Sequent Systems for Classical Modal Logics

Paolo Maffezioli

Joint work with D. Gilbert
University of Groningen

Introduction and motivation

－Proof theory for logics weaker than basic modal logic．
－Hilbert－style axioms and neighborhood semantics．
－Gentzen－rules and relational semantics．
－Analysis of formal derivations and proof search of theorems．
－Sequent system for logics with Kripke semantics．
－Simulation of non－normal logics by normal ones．

Introduction and motivation

- Proof theory for logics weaker than basic modal logic.
- Hilbert-style axioms and neighborhood semantics.
- Gentzen-rules and relational semantics.
- Analysis of formal derivations and proof search of theorems.
- Sequent system for logics with Kripke semantics.
- Simulation of non-normal logics by normal ones.

Introduction and motivation

- Proof theory for logics weaker than basic modal logic.
- Hilbert-style axioms and neighborhood semantics.
- Gentzen-rules and relational semantics.
- Analysis of formal derivations and proof search of theorems.
- Sequent system for logics with Kripke semantics.
- Simulation of non-normal logics by normal ones.

Introduction and motivation

- Proof theory for logics weaker than basic modal logic.
- Hilbert-style axioms and neighborhood semantics.
- Gentzen-rules and relational semantics.
- Analysis of formal derivations and proof search of theorems.
- Sequent system for logics with Kripke semantics.
- Simulation of non-normal logics by normal ones.

Introduction and motivation

- Proof theory for logics weaker than basic modal logic.
- Hilbert-style axioms and neighborhood semantics.
- Gentzen-rules and relational semantics.
- Analysis of formal derivations and proof search of theorems.
- Sequent system for logics with Kripke semantics.
- Simulation of non-normal logics by normal ones.

Introduction and motivation

- Proof theory for logics weaker than basic modal logic.
- Hilbert-style axioms and neighborhood semantics.
- Gentzen-rules and relational semantics.
- Analysis of formal derivations and proof search of theorems.
- Sequent system for logics with Kripke semantics.
- Simulation of non-normal logics by normal ones.

Language \mathcal{L}_{1}

Let Var be a countable set of propositional variables.

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi \mid \square \varphi
$$

for p in Var

Language \mathcal{L}_{1}

Let Var be a countable set of propositional variables.

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi \mid \square \varphi
$$

for p in Var

$$
\begin{array}{ll}
\diamond \varphi & :=\neg \square \neg \varphi \\
\varphi \vee \psi & :=\neg(\neg \varphi \wedge \neg \psi) \\
\varphi \rightarrow \psi & :=\neg \varphi \vee \psi \\
\varphi \leftrightarrow \psi & :=\varphi \rightarrow \psi \wedge \psi \rightarrow \varphi \\
\top & :=\varphi \vee \neg \varphi
\end{array}
$$

Hilbert systems

E consists of

- Propositional tautologies
- Modus Ponens: From φ and $\varphi \rightarrow \psi$ follows ψ
- RE: from $\varphi \leftrightarrow \psi$ follows $\square \varphi \leftrightarrow \square \psi$

M consists of

- E
- $M: \square(\varphi \wedge \psi) \rightarrow(\square \varphi \wedge \square \psi)$

Hilbert systems

E consists of

- Propositional tautologies
- Modus Ponens: From φ and $\varphi \rightarrow \psi$ follows ψ
- $R E$: from $\varphi \leftrightarrow \psi$ follows $\square \varphi \leftrightarrow \square \psi$

M consists of

- E
- $M: \square(\varphi \wedge \psi) \rightarrow(\square \varphi \wedge \square \psi)$

Hilbert systems

C consists of

- E
- $(\square \varphi \wedge \square \psi) \rightarrow \square(\varphi \wedge \psi)$

N consists of

- \mathbf{F}
- N : $\square \top$

Hilbert systems

C consists of

- E
- $(\square \varphi \wedge \square \psi) \rightarrow \square(\varphi \wedge \psi)$
\mathbf{N} consists of
- E
- N : $\square \top$

Semantics of \mathcal{L}_{1}

A neighborhood model $M=\langle W, n, V\rangle$ where

- W is a set
- $n: W \longrightarrow \wp(\wp(W))$
- V:Var $\longrightarrow \wp(W)$

$$
M, w \vDash \square \varphi \quad \text { iff } \quad \llbracket \varphi \rrbracket \in n(w)
$$

where $\llbracket \varphi \rrbracket=\{w \in W \mid M, w \vDash \varphi\}$

Semantics of \mathcal{L}_{1}

A neighborhood model $M=\langle W, n, V\rangle$ where

- W is a set
- $n: W \longrightarrow \wp(\wp(W))$
- V:Var $\longrightarrow \wp(W)$

$$
M, w \vDash \square \varphi \quad \text { iff } \quad \llbracket \varphi \rrbracket \in n(w)
$$

where $\llbracket \varphi \rrbracket=\{w \in W \mid M, w \vDash \varphi\}$

Characterization

Let $F=\langle W, n\rangle$ be a neighborhood frame.

- \mathbf{E} is sound and complete w.r.t. all F
- \mathbf{M} is sound and complete w.r.t. all F s.t.

$$
a \in n(w) \text { and } a \subseteq b \text { implies } b \in n(w)
$$

- \mathbf{C} is sound and complete w.r.t. all F s.t.

$$
a \in n(w) \text { and } b \in n(w) \text { implies } a \cap b \in n(w)
$$

- \mathbf{N} is sound and complete w.r.t. all F s.t.

$$
W \in n(w)
$$

Characterization

Let $F=\langle W, n\rangle$ be a neighborhood frame.

- \mathbf{E} is sound and complete w.r.t. all F
- \mathbf{M} is sound and complete w.r.t. all F s.t.

$$
a \in n(w) \text { and } a \subseteq b \text { implies } b \in n(w)
$$

- \mathbf{C} is sound and complete w.r.t. all F s.t.

$$
a \in n(w) \text { and } b \in n(w) \text { implies } a \cap b \in n(w)
$$

- \mathbf{N} is sound and complete w.r.t. all F s.t.

$$
W \in n(w)
$$

Characterization

Let $F=\langle W, n\rangle$ be a neighborhood frame.

- \mathbf{E} is sound and complete w.r.t. all F
- \mathbf{M} is sound and complete w.r.t. all F s.t.

$$
a \in n(w) \text { and } a \subseteq b \text { implies } b \in n(w)
$$

- \mathbf{C} is sound and complete w.r.t. all F s.t.

$$
a \in n(w) \text { and } b \in n(w) \text { implies } a \cap b \in n(w)
$$

- \mathbf{N} is sound and complete w.r.t. all F s.t.
$W \in n(w)$

Characterization

Let $F=\langle W, n\rangle$ be a neighborhood frame.

- \mathbf{E} is sound and complete w.r.t. all F
- \mathbf{M} is sound and complete w.r.t. all F s.t.

$$
a \in n(w) \text { and } a \subseteq b \text { implies } b \in n(w)
$$

- \mathbf{C} is sound and complete w.r.t. all F s.t.

$$
a \in n(w) \text { and } b \in n(w) \text { implies } a \cap b \in n(w)
$$

- \mathbf{N} is sound and complete w.r.t. all F s.t.

Characterization

Let $F=\langle W, n\rangle$ be a neighborhood frame.

- \mathbf{E} is sound and complete w.r.t. all F
- M is sound and complete w.r.t. all F s.t.

$$
a \in n(w) \text { and } a \subseteq b \text { implies } b \in n(w)
$$

- \mathbf{C} is sound and complete w.r.t. all F s.t.

$$
a \in n(w) \text { and } b \in n(w) \text { implies } a \cap b \in n(w)
$$

- \mathbf{N} is sound and complete w.r.t. all F s.t.

$$
W \in n(w)
$$

Toward a Kripke Semantics for \square

- $w \vDash \square \varphi$ iff $\llbracket \varphi \rrbracket \in n(w)$
- $\llbracket \varphi \rrbracket \in n(w)$ means $a \in n(w)$ and $a=\llbracket \varphi \rrbracket$, for some a
- in turn, $a=\llbracket \varphi \rrbracket$ stands for $x \in a$ iff $x \vDash \varphi$, for all x
- $w \vDash \square \varphi$ there is $a \in n(w)$ such that $x \vDash \varphi$ iff $x \in a$, for all x
- $w \vDash \square \varphi$ iff there is a s.t. $a \in n(w)$ and for all x
- $x \in a$ implies $x \vDash \varphi$
- $x \notin a$ implies $x \not \forall \varphi$

Toward a Kripke Semantics for \square

- $w \vDash \square \varphi$ iff $\llbracket \varphi \rrbracket \in n(w)$
- $\llbracket \varphi \rrbracket \in n(w)$ means $a \in n(w)$ and $a=\llbracket \varphi \rrbracket$, for some a
- in turn, $a=\llbracket \varphi \rrbracket$ stands for $x \in a$ iff $x \vDash \varphi$, for all x
- $w \vDash \square \varphi$ there is $a \in n(w)$ such that $x \vDash \varphi$ iff $x \in a$, for all x
- $w \vDash \square \varphi$ iff there is a s.t. $a \in n(w)$ and for all x
- $x \in a$ implies $x \vDash \varphi$
- $x \notin a$ implies $x \not \forall \varphi$

Toward a Kripke Semantics for \square

- $w \vDash \square \varphi$ iff $\llbracket \varphi \rrbracket \in n(w)$
- $\llbracket \varphi \rrbracket \in n(w)$ means $a \in n(w)$ and $a=\llbracket \varphi \rrbracket$, for some a
- in turn, $a=\llbracket \varphi \rrbracket$ stands for $x \in a$ iff $x \vDash \varphi$, for all x
- $w \vDash \square \varphi$ there is $a \in n(w)$ such that $x \vDash \varphi$ iff $x \in a$, for all x
- $w \vDash \square \varphi$ iff there is a s.t. $a \in n(w)$ and for all x
- $x \notin a$ implies $x \nLeftarrow \varphi$

Toward a Kripke Semantics for \square

- $w \vDash \square \varphi$ iff $\llbracket \varphi \rrbracket \in n(w)$
- $\llbracket \varphi \rrbracket \in n(w)$ means $a \in n(w)$ and $a=\llbracket \varphi \rrbracket$, for some a
- in turn, $a=\llbracket \varphi \rrbracket$ stands for $x \in a$ iff $x \vDash \varphi$, for all x
- $w \vDash \square \varphi$ there is $a \in n(w)$ such that $x \vDash \varphi$ iff $x \in a$, for all x
- $w \vDash \square \varphi$ iff there is a s.t. $a \in n(w)$ and for all x
- $x \notin a$ implies $x \not \forall \varphi$

Toward a Kripke Semantics for \square

- $w \vDash \square \varphi$ iff $\llbracket \varphi \rrbracket \in n(w)$
- $\llbracket \varphi \rrbracket \in n(w)$ means $a \in n(w)$ and $a=\llbracket \varphi \rrbracket$, for some a
- in turn, $a=\llbracket \varphi \rrbracket$ stands for $x \in a$ iff $x \vDash \varphi$, for all x
- $w \vDash \square \varphi$ there is $a \in n(w)$ such that $x \vDash \varphi$ iff $x \in a$, for all x
- $w \vDash \square \varphi$ iff there is a s.t. $a \in n(w)$ and for all x
- $x \in a$ implies $x \vDash \varphi$
- $x \notin a$ implies $x \not \forall \varphi$

Language \mathcal{L}_{5}

Let Var be a countable set of propositional variables.

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi\left|\diamond_{N} \varphi\right| \square_{\ni} \varphi\left|\square_{\nexists \varphi}\right| \sigma \mid \tau
$$

for p in Var

- Three normal modalities: $\diamond_{N}, \square_{\ni}$ and \square_{\nexists}
- σ and τ are a nullary modalities (constant)
- σ is true at worlds, τ is true at neighborhoods

Language \mathcal{L}_{5}

Let Var be a countable set of propositional variables.

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi\left|\diamond_{N} \varphi\right| \square_{\ni} \varphi\left|\square_{\nexists \varphi}\right| \sigma \mid \tau
$$

for p in Var

- Three normal modalities: $\diamond_{N}, \square_{\ni}$ and \square_{\ngtr}
- σ and τ are a nullary modalities (constant)
- σ is true at worlds, τ is true at neighborhoods

Language \mathcal{L}_{5}

Let Var be a countable set of propositional variables.

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi\left|\diamond_{N} \varphi\right| \square_{\ni} \varphi\left|\square_{\nexists \varphi}\right| \sigma \mid \tau
$$

for p in Var

- Three normal modalities: $\diamond_{N}, \square_{\ni}$ and \square_{\nexists}
- σ and τ are a nullary modalities (constant)
- σ is true at worlds, τ is true at neighborhoods

Language \mathcal{L}_{5}

Let Var be a countable set of propositional variables.

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi\left|\diamond_{N} \varphi\right| \square_{\ni} \varphi\left|\square_{\nexists \varphi}\right| \sigma \mid \tau
$$

for p in Var

- Three normal modalities: $\diamond_{N}, \square_{\ni}$ and \square_{\nexists}
- σ and τ are a nullary modalities (constant)
- σ is true at worlds, τ is true at neighborhoods

Translation of \mathcal{L}_{1} into \mathcal{L}_{5}

- Translation * by Kracht \& Wolter, JSL, 1999.

$$
\begin{aligned}
p^{*} & :=p \\
(\neg \varphi)^{*} & :=\neg \varphi^{*} \\
(\varphi \wedge \psi)^{*} & :=\left(\varphi^{*} \wedge \psi^{*}\right) \\
(\square \varphi)^{*} & :=\diamond_{N}\left(\square_{\ni} \varphi^{*} \wedge \square_{\left.\nexists \neg \varphi^{*}\right)}\right.
\end{aligned}
$$

Semantics of \mathcal{L}_{5}

Let M be neighborhood model. A relational model

$$
M^{\circ}=\left\langle W^{\circ}, N, \ni, \not \ni, \sigma, \tau, V\right\rangle
$$

```
* W}\mp@subsup{W}{}{\circ}:=W\cup\wp(W
-N:={\langleu,a\rangle\inW\times2 W}|a\inn(w)
>}\ni:={\langlea,w\rangle\in\mp@subsup{2}{}{W}\timesW|w\ina
```



```
* }\sigma:=
> \tau:= \wp(W)
-V:Var\longrightarrow}\longrightarrow\wp(W
```


Semantics of \mathcal{L}_{5}

Let M be neighborhood model. A relational model

$$
M^{\circ}=\left\langle W^{\circ}, N, \ni, \not \supset, \sigma, \tau, V\right\rangle
$$

- $W^{\circ}:=W \cup \wp(W)$
- $N:=\left\{\langle w, a\rangle \in W \times 2^{W} \mid a \in n(w)\right\}$
- $\ni:=\left\{\langle a, w\rangle \in 2^{W} \times W \mid w \in a\right\}$
- $\not \supset:=\left\{\langle a, w\rangle \in 2^{W} \times W \mid w \notin a\right\}$
- $\sigma:=W$
- $\tau:=\wp(W)$
- V: Var $\longrightarrow \wp(W)$

Semantics of \mathcal{L}_{5}

Let M be neighborhood model. A relational model

$$
M^{\circ}=\left\langle W^{\circ}, N, \ni, \not \supset, \sigma, \tau, V\right\rangle
$$

- $W^{\circ}:=W \cup \wp(W)$
- $N:=\left\{\langle w, a\rangle \in W \times 2^{W} \mid a \in n(w)\right\}$
- $\exists:=\left\{\langle a, w\rangle \in 2^{W} \times W \mid w \in a\right\}$
- $\not \supset:=\left\{\langle a, w\rangle \in 2^{W} \times W \mid w \notin a\right\}$
- $\sigma:=W$
- $\tau:=\wp(W)$
- V: Var $\longrightarrow \wp(W)$

Semantics of \mathcal{L}_{5}

Let M be neighborhood model. A relational model

$$
M^{\circ}=\left\langle W^{\circ}, N, \ni, \not \supset, \sigma, \tau, V\right\rangle
$$

- $W^{\circ}:=W \cup \wp(W)$
- $N:=\left\{\langle w, a\rangle \in W \times 2^{W} \mid a \in n(w)\right\}$
- $\ni:=\left\{\langle a, w\rangle \in 2^{W} \times W \mid w \in a\right\}$
- $\not \supset:=\left\{\langle a, w\rangle \in 2^{W} \times W \mid w \notin a\right\}$
- $\sigma:=W$
- $\tau:=\wp(W)$
- V: Var $\longrightarrow \wp(W)$

Semantics of \mathcal{L}_{5}

Let M be neighborhood model. A relational model

$$
M^{\circ}=\left\langle W^{\circ}, N, \ni, \not \supset, \sigma, \tau, V\right\rangle
$$

- $W^{\circ}:=W \cup \wp(W)$
- $N:=\left\{\langle w, a\rangle \in W \times 2^{W} \mid a \in n(w)\right\}$
- $\ni:=\left\{\langle a, w\rangle \in 2^{W} \times W \mid w \in a\right\}$
- $\not \supset:=\left\{\langle a, w\rangle \in 2^{W} \times W \mid w \notin a\right\}$
- $\sigma:=W$

Semantics of \mathcal{L}_{5}

Let M be neighborhood model. A relational model

$$
M^{\circ}=\left\langle W^{\circ}, N, \ni, \not \supset, \sigma, \tau, V\right\rangle
$$

- $W^{\circ}:=W \cup \wp(W)$
- $N:=\left\{\langle w, a\rangle \in W \times 2^{W} \mid a \in n(w)\right\}$
- $\ni:=\left\{\langle a, w\rangle \in 2^{W} \times W \mid w \in a\right\}$
- $\nexists:=\left\{\langle a, w\rangle \in 2^{W} \times W \mid w \notin a\right\}$
- $\sigma:=W$
- $\tau:=\wp(W)$

Semantics of \mathcal{L}_{5}

Let M be neighborhood model. A relational model

$$
M^{\circ}=\left\langle W^{\circ}, N, \ni, \not \supset, \sigma, \tau, V\right\rangle
$$

- $W^{\circ}:=W \cup \wp(W)$
- $N:=\left\{\langle w, a\rangle \in W \times 2^{W} \mid a \in n(w)\right\}$
- $\ni:=\left\{\langle a, w\rangle \in 2^{W} \times W \mid w \in a\right\}$
- $\nexists:=\left\{\langle a, w\rangle \in 2^{W} \times W \mid w \notin a\right\}$
- $\sigma:=W$
- $\tau:=\wp(W)$
- V: Var $\longrightarrow \wp(W)$

Semantics of \mathcal{L}_{5}

Truth in a model M°
$M^{\circ}, w \vDash \square_{\ni} \varphi \quad$ iff \quad for all $v, w \ni v$ implies $v \vDash \varphi$ $M^{\circ}, w \vDash \square_{\ngtr \varphi} \quad$ iff \quad for all $v, w \not \supset v$ implies $v \vDash \varphi$ $M^{\circ}, w \vDash \diamond_{N} \varphi$ iff for some $v, w N v$ and $v \vDash \varphi$ $M^{\circ}, w \vDash \sigma \quad$ iff $\quad \sigma(w)$
$M^{\circ}, w \vDash \tau \quad$ iff $\quad \tau(w)$
Theorem
Let M be a neighborhood model. For all φ in \mathcal{L}_{1}

Semantics of \mathcal{L}_{5}

Truth in a model M°

$$
\begin{array}{lll}
M^{\circ}, w \vDash \square_{\ni \varphi} & \text { iff } & \text { for all } v, w \ni v \text { implies } v \vDash \varphi \\
M^{\circ}, w \vDash \square_{\nexists \varphi} & \text { iff } & \text { for all } v, w \not \supset v \text { implies } v \vDash \varphi \\
M^{\circ}, w \vDash \diamond_{N \varphi} & \text { iff } & \text { for some } v, w N v \text { and } v \vDash \varphi \\
M^{\circ}, w \vDash \sigma & \text { iff } & \sigma(w) \\
M^{\circ}, w \vDash \tau & \text { iff } & \tau(w)
\end{array}
$$

Theorem
Let M be a neighborhood model. For all φ in \mathcal{L}_{1}

$$
M \vDash \varphi \quad \text { iff } \quad M^{\circ} \vDash \sigma \rightarrow \varphi^{*}
$$

From Kripke semantics to sequent calculus

The semantics is made explicit part of the calculus:

- Multisets of labelled formulas $w: \varphi$ or relations $w R v$;
- Logical rules for $w: \varphi$;
- Structural rules for $w R v$:
- Weakening, contraction and cut.

Our aim is to:
= Convert the definition of F into logical rules:

- Convert properties of F° into structural rules;
- Prove that weakening, contraction and cut are admissible.

From Kripke semantics to sequent calculus

The semantics is made explicit part of the calculus:

- Multisets of labelled formulas $w: \varphi$ or relations $w R v$;
- Logical rules for $w: \varphi$;
- Structural rules for $w R v$;
- Weakening, contraction and cut.

Our aim is to:

- Convert the definition of \vDash into logical rules;
- Convert pronerties of F° into structural rules:
- Prove that weakening, contraction and cut are admissible.

From Kripke semantics to sequent calculus

The semantics is made explicit part of the calculus:

- Multisets of labelled formulas $w: \varphi$ or relations $w R v$;
- Logical rules for $w: \varphi$;
- Structural rules for $w R v$;
- Weakening, contraction and cut.

Our aim is to:

- Convert the definition of \vDash into logical rules;
- Convert properties of F° into structural rules;
- Prove that weakening, contraction and cut are admissible.

From Kripke semantics to sequent calculus

The semantics is made explicit part of the calculus:

- Multisets of labelled formulas $w: \varphi$ or relations $w R v$;
- Logical rules for $w: \varphi$;
- Structural rules for $w R v$;
- Weakening, contraction and cut.

Our aim is to:
= Convert the definition of $=$ into logical rules;

- Convert properties of F° into structural rules;
- Prove that weakening, contraction and cut are admissible.

From Kripke semantics to sequent calculus

The semantics is made explicit part of the calculus:

- Multisets of labelled formulas $w: \varphi$ or relations $w R v$;
- Logical rules for $w: \varphi$;
- Structural rules for $w R v$;
- Weakening, contraction and cut.

Our aim is to:

- Convert the definition of \vDash into logical rules;
- Convert properties of F° into structural rules;
- Prove that weakening, contraction and cut are admissible.

From Kripke semantics to sequent calculus

The semantics is made explicit part of the calculus:

- Multisets of labelled formulas $w: \varphi$ or relations $w R v$;
- Logical rules for $w: \varphi$;
- Structural rules for $w R v$;
- Weakening, contraction and cut.

Our aim is to:

- Convert the definition of \vDash into logical rules;
- Convert properties of F° into structural rules;
- Prove that weakening, contraction and cut are admissible.

From Kripke semantics to sequent calculus

From the definition of $M^{\circ}, w \vDash \square_{\ni} \varphi$ (if direction)

with v not in the conclusion. From the only-if direction

The rules for \square_{\nexists} are similar. Analogy with \forall rules.

From Kripke semantics to sequent calculus

From the definition of $M^{\circ}, w \vDash \square_{\ni} \varphi$ (if direction)

$$
\frac{w \ni v, \Gamma \Rightarrow \Delta, v: \varphi}{\Gamma \Rightarrow \Delta, w: \square_{\ni} \varphi} R \square_{\ni}
$$

with v not in the conclusion. From the only-if direction

The rules for \square_{\nexists} are similar. Analogy with \forall rules.

From Kripke semantics to sequent calculus

From the definition of $M^{\circ}, w \vDash \square_{\ni} \varphi$ (if direction)

$$
\frac{w \ni v, \Gamma \Rightarrow \Delta, v: \varphi}{\Gamma \Rightarrow \Delta, w: \square_{\ni} \varphi} R \square_{\ni}
$$

with v not in the conclusion. From the only-if direction

$$
\frac{v: \varphi, w: \square_{\ni} \varphi, w \ni v, \Gamma \Rightarrow \Delta}{w: \square_{\ni} \varphi, w \ni v, \Gamma \Rightarrow \Delta} L \square_{\ni}
$$

The rules for $\square_{\not \supset}$ are similar. Analogy with \forall rules.

From Kripke semantics to sequent calculus

From the definition of $M^{\circ}, w \vDash \square_{\ni} \varphi$ (if direction)

$$
\frac{w \ni v, \Gamma \Rightarrow \Delta, v: \varphi}{\Gamma \Rightarrow \Delta, w: \square_{\ni} \varphi} R \square_{\ni}
$$

with v not in the conclusion. From the only-if direction

$$
\frac{v: \varphi, w: \square_{\ni} \varphi, w \ni v, \Gamma \Rightarrow \Delta}{w: \square_{\ni} \varphi, w \ni v, \Gamma \Rightarrow \Delta} L \square_{\ni}
$$

The rules for \square_{\nexists} are similar.

From Kripke semantics to sequent calculus

From the definition of $M^{\circ}, w \vDash \square_{\ni} \varphi$ (if direction)

$$
\frac{w \ni v, \Gamma \Rightarrow \Delta, v: \varphi}{\Gamma \Rightarrow \Delta, w: \square_{\ni} \varphi} R \square_{\ni}
$$

with v not in the conclusion. From the only-if direction

$$
\frac{v: \varphi, w: \square_{\ni} \varphi, w \ni v, \Gamma \Rightarrow \Delta}{w: \square_{\ni \varphi}, w \ni v, \Gamma \Rightarrow \Delta} L \square_{\ni}
$$

The rules for \square_{\nexists} are similar. Analogy with \forall rules.

From Kripke semantics to sequent calculus

From the definition of $M^{\circ}, w \vDash \diamond_{N} \varphi$ (if direction)

with v not in the conclusion. From the only-if direction

Analogy with \exists rules.

From Kripke semantics to sequent calculus

From the definition of $M^{\circ}, w \vDash \diamond_{N} \varphi$ (if direction)

$$
\frac{w \ni v, v: \varphi, \Gamma \Rightarrow \Delta}{w: \diamond_{N} \varphi, \Gamma \Rightarrow \Delta}
$$

with v not in the conclusion. From the only-if direction

Analogy with \exists rules.

From Kripke semantics to sequent calculus

From the definition of $M^{\circ}, w \vDash \diamond_{N} \varphi$ (if direction)

$$
\frac{w \ni v, v: \varphi, \Gamma \Rightarrow \Delta}{w: \diamond_{N} \varphi, \Gamma \Rightarrow \Delta}
$$

with v not in the conclusion. From the only-if direction

$$
\frac{w \ni v, \Gamma \Rightarrow \Delta, w: \diamond_{N} \varphi, v: \varphi}{w \ni v, \Gamma \Rightarrow \Delta, w: \diamond_{N} \varphi}
$$

Analogy with \exists rules.

From Kripke semantics to sequent calculus

From the definition of $M^{\circ}, w \vDash \diamond_{N} \varphi$ (if direction)

$$
\frac{w \ni v, v: \varphi, \Gamma \Rightarrow \Delta}{w: \diamond_{N} \varphi, \Gamma \Rightarrow \Delta}
$$

with v not in the conclusion. From the only-if direction

$$
\frac{w \ni v, \Gamma \Rightarrow \Delta, w: \diamond_{N} \varphi, v: \varphi}{w \ni v, \Gamma \Rightarrow \Delta, w: \diamond_{N} \varphi}
$$

Analogy with \exists rules.

From Kripke semantics to sequent calculus

From the definition of $M^{\circ}, w \vDash \sigma$

$$
\frac{\sigma(w), w: \sigma, \Gamma \Rightarrow \Delta}{w: \sigma, \Gamma \Rightarrow \Delta} \sigma
$$

From the definition of $M^{\circ}, w \vDash \tau$

From Kripke semantics to sequent calculus

From the definition of $M^{\circ}, w \vDash \sigma$

$$
\frac{\sigma(w), w: \sigma, \Gamma \Rightarrow \Delta}{w: \sigma, \Gamma \Rightarrow \Delta} \sigma
$$

From the definition of $M^{\circ}, w \vDash \tau$

$$
\frac{\tau(w), w: \tau, \Gamma \Rightarrow \Delta}{w: \tau, \Gamma \Rightarrow \Delta} \tau
$$

Cut elimination in presence of axioms

- Rules of accessibility relations
- Problem: cut-free Gentzen system with new rules, i.e.
- criteria for a new rule to be "good" w.r.t cut elimination.
- Example: ~ is an equivalence relation
- Reflexivity and Euclideaness of \sim as axioms

$$
\Rightarrow x \sim x \quad x \sim y, x \sim z \Rightarrow y \sim z
$$

- No cut-free derivation of the symmetry of \sim

$$
\begin{gather*}
\Rightarrow x \sim x \quad x \sim y, x \sim x \Rightarrow y \sim x \tag{CUT}\\
x \sim y \nRightarrow y \sim x
\end{gather*}
$$

Cut elimination in presence of axioms

- Rules of accessibility relations
- Problem: cut-free Gentzen system with new rules, i.e.
- criteria for a new rule to be "good" w.r.t cut elimination.
- Example: ~ is an equivalence relation
- Reflexivity and Euclideaness of \sim as axioms

- No cut-free derivation of the symmetry of \sim

Cut elimination in presence of axioms

- Rules of accessibility relations
- Problem: cut-free Gentzen system with new rules, i.e.
- criteria for a new rule to be "good" w.r.t cut elimination.
- Example: ~ is an equivalence relation
- Reflexivity and Euclideaness of \sim as axioms
- No cut-free derivation of the symmetry of \sim

Cut elimination in presence of axioms

- Rules of accessibility relations
- Problem: cut-free Gentzen system with new rules, i.e.
- criteria for a new rule to be "good" w.r.t cut elimination.
- Example: ~ is an equivalence relation
- Reflexivity and Euclideaness of ~ as axioms
- No cut-free derivation of the symmetry of \sim

Cut elimination in presence of axioms

- Rules of accessibility relations
- Problem: cut-free Gentzen system with new rules, i.e.
- criteria for a new rule to be "good" w.r.t cut elimination.
- Example: ~ is an equivalence relation
- Reflexivity and Euclideaness of \sim as axioms

$$
\Rightarrow x \sim x \quad x \sim y, x \sim z \Rightarrow y \sim z
$$

- No cut-free derivation of the symmetry of \sim

Cut elimination in presence of axioms

- Rules of accessibility relations
- Problem: cut-free Gentzen system with new rules, i.e.
- criteria for a new rule to be "good" w.r.t cut elimination.
- Example: ~ is an equivalence relation
- Reflexivity and Euclideaness of \sim as axioms

$$
\Rightarrow x \sim x \quad x \sim y, x \sim z \Rightarrow y \sim z
$$

- No cut-free derivation of the symmetry of \sim

$$
\frac{\Rightarrow x \sim x \quad x \sim y, x \sim x \Rightarrow y \sim x}{x \sim y \Rightarrow y \sim x} \text { CUT }
$$

Cut elimination in presence of axioms

- Reflexivity and Euclideaness of ~ as rules

$$
\frac{x \sim x \Rightarrow}{\Rightarrow} \operatorname{Ref}_{\sim} \quad \frac{y \sim z \Rightarrow}{x \sim y, x \sim z \Rightarrow} \text { Eucl }
$$

- Cut-free derivation of the symmetry of \sim

Cut elimination in presence of axioms

- Reflexivity and Euclideaness of \sim as rules

$$
\frac{x \sim x \Rightarrow}{\Rightarrow} \operatorname{Ref}_{\sim} \quad \frac{y \sim z \Rightarrow}{x \sim y, x \sim z \Rightarrow} \text { Eucl }_{\sim}
$$

- Cut-free derivation of the symmetry of \sim

$$
\begin{gathered}
\frac{y \sim x \Rightarrow y \sim x}{x \sim y, x \sim x \Rightarrow y \sim x} \\
\frac{\text { Eucl }}{} \times \sqrt{x \sim y \Rightarrow y \sim x} \\
\text { Ref } \sim
\end{gathered}
$$

From Kripke semantics to sequent calculus

- Nothing is both a world and a neighborhood

$$
\forall w \neg(\sigma(w) \wedge \tau(w)) \quad \rightsquigarrow \quad \overline{\sigma(w), \tau(w), \Gamma \Rightarrow \Delta}
$$

- Everything is either a world or a neighborhood

From Kripke semantics to sequent calculus

- Nothing is both a world and a neighborhood

$$
\forall w \neg(\sigma(w) \wedge \tau(w)) \quad \rightsquigarrow \quad \overline{\sigma(w), \tau(w), \Gamma \Rightarrow \Delta}
$$

- Everything is either a world or a neighborhood

From Kripke semantics to sequent calculus

- Nothing is both a world and a neighborhood

$$
\forall w \neg(\sigma(w) \wedge \tau(w)) \quad \rightsquigarrow \quad \overline{\sigma(w), \tau(w), \Gamma \Rightarrow \Delta}
$$

- Everything is either a world or a neighborhood

From Kripke semantics to sequent calculus

- Nothing is both a world and a neighborhood

$$
\forall w \neg(\sigma(w) \wedge \tau(w)) \quad \rightsquigarrow \quad \overline{\sigma(w), \tau(w), \Gamma \Rightarrow \Delta}
$$

- Everything is either a world or a neighborhood

$$
\forall w(\sigma(w) \vee \tau(w)) \rightsquigarrow \frac{\sigma(w), \Gamma \Rightarrow \Delta \quad \tau(w), \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}
$$

From Kripke semantics to sequent calculus

- If $w \ni v$ then w is a neighborhood and v is a world
- For no w and v both $w \ni v$ and $w \not \supset v$

$$
\forall w, v \neg(w \ni v \wedge w \not \supset v) \rightsquigarrow \overline{w \ni v, w \not \supset v, \Gamma \Rightarrow \Delta}
$$

From Kripke semantics to sequent calculus

- If $w \ni v$ then w is a neighborhood and v is a world

$$
\forall w, v(w \ni v \rightarrow \tau(w) \wedge \sigma(v)) \quad \rightsquigarrow \quad \frac{\tau(w), \sigma(v), w \ni v, \Gamma \Rightarrow \Delta}{w \ni v, \Gamma \Rightarrow \Delta}
$$

- For no w and v both $w \ni v$ and $w \not \supset v$

From Kripke semantics to sequent calculus

- If $w \ni v$ then w is a neighborhood and v is a world

$$
\forall w, v(w \ni v \rightarrow \tau(w) \wedge \sigma(v)) \quad \rightsquigarrow \quad \frac{\tau(w), \sigma(v), w \ni v, \Gamma \Rightarrow \Delta}{w \ni v, \Gamma \Rightarrow \Delta}
$$

- For no w and v both $w \ni v$ and $w \not \supset v$

From Kripke semantics to sequent calculus

- If $w \ni v$ then w is a neighborhood and v is a world

$$
\forall w, v(w \ni v \rightarrow \tau(w) \wedge \sigma(v)) \quad \rightsquigarrow \quad \frac{\tau(w), \sigma(v), w \ni v, \Gamma \Rightarrow \Delta}{w \ni v, \Gamma \Rightarrow \Delta}
$$

- For no w and v both $w \ni v$ and $w \not \supset v$

$$
\forall w, v \neg(w \ni v \wedge w \not \supset v) \rightsquigarrow \overline{w \ni v, w \not \supset v, \Gamma \Rightarrow \Delta}
$$

From Kripke semantics to sequent calculus

- What (classes of) frame conditions are "inferentializable"?
- Universal conditions (P_{i} atom, M_{j} conjunction of atoms):

$$
\forall \bar{x}\left(P_{1} \wedge \cdots \wedge P_{m} \rightarrow M_{1} \vee \cdots \vee M_{n}\right)
$$

- Geometric conditions (P_{i} atom, M_{j} conjunction of atoms):

$$
\forall \bar{x}\left(P_{1} \wedge \cdots \wedge P_{m} \rightarrow \exists \overline{y_{1}} M_{1} \vee \cdots \vee \exists \overline{y_{n}} M_{n}\right)
$$

From Kripke semantics to sequent calculus

- What (classes of) frame conditions are "inferentializable"?
- Universal conditions (P_{i} atom, M_{j} conjunction of atoms):

$$
\forall \bar{x}\left(P_{1} \wedge \cdots \wedge P_{m} \rightarrow M_{1} \vee \cdots \vee M_{n}\right)
$$

- Geometric conditions (P_{i} atom, M_{j} conjunction of atoms):

$$
\forall \bar{x}\left(P_{1} \wedge \cdots \wedge P_{m} \rightarrow \exists \overline{y_{1}} M_{1} \vee \cdots \vee \exists \overline{y_{n}} M_{n}\right)
$$

From Kripke semantics to sequent calculus

- What (classes of) frame conditions are "inferentializable"?
- Universal conditions (P_{i} atom, M_{j} conjunction of atoms):

$$
\forall \bar{x}\left(P_{1} \wedge \cdots \wedge P_{m} \rightarrow M_{1} \vee \cdots \vee M_{n}\right)
$$

- Geometric conditions (P_{i} atom, M_{j} conjunction of atoms):

$$
\forall \bar{x}\left(P_{1} \wedge \cdots \wedge P_{m} \rightarrow \exists \overline{y_{1}} M_{1} \vee \cdots \vee \exists \overline{y_{n}} M_{n}\right)
$$

Structural Properties of GE

In $\mathbf{G E}$

- Weakening is admissible;
- Contraction is admissible;
- Cut is admissible.

$$
\text { If } \vdash_{\mathbf{G E}} \Rightarrow w: \sigma \rightarrow \varphi^{*} \text { then }
$$

Structural Properties of GE

In GE

- Weakening is admissible;
- Contraction is admissible;
- Cut is admissible.

$$
\begin{aligned}
& \text { If } \vdash_{\mathbf{E}} \varphi \text { then } \vdash_{\mathbf{G E}} \Rightarrow w: \sigma \rightarrow \varphi^{*} \quad \checkmark \\
& \text { If } \vdash_{\mathrm{GE}} \Rightarrow w: \sigma \rightarrow \varphi^{*} \text { then } \vdash_{\mathrm{E}} \varphi
\end{aligned}
$$

Structural Properties of GE

In GE

- Weakening is admissible;
- Contraction is admissible;
- Cut is admissible.

$$
\begin{aligned}
& \text { If } \vdash_{\mathbf{E}} \varphi \text { then } \vdash_{\mathbf{G E}} \Rightarrow w: \sigma \rightarrow \varphi^{*} \\
& \text { If } \vdash_{\mathbf{G E}} \Rightarrow w: \sigma \rightarrow \varphi^{*} \text { then } \vdash_{\mathbf{E}} \varphi
\end{aligned}
$$

Structural Properties of GE

In GE

- Weakening is admissible;
- Contraction is admissible;
- Cut is admissible.

$$
\begin{aligned}
& \text { If } \vdash_{\mathbf{E} \varphi} \varphi \text { then } \vdash_{\mathbf{G E}} \Rightarrow w: \sigma \rightarrow \varphi^{*} \\
& \text { If } \vdash_{\mathbf{G E}} \Rightarrow w: \sigma \rightarrow \varphi^{*} \text { then } \vdash_{\mathbf{E}} \varphi
\end{aligned}
$$

Correspondence with the Hilbert system E

- \mathfrak{E} be the class of all neighborhood frames
- \mathfrak{E}° be the class of all relational frames

Correspondence with the Hilbert system E

- \mathfrak{E} be the class of all neighborhood frames
- \mathfrak{E}° be the class of all relational frames

Correspondence with the Hilbert system E

- \mathfrak{E} be the class of all neighborhood frames
- \mathfrak{E}° be the class of all relational frames

Correspondence with the Hilbert system E

- \mathfrak{E} be the class of all neighborhood frames
- \mathfrak{E}° be the class of all relational frames

Correspondence with the Hilbert system E

- \mathfrak{E} be the class of all neighborhood frames
- \mathfrak{E}° be the class of all relational frames

$$
\mathfrak{E}^{\circ} \vDash
$$

Correspondence with the Hilbert system E

- \mathfrak{E} be the class of all neighborhood frames
- \mathfrak{E}° be the class of all relational frames

Correspondence with the Hilbert system E

- \mathfrak{E} be the class of all neighborhood frames
- \mathfrak{E}° be the class of all relational frames

Correspondence with the Hilbert system E

- \mathfrak{E} be the class of all neighborhood frames
- \mathfrak{E}° be the class of all relational frames

Extensions of GE: a system for \mathbf{N}

- \mathbf{N}-systems for \mathbf{N}
- Frame conditions do not immediately correspond to rules
- From neighborhood conditions to relational conditions
- From relational conditions to inference rules

Extensions of GE: a system for \mathbf{N}

- \mathbf{N}-systems for \mathbf{N}
- Frame conditions do not immediately correspond to rules
- From neighborhood conditions to relational conditions
- From relational conditions to inference rules

Extensions of GE: a system for \mathbf{N}

- \mathbf{N}-systems for \mathbf{N}
- Frame conditions do not immediately correspond to rules
- From neighborhood conditions to relational conditions
- From relational conditions to inference rules

Extensions of GE: a system for \mathbf{N}

- \mathbf{N}-systems for \mathbf{N}
- Frame conditions do not immediately correspond to rules
- From neighborhood conditions to relational conditions
- From relational conditions to inference rules

F contains the unit

- Neighborhood condition

$$
W \in n(w)
$$

- Relational condition

$$
\forall w(\sigma(w) \rightarrow \exists a(w N a \& \forall x(\sigma(x) \rightarrow a \ni x)))
$$

- The condition does not follow the geometric scheme
- Nevertheless

F contains the unit

- Neighborhood condition

$$
W \in n(w)
$$

- Relational condition

$$
\forall w(\sigma(w) \rightarrow \exists a(w N a \& \forall x(\sigma(x) \rightarrow a \ni x)))
$$

- The condition does not follow the geometric scheme
- Nevertheless

F contains the unit

- Neighborhood condition

$$
W \in n(w)
$$

- Relational condition

$$
\forall w(\sigma(w) \rightarrow \exists a(w N a \& \forall x(\sigma(x) \rightarrow a \ni x)))
$$

- The condition does not follow the geometric scheme
- Nevertheless

F contains the unit

- Neighborhood condition

$$
W \in n(w)
$$

- Relational condition

$$
\forall w(\sigma(w) \rightarrow \exists a(w N a \& \forall x(\sigma(x) \rightarrow a \ni x)))
$$

- The condition does not follow the geometric scheme
- Nevertheless ...

General Geometric Condition

- This corresponds to the system of rules

$$
\begin{gathered}
\frac{a \ni x, \sigma(x), \Gamma^{\prime} \Rightarrow \Delta^{\prime}}{\sigma(x), \Gamma^{\prime} \Rightarrow \Delta^{\prime}} N_{2} \\
\vdots \\
\frac{w N a, \sigma(w), \Gamma \Rightarrow \Delta}{\sigma(w), \Gamma \Rightarrow \Delta} N_{1}
\end{gathered}
$$

- Condition on variable: a in common and not in Γ, Δ
- Condition on application: N_{2} applied above N_{1}
- Generalized Geometric frame condition (see Negri, forth.)

General Geometric Condition

- This corresponds to the system of rules

$$
\begin{gathered}
\frac{a \ni x, \sigma(x), \Gamma^{\prime} \Rightarrow \Delta^{\prime}}{\sigma(x), \Gamma^{\prime} \Rightarrow \Delta^{\prime}} N_{2} \\
\vdots \\
\frac{w N a, \sigma(w), \Gamma \Rightarrow \Delta}{\sigma(w), \Gamma \Rightarrow \Delta} N_{1}
\end{gathered}
$$

- Condition on variable: a in common and not in Γ, Δ
- Condition on application: N_{2} applied above N_{1}
- Generalized Geometric frame condition (see Negri, forth.)

General Geometric Condition

- This corresponds to the system of rules

$$
\begin{gathered}
\frac{a \ni x, \sigma(x), \Gamma^{\prime} \Rightarrow \Delta^{\prime}}{\sigma(x), \Gamma^{\prime} \Rightarrow \Delta^{\prime}} N_{2} \\
\vdots \\
\frac{w N a, \sigma(w), \Gamma \Rightarrow \Delta}{\sigma(w), \Gamma \Rightarrow \Delta} N_{1}
\end{gathered}
$$

- Condition on variable: a in common and not in Γ, Δ
- Condition on application: N_{2} applied above N_{1}
- Generalized Geometric frame condition (see Negri, forth.)

The system GN

- Derivability of the (translation of) axiom N, $\square \top$, i.e.

$$
\sigma \rightarrow \diamond_{N}\left(\square_{\ni} \top \wedge \square_{\not \supset} \neg \top\right)
$$

The system GN

- Derivability of the (translation of) axiom \mathbf{N}, $\square \top$, i.e.

$$
\sigma \rightarrow \diamond_{N}\left(\square_{\ni} \top \wedge \square_{\not \supset} \neg \top\right)
$$

The system GN

- Derivability of the (translation of) axiom \mathbf{N}, $\square \top$, i.e.

$$
\sigma \rightarrow \diamond_{N}\left(\square_{\ni} \top \wedge \square_{\not \supset} \neg \top\right)
$$

The system GN

- Derivability of the (translation of) axiom \mathbf{N}, $\square \top$, i.e.

$$
\sigma \rightarrow \diamond_{N}\left(\square_{\ni} \top \wedge \square_{\not \supset} \neg \top\right)
$$

The system GN

- Derivability of the (translation of) axiom \mathbf{N}, $\square \top$, i.e.

$$
\sigma \rightarrow \diamond_{N}\left(\square_{\ni} \top \wedge \square_{\not \supset} \neg \top\right)
$$

The system GN

- Derivability of the (translation of) axiom \mathbf{N}, $\square \top$, i.e.

$$
\sigma \rightarrow \diamond_{N}\left(\square_{\ni} \top \wedge \square_{\not \supset} \neg \top\right)
$$

The system GN

- Derivability of the (translation of) axiom \mathbf{N}, $\square \top$, i.e.

$$
\sigma \rightarrow \diamond_{N}\left(\square_{\ni} \top \wedge \square_{\not \supset} \neg \top\right)
$$

The system GN

- Derivability of the (translation of) axiom \mathbf{N}, $\square \top$, i.e.

$$
\sigma \rightarrow \diamond_{N}\left(\square_{\ni} \top \wedge \square_{\not \supset} \neg \top\right)
$$

The system GN

- Derivability of the (translation of) axiom $\mathbf{N}, \square \top$, i.e.

$$
\begin{aligned}
& \sigma \rightarrow \diamond_{N}\left(\square_{\ni} \top \wedge \square_{\nexists} \neg \top\right)
\end{aligned}
$$

The system GN

- Derivability of the (translation of) axiom $\mathbf{N}, \square \top$, i.e.

$$
\begin{aligned}
& \sigma \rightarrow \diamond_{N}\left(\square_{\ni} \top \wedge \square_{\nexists} \neg \top\right)
\end{aligned}
$$

Monotonic Modal Logic

- Convert the neighborhood condition

$$
a \in n(w) \text { and } a \subseteq b \text { implies } b \in n(w)
$$

- Change the truth-condition of \square

Monotonic Modal Logic

- Convert the neighborhood condition

$$
a \in n(w) \text { and } a \subseteq b \text { implies } b \in n(w)
$$

- Change the truth-condition of \square

Toward a Kripke Semantics for (Monotonic) \square

- $w \vDash \square \varphi$ iff $\llbracket \varphi \rrbracket \in n(w)$
- $\llbracket \varphi \rrbracket \in n(w)$ means $a \in n(w)$ and $a \subseteq \llbracket \varphi \rrbracket$, for some a
- in turn, $a \subseteq \llbracket \varphi \rrbracket$ stands for $x \in a$ implies $x \vDash \varphi$, for all x
- $w \vDash \square \varphi$ there is $a \in n(w)$ such that $x \vDash \varphi$, for all $x \in a$
- $w \vDash \square \varphi$ iff there is a s.t. $a \in n(w)$ and for all x
- $x \in a$ implies $x \vDash \varphi$

Toward a Kripke Semantics for (Monotonic) \square

- $w \vDash \square \varphi$ iff $\llbracket \varphi \rrbracket \in n(w)$
- $\llbracket \varphi \rrbracket \in n(w)$ means $a \in n(w)$ and $a \subseteq \llbracket \varphi \rrbracket$, for some a
- in turn, $a \subseteq \llbracket \varphi \rrbracket$ stands for $x \in a$ implies $x \vDash \varphi$, for all x
- $w \vDash \square \varphi$ there is $a \in n(w)$ such that $x \vDash \varphi$, for all $x \in a$
- $w \vDash \square \varphi$ iff there is a s.t. $a \in n(w)$ and for all x
- $x \in a$ implies $x \vDash \varphi$

Toward a Kripke Semantics for (Monotonic) \square

- $w \vDash \square \varphi$ iff $\llbracket \varphi \rrbracket \in n(w)$
- $\llbracket \varphi \rrbracket \in n(w)$ means $a \in n(w)$ and $a \subseteq \llbracket \varphi \rrbracket$, for some a
- in turn, $a \subseteq \llbracket \varphi \rrbracket$ stands for $x \in a$ implies $x \vDash \varphi$, for all x
- $w \vDash \square \varphi$ there is $a \in n(w)$ such that $x \vDash \varphi$, for all $x \in a$
- $w \vDash \square \varphi$ iff there is a s.t. $a \in n(w)$ and for all x
- $x \in a$ implies $x \vDash \varphi$

Toward a Kripke Semantics for (Monotonic) \square

- $w \vDash \square \varphi$ iff $\llbracket \varphi \rrbracket \in n(w)$
- $\llbracket \varphi \rrbracket \in n(w)$ means $a \in n(w)$ and $a \subseteq \llbracket \varphi \rrbracket$, for some a
- in turn, $a \subseteq \llbracket \varphi \rrbracket$ stands for $x \in a$ implies $x \vDash \varphi$, for all x
- $w \vDash \square \varphi$ there is $a \in n(w)$ such that $x \vDash \varphi$, for all $x \in a$
- $w \vDash \square \varphi$ iff there is a s.t. $a \in n(w)$ and for all x

Toward a Kripke Semantics for (Monotonic) \square

- $w \vDash \square \varphi$ iff $\llbracket \varphi \rrbracket \in n(w)$
- $\llbracket \varphi \rrbracket \in n(w)$ means $a \in n(w)$ and $a \subseteq \llbracket \varphi \rrbracket$, for some a
- in turn, $a \subseteq \llbracket \varphi \rrbracket$ stands for $x \in a$ implies $x \vDash \varphi$, for all x
- $w \vDash \square \varphi$ there is $a \in n(w)$ such that $x \vDash \varphi$, for all $x \in a$
- $w \vDash \square \varphi$ iff there is a s.t. $a \in n(w)$ and for all x
- $x \in a$ implies $x \vDash \varphi$

Language \mathcal{L}_{2}

Let Var be a countable set of propositional variables.

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi\left|\diamond_{N} \varphi\right| \square_{\ni} \varphi
$$

for p in Var

Translation of \mathcal{L}_{1} into \mathcal{L}_{2}

- Translation * by Kracht \& Wolter, JSL, 1999.

$$
\begin{aligned}
p^{*} & :=p \\
(\neg \varphi)^{*} & :=\neg \varphi^{*} \\
(\varphi \wedge \psi)^{*} & :=\left(\varphi^{*} \wedge \psi^{*}\right) \\
(\square \varphi)^{*} & :=\diamond_{N} \square_{\ni} \varphi^{*}
\end{aligned}
$$

Semantics of \mathcal{L}_{2}

Let M be neighborhood model. A relational model

$$
M^{\circ}=\left\langle W^{\circ}, N, \ni, V\right\rangle
$$

- $N:=\left\{\langle w, a\rangle \in W \times 2^{W} \mid a \in n(w)\right\}$
- $\ni:=\left\{\langle a, w\rangle \in 2^{W} \times W \mid w \in a\right\}$
- $V: \operatorname{Var} \longrightarrow \wp(W)$

Semantics of \mathcal{L}_{2}

Let M be neighborhood model. A relational model

$$
M^{\circ}=\left\langle W^{\circ}, N, \ni, V\right\rangle
$$

- $W^{\circ}:=W \cup \wp(W)$
- $N:=\left\{\langle w, a\rangle \in W \times 2^{W} \mid a \in n(w)\right\}$
- $\ni:=\left\{\langle a, w\rangle \in 2^{W} \times W \mid w \in a\right\}$
- V: Var $\longrightarrow \wp(W)$

Semantics of \mathcal{L}_{2}

Let M be neighborhood model. A relational model

$$
M^{\circ}=\left\langle W^{\circ}, N, \ni, V\right\rangle
$$

- $W^{\circ}:=W \cup \wp(W)$
- $N:=\left\{\langle w, a\rangle \in W \times 2^{W} \mid a \in n(w)\right\}$
- $\exists:=\left\{\langle a, w\rangle \in 2^{W} \times W \mid w \in a\right\}$
- V: Var $\longrightarrow \wp(W)$

Semantics of \mathcal{L}_{2}

Let M be neighborhood model. A relational model

$$
M^{\circ}=\left\langle W^{\circ}, N, \ni, V\right\rangle
$$

- $W^{\circ}:=W \cup \wp(W)$
- $N:=\left\{\langle w, a\rangle \in W \times 2^{W} \mid a \in n(w)\right\}$
- $\ni:=\left\{\langle a, w\rangle \in 2^{W} \times W \mid w \in a\right\}$

Semantics of \mathcal{L}_{2}

Let M be neighborhood model. A relational model

$$
M^{\circ}=\left\langle W^{\circ}, N, \ni, V\right\rangle
$$

- $W^{\circ}:=W \cup \wp(W)$
- $N:=\left\{\langle w, a\rangle \in W \times 2^{W} \mid a \in n(w)\right\}$
- $\ni:=\left\{\langle a, w\rangle \in 2^{W} \times W \mid w \in a\right\}$
- V: Var $\longrightarrow \wp(W)$

The system GM

$$
\frac{w N a, a: \varphi, \Gamma \Rightarrow \Delta}{w: \diamond_{N} \varphi, \Gamma \Rightarrow \Delta} L \diamond_{N} \quad \frac{w N a, \Gamma \Rightarrow \Delta, w: \diamond_{N} \varphi, a: \varphi}{w N a, \Gamma \Rightarrow \Delta, w: \diamond_{N} \varphi} R \diamond_{N}
$$

The system GM

$$
\begin{aligned}
& \frac{w N a, a: \varphi, \Gamma \Rightarrow \Delta}{w: \diamond_{N} \varphi, \Gamma \Rightarrow \Delta} L \diamond_{N} \quad \frac{w N a, \Gamma \Rightarrow \Delta, w: \diamond_{N} \varphi, a: \varphi}{w N a, \Gamma \Rightarrow \Delta, w: \diamond_{N} \varphi} R \diamond_{N} \\
& \frac{x: \varphi, a: \square_{\ni} \varphi, a \ni x, \Gamma \Rightarrow \Delta}{a: \square_{\ni} \varphi, a \ni x, \Gamma \Rightarrow \Delta} L \square_{\ni} \quad \frac{a \ni x, \Gamma \Rightarrow \Delta, x: \varphi}{\Gamma \Rightarrow \Delta, a: \square_{\ni} \varphi} R \square_{\ni}
\end{aligned}
$$

Correspondence w.r.t axiomatic system

$$
\frac{\Rightarrow w: \varphi \rightarrow \psi}{\overline{\bar{x}: \psi \Rightarrow x: \varphi}} \frac{\frac{x: \varphi, a \ni x, w N a, a: \square_{\ni} \varphi \Rightarrow w: \diamond_{N} \square_{\ni} \psi, x: \psi}{x}}{\frac{a \ni x, w N a, a: \square_{\ni} \varphi \Rightarrow w: \diamond_{N} \square_{\ni} \psi, x: \psi}{}} \frac{\frac{a \ni, w N a, a: \square_{\ni} \varphi \Rightarrow w: \diamond_{N} \square_{\ni} \psi, x: \psi}{w N a, a: \square_{\ni} \varphi \Rightarrow w: \diamond_{N} \square_{\ni} \psi, a: \square_{\ni} \psi}}{\frac{w N a, a: \square_{\ni} \varphi \Rightarrow w: \diamond_{N} \square_{\ni} \psi}{w}}
$$

Awareness and Local Reasoning

－Awareness is necessary condition for（explicit）knowledge．
－One cannot know something which（s）he is unaware of．
－Without awareness knowledge can only be implicit．
－K is the implicit－knowledge operator
－A is the awareness operator
－ X is the explicit－knowledge operator
－ $\mathrm{X} \varphi \leftrightarrow \mathrm{A} \varphi \wedge \mathrm{K} \varphi$

Awareness and Local Reasoning

- Awareness is necessary condition for (explicit) knowledge.
- One cannot know something which (s)he is unaware of.
- Without awareness knowledge can only be implicit.
- K is the implicit-knowledge operator
- A is the awareness operator
- X is the explicit-knowledge operator
- $\mathrm{X} \varphi \leftrightarrow \mathrm{A} \varphi \wedge \mathrm{K} \varphi$

Awareness and Local Reasoning

- Awareness is necessary condition for (explicit) knowledge.
- One cannot know something which (s)he is unaware of.
- Without awareness knowledge can only be implicit.
- K is the implicit-knowledge operator
- A is the awareness operator
- X is the explicit-knowledge onerator
- $\mathrm{X} \varphi \leftrightarrow \mathrm{A} \varphi \wedge \mathrm{K} \varphi$

Awareness and Local Reasoning

- Awareness is necessary condition for (explicit) knowledge.
- One cannot know something which (s)he is unaware of.
- Without awareness knowledge can only be implicit.
- K is the implicit-knowledge operator
- A is the awareness operator
- X is the explicit-knowledge operator
- $\mathrm{X} \varphi \leftrightarrow \mathrm{A} \varphi \wedge \mathrm{K} \varphi$

Awareness and Local Reasoning

- Awareness is necessary condition for (explicit) knowledge.
- One cannot know something which (s)he is unaware of.
- Without awareness knowledge can only be implicit.
- K is the implicit-knowledge operator
- A is the awareness operator
- X is the explicit-knowledge operator
- $\mathrm{X} \varphi \leftrightarrow \mathrm{A} \varphi \wedge \mathrm{K} \varphi$

Awareness and Local Reasoning

- Awareness is necessary condition for (explicit) knowledge.
- One cannot know something which (s)he is unaware of.
- Without awareness knowledge can only be implicit.
- K is the implicit-knowledge operator
- A is the awareness operator
- X is the explicit-knowledge operator
- $\mathrm{X}_{\varphi} \leftrightarrow \mathrm{A} \varphi \wedge \mathrm{K}_{\varphi}$

Awareness and Local Reasoning

- Awareness is necessary condition for (explicit) knowledge.
- One cannot know something which (s)he is unaware of.
- Without awareness knowledge can only be implicit.
- K is the implicit-knowledge operator
- A is the awareness operator
- X is the explicit-knowledge operator
- $\mathrm{X} \varphi \leftrightarrow \mathrm{A} \varphi \wedge \mathrm{K} \varphi$

Awareness and Local Reasoning

An awareness model $M=\left\langle W, R_{\mathrm{K}}, n_{\mathrm{A}}, V\right\rangle$ where

- W is a set
- $R_{\mathrm{K}} \subseteq W \times W$
- $n_{\mathrm{A}}: W \longrightarrow \wp(\wp(W))$
- V: Var $\longrightarrow \wp(W)$

$$
\begin{array}{ll}
w \vDash \mathrm{~K} \varphi & \text { iff } \quad \text { for all } \mathrm{w} \text { s.t. } w R_{\mathrm{K}} v, v \vDash \varphi \\
w \vDash \mathrm{~A} \varphi & \text { iff } \quad \llbracket \varphi \rrbracket \in n(w)
\end{array}
$$

Awareness and Local Reasoning

An awareness model $M=\left\langle W, R_{\mathrm{K}}, n_{\mathrm{A}}, V\right\rangle$ where

- W is a set
- $R_{\mathrm{K}} \subseteq W \times W$
- $n_{\mathrm{A}}: W \longrightarrow \wp(\wp(W))$
- V: Var $\longrightarrow \wp(W)$

$$
\begin{aligned}
& w \vDash \mathrm{~K} \varphi \quad \text { iff } \quad \text { for all w s.t. } w R_{\mathrm{K}} v, v \vDash \varphi \\
& w \vDash \mathrm{~A} \varphi \quad \text { iff } \quad \llbracket \varphi \rrbracket \in n(w)
\end{aligned}
$$

Awareness and Local Reasoning

- People may have inconsistent knowledge
- if they receive contradictory information
- φ and $\neg \psi$ can be both known without knowing that φ and ψ are equivalent.
- Yet, contradictions are not known, i.e.
- $\square \varphi \wedge \square \neg \varphi$ is satisfiable,
- although $\square(\varphi \wedge \neg \varphi)$ is not.
- In general, C fails.
- Knowledge as a monotonic modal operator

Awareness and Local Reasoning

- People may have inconsistent knowledge
- if they receive contradictory information
- φ and $\neg \psi$ can be both known without knowing that φ and ψ are equivalent.
- Yet, contradictions are not known, i.e.
- $\square \varphi \wedge \square \neg \varphi$ is satisfiable,
- although $\square(\varphi \wedge \neg \varphi)$ is not.
- In general, C fails.
- Knowledge as a monotonic modal operator

Awareness and Local Reasoning

- People may have inconsistent knowledge
- if they receive contradictory information
- φ and $\neg \psi$ can be both known without knowing that φ and ψ are equivalent.
- Yet, contradictions are not known, i.e.
- $\square \varphi \wedge \square \neg \varphi$ is satisfiable,
- although $\square(\varphi \wedge \neg \varphi)$ is not.
- In general, C fails.
- Knowledge as a monotonic modal operator

Awareness and Local Reasoning

- People may have inconsistent knowledge
- if they receive contradictory information
- φ and $\neg \psi$ can be both known without knowing that φ and ψ are equivalent.
- Yet, contradictions are not known, i.e.
- $\square \varphi \wedge \square \neg \varphi$ is satisfiable,
- although $\square(\varphi \wedge \neg \varphi)$ is not.
- In general, C fails.
- Knowledge as a monotonic modal operator

Awareness and Local Reasoning

- People may have inconsistent knowledge
- if they receive contradictory information
- φ and $\neg \psi$ can be both known without knowing that φ and ψ are equivalent.
- Yet, contradictions are not known, i.e.
- $\square \varphi \wedge \square \neg \varphi$ is satisfiable,
- although $\square(\varphi \wedge \neg \varphi)$ is not.
- In general, C fails.
- Knowledge as a monotonic modal operator

Awareness and Local Reasoning

- People may have inconsistent knowledge
- if they receive contradictory information
- φ and $\neg \psi$ can be both known without knowing that φ and ψ are equivalent.
- Yet, contradictions are not known, i.e.
- $\square \varphi \wedge \square \neg \varphi$ is satisfiable,
- although $\square(\varphi \wedge \neg \varphi)$ is not.
- In general, C fails.
- Knowledge as a monotonic modal operator

Awareness and Local Reasoning

- People may have inconsistent knowledge
- if they receive contradictory information
- φ and $\neg \psi$ can be both known without knowing that φ and ψ are equivalent.
- Yet, contradictions are not known, i.e.
- $\square \varphi \wedge \square \neg \varphi$ is satisfiable,
- although $\square(\varphi \wedge \neg \varphi)$ is not.
- In general, \mathbf{C} fails.
- Knowledge as a monotonic modal operator

Awareness and Local Reasoning

- People may have inconsistent knowledge
- if they receive contradictory information
- φ and $\neg \psi$ can be both known without knowing that φ and ψ are equivalent.
- Yet, contradictions are not known, i.e.
- $\square \varphi \wedge \square \neg \varphi$ is satisfiable,
- although $\square(\varphi \wedge \neg \varphi)$ is not.
- In general, \mathbf{C} fails.
- Knowledge as a monotonic modal operator

Awareness and Local Reasoning

An local-reasoning model $M=\langle W, n, V\rangle$ where

- W is a set
- $n: W \longrightarrow \wp(\wp(W))$
- V: Var $\longrightarrow \wp(W)$
- $n(w) \neq \emptyset$
$w \vDash \mathrm{~K} \varphi \quad$ iff \quad there is some $a \in n(w)$ s.t. $x \vDash \varphi$ for all $x \in a$

Awareness and Local Reasoning

An local-reasoning model $M=\langle W, n, V\rangle$ where

- W is a set
- $n: W \longrightarrow \wp(\wp(W))$
- V: Var $\longrightarrow \wp(W)$
- $n(w) \neq \emptyset$
$w \vDash \mathrm{~K} \varphi \quad$ iff \quad there is some $a \in n(w)$ s.t. $x \vDash \varphi$ for all $x \in a$

Conclusions

- Labelled sequent systems for various non-normal modal logic
- Cut-elimination and admissibility of the structural rules
- Monotonic modal logic
- Applications to logic of awareness and local reasoning

References

\otimes R. Fagin, J.Y. Halpern, Y. Moses \& M.Y. Vardi. Reasoning About Knowledge.
MIT Press, 1997.
\& M. Kracht \& F. Wolter.
Normal Monomodal Logics Can Simulate All Others.
Journal of Symbolic Logic, 64(1):99-138, 1999.
© S. Negri.
Proof analysis beyond geometric theories: from rule systems to systems of rules.
Journal of Logic and Computation, forthcoming.

