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Awareness and Local Reasoning

An awareness model M = 〈W,RK, nA, V 〉 where

I W is a set

I RK ⊆W ×W
I nA : W −→ ℘(℘(W ))

I V : Var −→ ℘(W )

w � Kϕ iff for all w s.t. wRKv, v � ϕ

w � Aϕ iff JϕK ∈ n(w)
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Awareness and Local Reasoning

I People may have inconsistent knowledge

I if they receive contradictory information

I ϕ and ¬ψ can be both known without knowing that ϕ and
ψ are equivalent.

I Yet, contradictions are not known, i.e.

I 2ϕ ∧2¬ϕ is satisfiable,

I although 2(ϕ ∧ ¬ϕ) is not.

I In general, C fails.

I Knowledge as a monotonic modal operator
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Awareness and Local Reasoning

An local-reasoning model M = 〈W,n, V 〉 where

I W is a set

I n : W −→ ℘(℘(W ))

I V : Var −→ ℘(W )

I n(w) 6= ∅

w � Kϕ iff there is some a ∈ n(w) s.t. x � ϕ for all x ∈ a
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Conclusions

I Labelled sequent systems for various non-normal modal
logic

I Cut-elimination and admissibility of the structural rules

I Monotonic modal logic

I Applications to logic of awareness and local reasoning
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