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Language L5

Let Var be a countable set of propositional variables.
pu=plop|oAe|Ong|Dsp|Dzp o]
for p in Var
» Three normal modalities: <y, O3 and Oy

» o and 7 are a nullary modalities (constant)

» o is true at worlds, 7 is true at neighborhoods
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Translation of £; into Lx

» Translation * by Kracht & Wolter, JSL, 1999.

* = p
(= )* = e
(pAY)* = (" AYY)
(Bp)* ON(Os¢™ A Ozx=p*)

10 / 40



Semantics of L5

Let M be neighborhood model. A relational model

Mo = <WO7 N7 57 ?7 O-’ 7-7 V>

11 /40



Semantics of L5

Let M be neighborhood model. A relational model

MO = <WO7 N? 97 ?7 O-’ 7-7 V>

> We:=WUp(W)

11 /40



Semantics of L5

Let M be neighborhood model. A relational model

MO = <WO7 N? 97 ?7 O-’ 7-7 V>

> We:=WUp(W)
» N:={(w,a) e W x 2" | a € n(w)}

11 /40



Semantics of L5

Let M be neighborhood model. A relational model

MO = <WO7N7 97 ?70-’7-7 V>

v

We =W U p(W)

N = {{w,a) e W x 2V | a € n(w)}
S:={{a,w) €2 x W | w € a}
#= {{a,w) €2 x W |w ¢ a}

v

v

v

11 /40



Semantics of L5

Let M be neighborhood model. A relational model

MO = <WO7N7 97 ?70-’7-7 V>

v

We =W U p(W)

N = {{w,a) e W x 2V | a € n(w)}
S:={{a,w) €2 x W | w € a}
#= {{a,w) €2 x W |w ¢ a}
o:=W

v

v

v

v

11 /40



Semantics of L5

Let M be neighborhood model. A relational model

MO = <WO7N7 97 ?70-’7-7 V>

v

We =W U p(W)

N = {{w,a) e W x 2V | a € n(w)}
S:={{a,w) €2 x W | w € a}
#= {{a,w) €2 x W |w ¢ a}
o:=W

7= p(W)

v

v

v

v

v

11 /40



Semantics of L5

Let M be neighborhood model. A relational model

MO = <WO7N7 97 ?70-’7-7 V>

v

We =W U p(W)
N = {{w,a) e W x 2V | a € n(w)}

v

» 3= {{a,w) €2V x W | w € a}
» Fi={{a,w) €2V x W |w ¢ a}
> o =W

> 7= (W)

v

Vi Var — (W)

11 /40



Semantics of L5

Truth in a model M°

M° wkE O5p
M°,wE Ozp
M wkE Onp
M° wkE o
Me,wET

iff
iff
ift
iff
ift

for all v, w 2 v implies v F ¢
for all v, w Z v implies v E ¢
for some v, wNv and v F ¢
o(w)

7(w)
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Semantics of L5

Truth in a model M°

M wEOsp iff forall v, w> v implies v F ¢
M°,wk DOgzp iff forall v, w Z v implies v F ¢
M° i wkE Onp iff  for some v, wNv and v F ¢
M°,wkE o iff  o(w)

Me,wkET iff  7(w)

Theorem
Let M be a neighborhood model. For all ¢ in £

MEe iff M°Eo—p*
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v

Multisets of labelled formulas w : ¢ or relations wRuwv;

v

Logical rules for w : ;

v

Structural rules for wRv;

v

Weakening, contraction and cut.
Our aim is to:

» Convert the definition of F into logical rules;

» Convert properties of F° into structural rules;

» Prove that weakening, contraction and cut are admissible.
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From Kripke semantics to sequent calculus

From the definition of M°, w E & n¢ (if direction)

wav,v:p, = A
w: Oy, ['= A

with v not in the conclusion. From the only-if direction

wo v, '=Aw: Onp,v: @
wdv,I'=Aw: Onp

Analogy with 3 rules.
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From Kripke semantics to sequent calculus

From the definition of M°, w E o
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From the definition of M°,w E T
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Problem: cut-free Gentzen system with new rules, i.e.

v

v

Example: ~ is an equivalence relation

v

Reflexivity and Euclideaness of ~ as axioms

= ax~x T~Y,T~Z=>Y~2

v

No cut-free derivation of the symmetry of ~

=T~ T~NYT~T=>Y~T
T~NY=>Yy~T

CcUT

criteria for a new rule to be “"good” w.r.t cut elimination.
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Cut elimination in presence of axioms

> Reflexivity and Euclideaness of ~ as rules

T~ = y~z=

= Ref~ T~Y, T~ 2=

» Cut-free derivation of the symmetry of ~

Y~T=>Y~T
T~NY,T~NL=>Y~I
T~Y=>Yy~2c

FEucl~
Ref~

Eucl~

/40
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Extensions of GE: a system for N

» N-systems for N

v

Frame conditions do not immediately correspond to rules

v

From neighborhood conditions to relational conditions

From relational conditions to inference rules

v

/40
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F' contains the unit

v

Neighborhood condition

W e n(w)

Relational condition

v

Vw(o(w) — Ja(wNa & Vz(o(z) = a > x)))

v

The condition does not follow the geometric scheme

v

Nevertheless ...

V)
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General Geometric Condition

v

This corresponds to the system of rules

a>zo(x),I"= A
o(z), T = A’

N2

wNa,o(w),T = A
o(w),'= A

Ny

v

Condition on variable: a in common and not in I', A

v

Condition on application: Ny applied above Ny

v

Generalized Geometric frame condition (see Negri, forth.)
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» Derivability of the (translation of) axiom N, OT), i.e.

oc—On(0O5TA Dg—\—r)

Excl
a3 z,7(a),o(x),a Fx,wNa,oc(w) =>w:x,x:T

7(a),0(z),a B z,wNa,oc(w) = w: x,x: T Typ:g
aFx,wNa,o(w) = w:x,z:T no,
v wNa,o(w) = w: x,a: 03T
wNa,o(w) = w:x,a: 05T AOx=T fin
ROy

wNa,o(w) = w: X

olw)=>w:x !

w:o=w:On(@O5T AOzx-T)

o
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» Convert the neighborhood condition

a € n(w) and a C b implies b € n(w)

» Change the truth-condition of O
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» wk Op iff [¢] € n(w)
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Toward a Kripke Semantics for (Monotonic) O

v

wkF Op iff [¢] € n(w)

v

[] € n(w) means a € n(w) and a C [¢], for some a

v

in turn, a C [¢] stands for € a implies z F ¢, for all =

v

w F Op there is a € n(w) such that x F ¢, for all z € a

v

w F Oy iff there is a s.t. a € n(w) and for all x

» = € a implies x F ¢
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Language Lo

Let Var be a countable set of propositional variables.

pu=p|lp|leAe|Onyp | Osp

for p in Var
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Translation of £ into £,

» Translation * by Kracht & Wolter, JSL, 1999.

* = p

(= )* =

(A = (" AYP")
() OnOs¢"



Semantics of £,

Let M be neighborhood model. A relational model

M°® = (W° N,>,V)
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Semantics of £,

Let M be neighborhood model. A relational model
M° =(W° N,>3,V)
> We =W Up(W)

» N :={{w,a) € W x2W | a € n(w)}
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Semantics of £,

Let M be neighborhood model. A relational model

M°® = (W° N,>,V)

v

Wo = W U p(W)

N :={{w,a) € W x2W | a € n(w)}
>:= {{a,w) € 2W x W | w € a}

V: Var — (W)

v

v

v
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The system GM

wNa,a: o, I'= A wNa,F:>A,w:<>N<p,a:<pR
w:Onp, = A whNa,I'= Aw: Onp

%
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The system GM

wNa,a: o, = A
w:One, ['= A

x:p,a:050,a32,=A

whNa,I'= A jw: Onyp,a: @

a:05p,a>z, = A

wNa,I' = Ajw: Oy

a3z, '=Azx:¢p
I'= Aja:05¢p

El

RON

RO5



Correspondence w.r.t axiomatic system

= w:p— Y
riY=>x:p

r:p,adxz,wNa,a: 050 = w:Ony05¢,2: Y

z:p,adz,wNa,a: 050 = w: Ox030,2: ¢

adz,wNa,a: 050 = w: OnO30, 211
wiNa,a: 050 = w: OnO5¢,a: O3
wiNa,a:Osp = w: Oy0sy
w: OOz = w: OyO59
= w: Oydsp — OnyOs1
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Awareness and Local Reasoning

v

Awareness is necessary condition for (explicit) knowledge.

» One cannot know something which (s)he is unaware of.

v

Without awareness knowledge can only be implicit.

v

K is the implicit-knowledge operator

v

A is the awareness operator

v

X is the explicit-knowledge operator
Xp < Ap A Kp

v
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Awareness and Local Reasoning

An awareness model M = (W, Rk, na, V) where
» W is a set
» R CW x W
> na: W — p(p(W))
> Vo Var — (W)

36 /40



Awareness and Local Reasoning

An awareness model M = (W, Rk, na, V) where

» W is a set

» R CW x W

> np W o— p(p(W))
> Vo Var — (W)

wE Kp iff forall ws.t. wRkv, vE @

wEAp iff [o] € n(w)
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Awareness and Local Reasoning

» People may have inconsistent knowledge
» if they receive contradictory information

> ¢ and — can be both known without knowing that ¢ and
1) are equivalent.

» Yet, contradictions are not known, i.e.
» Op A O-p is satisfiable,

» although O(p A =) is not.

> In general, C fails.

» Knowledge as a monotonic modal operator



Awareness and Local Reasoning

An local-reasoning model M = (W, n, V) where

» W is a set

s W — p(p(W)
> Vi Var — (W)
> n(w) # 0
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Awareness and Local Reasoning

An local-reasoning model M = (W, n, V) where

» W is a set

> n: W — p(p(W))
> Vo Var — p(W)
> n(w) # 0

wkF Ky iff there is some a € n(w) s.t. x E ¢ for all x € a

38 /40



Conclusions

v

Labelled sequent systems for various non-normal modal
logic

v

Cut-elimination and admissibility of the structural rules

v

Monotonic modal logic

v

Applications to logic of awareness and local reasoning
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