Relational Structures in Quantum Logic

Shengyang Zhong

Institute for Logic, Language and Computation, University of Amsterdam

Seminar of Applied Logic TUDelft June 16th, 2014

- $lue{1}$ Background
 - The Hilbert Space Formalism of Quantum Mechanics
 - Quantum Logic and Foundations of Quantum Theory
- Relational Structures in Quantum Logic
 - Kripke Frames in Quantum Logic
 - Dynamic Frames in Quantum Logic
- Quantum Kripke Frames
 - Definition and Relation with Other Structures
 - Probabilistic Quantum Kripke Frames
 - Some Directions for Future Work

- Background
 - The Hilbert Space Formalism of Quantum Mechanics
 - Quantum Logic and Foundations of Quantum Theory
- 2 Relational Structures in Quantum Logic
 - Kripke Frames in Quantum Logic
 - Dynamic Frames in Quantum Logic
- Quantum Kripke Frames
 - Definition and Relation with Other Structures
 - Probabilistic Quantum Kripke Frames
 - Some Directions for Future Work

- Background
 - The Hilbert Space Formalism of Quantum Mechanics
 - Quantum Logic and Foundations of Quantum Theory
- Relational Structures in Quantum Logic
 - Kripke Frames in Quantum Logic
 - Dynamic Frames in Quantum Logic
- Quantum Kripke Frames
 - Definition and Relation with Other Structures
 - Probabilistic Quantum Kripke Frames
 - Some Directions for Future Work

Quantum Systems and Hilbert Spaces

A (closed) quantum system is described by a Hilbert space ${\mathcal H}$ over ${\mathbb C}$.

Hilbert Space

A Hilbert space is a *vector space* over \mathbb{R} , \mathbb{C} or \mathbb{H} equipped with an *inner product* (\cdot, \cdot) such that it is *complete* under the norm $\|\cdot\|$ defined as follows:

$$\|\ket{\psi}\| = \sqrt{\left(\ket{\psi},\ket{\psi}\right)} = \sqrt{\left\langle\psi|\psi\right\rangle}$$
, for every vector $|\psi\rangle$.

Fact

Every finite-dimensional vector space over $\mathbb C$ equipped with an inner product is a Hilbert space.

States

(Pure) states of the quantum system are described by one-dimensional subspaces of \mathcal{H} .

One-Dimensional Subspace

A one-dimensional subspace of ${\mathcal H}$ is a set of the form

$$\mathbb{C} \ket{\psi} \stackrel{\mathsf{def}}{=} \{ c \ket{\psi} | c \in \mathbb{C} \}, \text{ for some } \ket{\psi} \in \mathcal{H} \setminus \{ \mathbf{0} \}$$

 $\Sigma(\mathcal{H})$: the set of all one-dimensional subspaces of \mathcal{H}

Closed Linear Subspaces

Closed Linear Subspace

A closed linear subspace of \mathcal{H} is a set $V \subseteq \mathcal{H}$ such that:

- for any $n \in \mathbb{N}$, $|\psi_1\rangle$, ..., $|\psi_n\rangle \in V$ and c_1 , ..., $c_n \in \mathbb{C}$, $\sum_{i=1,...,n} c_i |\psi_i\rangle \in V$;
- for every sequence $\{|\psi_i\rangle\}_{i\in\mathbb{N}}$ in V, $\lim_{i\to\infty}|\psi_i\rangle\in V$, if it exists in \mathcal{H} .

Fact

$$V \subseteq \mathcal{H}$$
 is a closed linear subspace, if and only if $(V^{\perp})^{\perp} = V$, where $V^{\perp} = \{ |\psi\rangle \in \mathcal{H} \mid \langle \psi | \phi \rangle = 0$, for every $|\phi\rangle \in V \}$.

Projectors

Projector

A projector P is a linear operator on \mathcal{H} such that:

- (Boundedness) there is a $c \in \mathbb{C}$ such that $\|P|\psi\rangle\| \le c\||\psi\rangle\|$, for every $|\psi\rangle \in \mathcal{H}$;
- (Idempotence) $P \circ P = P$;
- (Self-Adjointness) for any $|\phi\rangle$, $|\psi\rangle \in \mathcal{H}$,

$$(P | \psi \rangle, | \phi \rangle) = (| \psi \rangle, P | \phi \rangle)$$

Fact

Every projector P has exactly two eigenvalues 0 and 1 with both eigenspaces being closed linear subspaces of \mathcal{H} .

Testable Properties

Fact

There is a bijection between closed linear subspaces of \mathcal{H} and projectors on \mathcal{H} .

Every testable property of the quantum system is described by:

- a closed linear subspace of \mathcal{H} ; or equivalently,
- a projector of H.

Tests of Properties

Do an experiment to test whether the system in state $\mathbb{C}\left|\psi\right\rangle$ has property P:

Result	State After the Test	Probability
'Yes'	$\mathbb{C}P\ket{\psi}$	$rac{\langle \psi P \psi angle}{\langle \psi \psi angle}$
'No'	$\mathbb{C}(I-P)\ket{\psi}$	$rac{\langle \psi (I-P) \psi angle}{\langle \psi \psi angle}$

Testing a property can change the state of the system!

- Background
 - The Hilbert Space Formalism of Quantum Mechanics
 - Quantum Logic and Foundations of Quantum Theory
- Relational Structures in Quantum Logic
 - Kripke Frames in Quantum Logic
 - Dynamic Frames in Quantum Logic
- Quantum Kripke Frames
 - Definition and Relation with Other Structures
 - Probabilistic Quantum Kripke Frames
 - Some Directions for Future Work

The Logic of Quantum Mechanics

In [Birkhoff and von Neumann, 1936], it's shown that closed linear subspaces of \mathcal{H} form an *orthocomplemented lattice*:

- Top: *H*;
- Bottom: {**0**};
- Partial Order: set-theoretic inclusion;
- Meet: set-theoretic intersection;
- Join: closure of the linear span of the set-theoretic union;
- Orthocomplement: orthocomplement.

In [Birkhoff and von Neumann, 1936], it's shown that this lattice is non-distributive.

Piron's Theorem

Theorem [Piron, 1976]

- The lattice of bi-orthogonally closed subspaces of a generalized Hilbert space is always a Piron lattice.
- Every Piron lattice of height at least 4 is isomorphic to the lattice of bi-orthogonally closed subspaces of a generalized Hilbert space.

This theorem is significant, because:

- generalized Hilbert spaces resemble Hilbert spaces closely;
- Piron lattices are defined in purely lattice-theoretic terms.

Generalized Hilbert Spaces

Generalized Hilbert Space

A generalized Hilbert space is a *vector space* over a *division ring K* with an *involution*, equipped with an orthomodular *Hermitian form*.

Theorem [Amemiya and Araki, 1966]

- Every Hilbert space is a generalized Hilbert space.
- ② Every generalized Hilbert space, whose underlying division ring is ℂ with complex conjugate being the involution, is a Hilbert space.
 - Moreover, bi-orthogonally closed subspaces coincide with closed linear subspaces.

Piron Lattices

A Piron lattice $\mathfrak{L} = (L, \leq, -^{\perp})$ is a bounded lattice equipped with a unary operation satisfying the following 6 conditions:

- **① Orthocomplement:** The operation $-^{\perp}: L \to L$ satisfies:
 - **1** $p^{\perp \perp} = p;$
 - $p \leq q \text{ implies } q^{\perp} \leq p^{\perp};$
- **2** Weak Modularity: $q \le p$ implies $q \lor (q^{\perp} \land p) = p$.
- **3** Completeness: For any $A \subseteq L$, $\bigwedge A$ and $\bigvee A$ are in L.
- **4 Atomicity:** If $p \neq O$, there is an $a \in At(\mathfrak{L})$ such that $a \leq p$.
- **5** Covering Law: If $a \in At(\mathfrak{L})$ and $a \wedge p = O$, $a \vee p$ covers a.
- **Superposition Principle:** For any two distinct $a, b \in At(\mathfrak{L})$, there is a $c \in At(\mathfrak{L}) \setminus \{a, b\}$ such that $a \vee c = b \vee c = a \vee b$.

- Background
 - The Hilbert Space Formalism of Quantum Mechanics
 - Quantum Logic and Foundations of Quantum Theory
- Relational Structures in Quantum Logic
 - Kripke Frames in Quantum Logic
 - Dynamic Frames in Quantum Logic
- Quantum Kripke Frames
 - Definition and Relation with Other Structures
 - Probabilistic Quantum Kripke Frames
 - Some Directions for Future Work

- Background
 - The Hilbert Space Formalism of Quantum Mechanics
 - Quantum Logic and Foundations of Quantum Theory
- 2 Relational Structures in Quantum Logic
 - Kripke Frames in Quantum Logic
 - Dynamic Frames in Quantum Logic
- Quantum Kripke Frames
 - Definition and Relation with Other Structures
 - Probabilistic Quantum Kripke Frames
 - Some Directions for Future Work

Non-Orthogonality in Quantum Theory

Non-Orthogonality and Orthogonality

$$\mathbb{C} |\psi\rangle \to \mathbb{C} |\phi\rangle$$
, if $\langle \psi |\phi\rangle \neq 0$

$$\mathbb{C} |\psi\rangle \to \mathbb{C} |\phi\rangle$$
, if $\langle \psi |\phi\rangle = 0$

Some Terminologies of Kripke Frames

Kripke Frame

A Kripke frame $\mathfrak F$ is a tuple (Σ, \to) , where Σ is a non-empty set and $\to \subseteq \Sigma \times \Sigma$.

- Write $s \not\to t$ for $(s, t) \not\in \to$.
- Given $P \subseteq \Sigma$, define the orthocomplement of P (w.r.t. \rightarrow):

$$\sim P \stackrel{\text{def}}{=} \{ s \in \Sigma \mid s \not\rightarrow t, \text{ for every } t \in P \}$$

- *P* is bi-orthogonally closed, if $P = \sim \sim P$.
- $\mathcal{L}_{\mathfrak{F}} \stackrel{\mathsf{def}}{=} \{ P \subseteq \Sigma \mid P = \sim \sim P \}.$

Orthoframes

Orthoframe (modified from [Goldblatt, 1974])

An orthoframe \mathfrak{F} is a Kripke frame (Σ, \to) where the binary relation is reflexive and symmetric.

Theorem

- The tuple $(\mathcal{L}_{\mathfrak{F}},\subseteq,\sim(-))$ is an ortho-lattice for any orthoframe $\mathfrak{F}=(\Sigma,\to)$. [Birkhoff, 1966]
- Every orthocomplemented lattice can be embedded into the ortho-lattice $(\mathcal{L}_{\mathfrak{F}},\subseteq,\sim(-))$ for some orthoframe $\mathfrak{F}=(\Sigma,\to)$. [Goldblatt, 1974]

Paralleled to intuitionistic logic, orthoframes are axiomatized by a propositional logic called orthologic. [Goldblatt, 1974]

Orthomodular Frames

Orthomodular Frame (modified from [Goldblatt, 1974])

An orthomodular frame \mathfrak{F} is a tuple (Σ, \to, Π) in which (Σ, \to) is an orthoframe and Π is a non-empty subset of $\wp(\Sigma)$ satisfying:

- **1** $P \in \Pi$ implies that $P = \sim \sim P$;
- **2** $P, Q \in \Pi$ implies that $P \cap Q, \sim P \in \Pi$;
- **③** $P \subseteq Q$ implies that $P = \sim (\sim P \cap Q) \cap Q$, for any $P, Q \in \Pi$.
 - For every orthomodular frame (Σ, \to, Π) , $(\Pi, \subseteq, \sim(-))$ is an orthomodular lattice.
 - Orthomodular frames are axiomatized by a propositional logic called orthomodular logic. [Goldblatt, 1974]

State Spaces

State Space (modified from [Moore, 1995])

A state space is a Kripke frame (Σ, \rightarrow) in which \rightarrow is *reflexive*, *symmetric* and *separated*, i.e.

there is a $w \in \Sigma$ such that $w \not\to s$ and $w \to t$, for any distinct $s, t \in \Sigma$.

Property lattice

A property lattice is a complete atomistic ortho-lattice.

The main result in [Moore, 1995] is a duality between

- a category with state spaces as objects, and
- a category with property lattices as objects.

- Background
 - The Hilbert Space Formalism of Quantum Mechanics
 - Quantum Logic and Foundations of Quantum Theory
- Relational Structures in Quantum Logic
 - Kripke Frames in Quantum Logic
 - Dynamic Frames in Quantum Logic
- Quantum Kripke Frames
 - Definition and Relation with Other Structures
 - Probabilistic Quantum Kripke Frames
 - Some Directions for Future Work

Tests in Quantum Theory

Quantum Test

For a testable property P and two states $\mathbb{C}\ket{\psi}$ and $\mathbb{C}\ket{\phi}$,

$$\mathbb{C} |\psi\rangle \stackrel{P?}{\to} \mathbb{C} |\phi\rangle$$
, if $\mathbb{C}P |\psi\rangle = \mathbb{C} |\phi\rangle$.

The non-classical character of the "logic" of quantum-testable properties is not due to the fact that they are properties of a quantum system, but to the fact that we required them to be "testable" by quantum measurements. It is the non-classical nature of quantum actions (in particular, quantum tests) that explains the strangeness of quantum behaviour.

[Baltag and Smets, 2011]

Quantum Dynamic Frames [Baltag and Smets, 2005]

A quantum dynamic frame \mathfrak{F} is a tuple $(\Sigma, \mathcal{L}, \{\stackrel{P?}{\rightarrow}\}_{P \in \mathcal{L}})$, in which

- Σ is a non-empty set;
- $\mathcal{L} \subseteq \wp(\Sigma)$;
- $\stackrel{P?}{\rightarrow} \subseteq \Sigma \times \Sigma$, for each $P \in \mathcal{L}$;

and it satisfies 7 conditions.

- Adequacy: If $s \in P$ and $P \in \mathcal{L}$, then $s \stackrel{P?}{\rightarrow} s$.
- Repeatability: If $P \in \mathcal{L}$ and $s \stackrel{P?}{\rightarrow} t$, then $t \in P$.
- ...

Non-Orthogonality in Quantum Dynamic Frames

Non-Orthogonality and Orthogonality

```
s \to t \iff there is some P \in \mathcal{L} such that s \overset{P?}{\to} t.
```

$$s \not\rightarrow t \iff$$
 there is no $P \in \mathcal{L}$ such that $s \stackrel{P?}{\rightarrow} t$.

Quantum Dynamic Frames and Piron Lattices

Theorem 1 [Baltag and Smets, 2005],[Bergfeld et al., 2014]

 $(\mathcal{L},\subseteq,\sim(-))$ is a Piron lattice, where $\sim(-)$ is the orthocomplement operation (w.r.t. \rightarrow), for any quantum dynamic frame $\mathfrak{F}=(\Sigma,\mathcal{L},\{\stackrel{P?}{\rightarrow}\}_{P\in\mathcal{L}})$.

Theorem 2 [Baltag and Smets, 2005], [Bergfeld et al., 2014]

Every Piron lattice $\mathfrak L$ is isomorphic to $(\mathcal L, \subseteq, \sim(-))$ for some quantum dynamic frame $\mathfrak F = (\Sigma, \mathcal L, \{\stackrel{P?}{\rightarrow}\}_{P\in\mathcal L})$.

- Background
 - The Hilbert Space Formalism of Quantum Mechanics
 - Quantum Logic and Foundations of Quantum Theory
- 2 Relational Structures in Quantum Logic
 - Kripke Frames in Quantum Logic
 - Dynamic Frames in Quantum Logic
- Quantum Kripke Frames
 - Definition and Relation with Other Structures
 - Probabilistic Quantum Kripke Frames
 - Some Directions for Future Work

- Background
 - The Hilbert Space Formalism of Quantum Mechanics
 - Quantum Logic and Foundations of Quantum Theory
- 2 Relational Structures in Quantum Logic
 - Kripke Frames in Quantum Logic
 - Dynamic Frames in Quantum Logic
- Quantum Kripke Frames
 - Definition and Relation with Other Structures
 - Probabilistic Quantum Kripke Frames
 - Some Directions for Future Work

Quantum Kripke Frames

A quantum Kripke frame \mathfrak{F} is a Kripke frame (Σ, \to) satisfying 4 conditions (following slides).

Conditions for Quantum Kripke Frames (1)

Reflexivity and Symmetry

- Reflexivity: $s \to s$, for every $s \in \Sigma$.
- Symmetry: $s \to t \Rightarrow t \to s$, for any $s, t \in \Sigma$.

Fact

- (Positive) Definiteness: $\langle \psi | \psi \rangle \neq 0$, for every $| \psi \rangle \in \mathcal{H} \setminus \{ \mathbf{0} \}$.
- Conjugate Symmetry: $\langle \phi | \psi \rangle = \langle \psi | \phi \rangle^*$, for any $| \phi \rangle$, $| \psi \rangle \in \mathcal{H}$.

Conditions for Quantum Kripke Frames (2)

Separation

For any $s, t \in \Sigma$ satisfying $s \neq t$, there is a $w \in \Sigma$ such that $w \to s$ but $w \not\to t$.

Fact (Gram-Schmidt Trick)

For any linearly independent $|\phi\rangle$, $|\psi\rangle \in \mathcal{H} \setminus \{\mathbf{0}\}$, define

$$|\theta\rangle = |\phi\rangle - \frac{\langle\psi|\phi\rangle}{\langle\psi|\psi\rangle}|\psi\rangle.$$

Then $\langle \theta | \phi \rangle \neq 0$ and $\langle \theta | \psi \rangle = 0$.

Conditions for Quantum Kripke Frames (3)

Existence of Good Approximation

For any $s \in \Sigma$ and $P \subseteq \Sigma$, if $\sim \sim P = P$ and $s \notin \sim P$, then there is a $t \in \Sigma$ such that

 (\star) $t \in P$, and $s \to u \Leftrightarrow t \to u$ for each $u \in P$.

Theorem (Orthogonal Decomposition)

For every $|\psi\rangle \in \mathcal{H}$ and closed linear subspace V of \mathcal{H} , there are $|\psi_0\rangle \in V$ and $|\psi_{\perp}\rangle \in V^{\perp}$ such that $|\psi\rangle = |\psi_0\rangle + |\psi_{\perp}\rangle$. Moreover, $\langle \psi|\phi\rangle = \langle \psi_0|\phi\rangle$, for every $|\phi\rangle \in V$.

Conditions for Quantum Kripke Frames (4)

Superposition

For any $s, t \in \Sigma$, there is a $w \in \Sigma$ such that $w \to s$ and $w \to t$.

Fact

For any
$$|\phi\rangle$$
, $|\psi\rangle \in \mathcal{H} \setminus \{\mathbf{0}\}$, there are $c_1, c_2 \in \mathbb{C}$ such that $|\theta\rangle = c_1 |\phi\rangle + c_2 |\psi\rangle$ satisfies $\langle \theta | \phi \rangle \neq 0$ and $\langle \theta | \psi \rangle \neq 0$.

Quantum Kripke Frames (Summary)

Quantum Kripke Frame

A quantum Kripke frame \mathfrak{F} is a Kripke frame (Σ, \to) such that:

- (i) \rightarrow is reflexive and symmetric.
- (ii) (Separation) if $s \neq t$, then there is a $w \in \Sigma$ such that $w \to s$ and $w \not\to t$;
- (iii) (Existence of Good Approximation) if $s \notin \sim P$ and $P = \sim \sim P$, then there is a $t \in P$ such that $s \to u \Leftrightarrow t \to u$ for each $u \in P$:
- (iv) (Superposition) for any $s, t \in \Sigma$, there is a $w \in \Sigma$ such that $w \to s$ and $w \to t$.

Main Theorems

Theorem 1

For every quantum Kripke frame $\mathfrak{F} = (\Sigma, \to)$, $(\mathcal{L}_{\mathfrak{F}}, \subseteq, \sim(-))$ is a Piron lattice, where $\sim(-)$ is the orthocomplement operation (w.r.t. \to).

Theorem 2

Every Piron lattice is isomorphic to $(\mathcal{L}_{\mathfrak{F}},\subseteq,\sim(-))$ for some quantum Kripke frame \mathfrak{F} .

Correspondence among Quantum Structures

Good Approximations are the Best

Existence of Good Approximation

If
$$s \notin \sim P$$
 and $\sim \sim P = P$, then there is a $t \in \Sigma$ such that (\star) $t \in P$, and $s \to u \Leftrightarrow t \to u$ for each $u \in P$.

Separation guarantees that the t satisfying (\star) is unique, which will be called the best approximation of s in P.

Given $P \in \mathcal{L}_{\mathfrak{F}}$, define a partial function $P?(-): \Sigma \dashrightarrow \Sigma$ as follows:

$$P?(s) \stackrel{def}{=} \begin{cases} \text{the best approximation of } s \text{ in } P, & \text{if } s \notin \sim P \\ \text{undefined}, & \text{otherwise} \end{cases}$$

Quantum Kripke Frames and Quantum Dynamic Frames

Proposition

Given a quantum Kripke frame $\mathfrak{F}=(\Sigma,\to)$, for each $P\in\mathcal{L}_{\mathfrak{F}}$, define $\overset{P?}{\to}\subseteq\Sigma\times\Sigma$ such that:

$$s \stackrel{P?}{\to} t \iff s \notin \sim P \text{ and } t = P?(s).$$

Then $(\Sigma, \mathcal{L}_{\mathfrak{F}}, \{\stackrel{P?}{\rightarrow}\}_{P \in \mathcal{L}_{\mathfrak{F}}})$ is a quantum dynamic frame.

Proposition

Every quantum dynamic frame is isomorphic to $(\Sigma, \mathcal{L}_{\mathfrak{F}}, \{\stackrel{P?}{\rightarrow}\}_{P \in \mathcal{L}_{\mathfrak{F}}})$ for some quantum Kripke frame $\mathfrak{F} = (\Sigma, \to)$.

Outline

- Background
 - The Hilbert Space Formalism of Quantum Mechanics
 - Quantum Logic and Foundations of Quantum Theory
- Relational Structures in Quantum Logic
 - Kripke Frames in Quantum Logic
 - Dynamic Frames in Quantum Logic
- Quantum Kripke Frames
 - Definition and Relation with Other Structures
 - Probabilistic Quantum Kripke Frames
 - Some Directions for Future Work

Probabilistic Kripke Frames from Hilbert Spaces

For a Hilbert space $\mathcal H$ over $\mathbb C$, the relational structure $(\Sigma(\mathcal H), \to)$ can be extended to a probabilistic one by adding a function $\rho_{\mathcal H}: \Sigma(\mathcal H) \times \Sigma(\mathcal H) \to [0,1]$ called transition probability and defined as

$$\rho_{\mathcal{H}}(\mathbb{C} | \psi \rangle, \mathbb{C} | \phi \rangle) = \frac{\langle \psi | \phi \rangle \langle \phi | \psi \rangle}{\langle \psi | \psi \rangle \langle \phi | \phi \rangle}$$

Probabilistic Quantum Kripke Frames

A probabilistic quantum Kripke frame \mathfrak{F}_P is a tuple (\mathfrak{F}, ρ) , where

- $\mathfrak{F} = (\Sigma, \rightarrow)$ is a quantum Kripke frame;
- ρ is a function from $\Sigma \times \Sigma$ to [0,1];

and it satisfies 4 conditions (following slides).

Conditions for Probabilistic Quantum Kripke Frames (1)

Condition 1

 $\rho(s,t) = \rho(t,s)$, for any $s,t \in \Sigma$.

Fact

$$\rho_{\mathcal{H}}(\mathbb{C}\ket{\psi},\mathbb{C}\ket{\phi}) = \frac{\langle \psi | \phi \rangle \langle \phi | \psi \rangle}{\langle \psi | \psi \rangle \langle \phi | \phi \rangle} = \frac{\langle \phi | \psi \rangle \langle \psi | \phi \rangle}{\langle \psi | \psi \rangle \langle \phi | \phi \rangle} = \rho_{\mathcal{H}}(\mathbb{C}\ket{\phi},\mathbb{C}\ket{\psi}),$$

for any $\mathbb{C} |\psi\rangle$, $\mathbb{C} |\phi\rangle \in \Sigma(\mathcal{H})$.

Conditions for Probabilistic Quantum Kripke Frames (2)

Condition 2

For any $s, t \in \Sigma$, $\rho(s, t) = 0$ if and only if $s \not\to t$.

Fact

$$ho_{\mathcal{H}}(\mathbb{C}\ket{\psi},\mathbb{C}\ket{\phi}) = rac{raket{\psi\ket{\phi}raket{\phi\ket{\psi}}}{raket{\psi\ket{\psi}raket{\phi\ket{\phi}}}} = 0 \Leftrightarrow raket{\psi\ket{\phi}} = 0 \Leftrightarrow raket{\phi\ket{\psi}} = 0$$

for any $\mathbb{C} |\psi\rangle$, $\mathbb{C} |\phi\rangle \in \Sigma(\mathcal{H})$.

Conditions for Probabilistic Quantum Kripke Frames (3)

Condition 3

If $\{t_i \mid i \in I\} \subseteq \Sigma$ satisfies that I is at most countable and $t_i \perp t_j$ whenever $i \neq j$, then $\sum_{i \in I} \rho(s, t_i) \leq 1$.

Moreover, equality holds if and only if $s \in \sim \sim \{t_i \mid i \in I\}$.

Fact

For any $\mathbb{C} |\psi\rangle \in \Sigma(\mathcal{H})$ and *orthogonal* set $\{\mathbb{C} |\phi_i\rangle \in \Sigma(\mathcal{H}) | i \in I\}$ such that I is at most countable,

$$\sum_{i \in I} \rho_{\mathcal{H}}(\mathbb{C} \ket{\psi}, \mathbb{C} \ket{\phi_i}) = \sum_{i \in I} \frac{\langle \psi | \phi_i \rangle \langle \phi_i | \psi \rangle}{\langle \psi | \psi \rangle \langle \phi_i | \phi_i \rangle} \leq 1$$

Moreover, equality holds if and only if $\mathbb{C} |\psi\rangle \in \{\mathbb{C} |\phi_i\rangle \mid i \in I\}^{\perp \perp}$.

Conditions for Probabilistic Quantum Kripke Frames (4)

Condition 4

If
$$P \in \mathcal{L}_{\mathfrak{F}}$$
, $s \notin \sim P$ and $t \in P$, then $\rho(s,t) = \rho(s,P?(s)) \cdot \rho(P?(s),t)$.

Fact

For any $\mathbb{C} \ket{\psi}, \mathbb{C} \ket{\phi} \in \Sigma(\mathcal{H})$ and projector P on \mathcal{H} such that $P \ket{\phi} = \ket{\phi}$,

$$\rho_{\mathcal{H}}(\mathbb{C} | \psi \rangle, \mathbb{C} | \phi \rangle) = \frac{\langle \psi | \phi \rangle \langle \phi | \psi \rangle}{\langle \psi | \psi \rangle \langle \phi | \phi \rangle} \\
= \frac{\langle \psi | \mathsf{P} | \psi \rangle \langle \psi | \mathsf{P}^{\dagger} | \psi \rangle}{\langle \psi | \psi \rangle \langle \psi | \mathsf{P}^{\dagger} \mathsf{P} | \psi \rangle} \cdot \frac{\langle \psi | \mathsf{P}^{\dagger} | \phi \rangle \langle \phi | \mathsf{P} | \psi \rangle}{\langle \phi | \phi \rangle \langle \psi | \mathsf{P}^{\dagger} \mathsf{P} | \psi \rangle} \\
= \rho_{\mathcal{H}}(\mathbb{C} | \psi \rangle, \mathbb{C} \mathsf{P} | \psi \rangle) \cdot \rho_{\mathcal{H}}(\mathbb{C} \mathsf{P} | \psi \rangle, \mathbb{C} | \phi \rangle)$$

Probabilistic Quantum Kripke Frames (Summary)

Probabilistic Quantum Kripke Frame

A probabilistic quantum Kripke frame \mathfrak{F}_P is a tuple (\mathfrak{F}, ρ) , where $\mathfrak{F} = (\Sigma, \to)$ is a quantum Kripke frame and ρ is a function from $\Sigma \times \Sigma$ to [0,1] satisfying the following:

- **③** if $\{t_i \mid i \in I\}$ ⊆ Σ satisfies that I is at most countable and $t_i \perp t_j$ whenever $i \neq j$, then $\sum_{i \in I} \rho(s, t_i) \leq 1$; and equality holds if and only if $s \in \sim \{t_i \mid i \in I\}$;
- **1** if $P \in \mathcal{L}_{\mathfrak{F}}$, $s \notin \sim P$ and $t \in P$, then $\rho(s,t) = \rho(s,P?(s)) \cdot \rho(P?(s),t)$.

Justification

Proposition

Given a Hilbert space \mathcal{H} over \mathbb{C} , the tuple $(\Sigma(\mathcal{H}), \rightarrow, \rho_{\mathcal{H}})$ is a probabilistic quantum Kripke frame.

Proposition

Given a probabilistic quantum Kripke frame (\mathfrak{F}, ρ) , where $\mathfrak{F} = (\Sigma, \to)$, and $s \in \Sigma$, define a function $\mu_s : \mathcal{L}_{\mathfrak{F}} \to [0, 1]$ by

$$\mu_s(P) = \begin{cases} \rho(s, P?(s)), & \text{if } s \notin \sim P \\ 0, & \text{otherwise} \end{cases}$$

Then this function is a *quantum probability measure* on the Piron lattice $(\mathcal{L}_{\mathfrak{F}}, \subseteq, \sim(-))$.

Quantum Probability Measure

Quantum Probability Measure

A quantum probability measure is a function p from a Piron lattice $\mathfrak{L} = (L, \leq, (-)^{\perp})$ to [0,1] such that:

- p(I) = 1;
- $\sum_{i \in A} p(b_i)$ exists and is equal to $p(\bigvee_{i \in A} b_i)$, for every $\{b_i \mid i \in A\} \subseteq L$ with A at most countable and $b_i \leq b_i^{\perp}$ when $i \neq j$.
- p(b) = p(c) = 0 implies that $p(b \lor c) = 0$, for every $b, c \in L$.

This definition is adapted from Definition (4.38) on page 82 of [Piron, 1976].

Outline

- Background
 - The Hilbert Space Formalism of Quantum Mechanics
 - Quantum Logic and Foundations of Quantum Theory
- Relational Structures in Quantum Logic
 - Kripke Frames in Quantum Logic
 - Dynamic Frames in Quantum Logic
- Quantum Kripke Frames
 - Definition and Relation with Other Structures
 - Probabilistic Quantum Kripke Frames
 - Some Directions for Future Work

Axiomatizing Quantum Logic

- Until now there is no adequate axiomatization of quantum logic.
- Orthomodular logic axiomatizes orthomodular lattices, but there are formulas which fail in some orthomodular lattice but hold in all Hilbert lattices.
- There have been some attempt to axiomatize quantum dynamic frames in PDL with tests.
- One of the challenges is that some conditions involve saying that a state can not access another state, which is a characteristic feature of undefinable properties of modal language.
- Axiomatizing quantum Kripke frames in the basic modal language faces similar challenges.

Describing Compound Quantum Systems

- In the standard Hilbert space formalism, if a quantum system consists of two subsystems described by two Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 , respectively, the system itself can be described by the tensor product $\mathcal{H}_1 \otimes \mathcal{H}_2$.
- No construction in lattice theory have been found to match the power of tensor product of Hilbert spaces.
- It is interesting to see whether this problem can be solved from the perspective of relational structures.

Probing Probabilistic Quantum Kripke Frames

- Characterize quantum Kripke frames that are induced by Hilbert spaces over C with some conditions involving probability.
- Capture the notions of *quantum probability measure* (and thus *mixed states*) in this framework from a more local perspective.

- Amemiya, I. and Araki, H. (1966).
 - A Remark on Piron's Paper.

Publications of the Research Institute for Mathematical Sciences, 2(3):423–427.

- Baltag, A. and Smets, S. (2005).
 - Complete Axiomatizations for Quantum Actions.

International Journal of Theoretical Physics, 44(12):2267–2282.

- Bergfeld, J., Kishida, K., Sack, J., and Zhong, S. (2014).
 Duality for the Logic of Quantum Actions.
- Birkhoff, G. and von Neumann, J. (1936).
 The Logic of Quantum Mechanics.
 The Annals of Mathematics, 37:823–843.
- Goldblatt, R. (1974).
 Semantics Analysis of Orthologic .

 Journal of Philosophical Logic, 3:19–35.
- Moore, D. (1995).
 Categories of Representations of Physical Systems.
 Helvetica Physica Acta, 68:658–678.
- Piron, C. (1976).
 Foundations of Quantum Physics.
 W.A. Benjamin Inc.

Definition and Relation with Other Structure Probabilistic Quantum Kripke Frames Some Directions for Future Work

Thank you very much!

Quantum Dynamic Frame

- **Oldstree** Condition: \mathcal{L} is closed under arbitrary intersection and orthocomplement.
- **2** Atomicity: For any $s \in \Sigma$, $\{s\} \in \mathcal{L}$.
- **3** Adequacy: For any $s \in \Sigma$ and $P \in \mathcal{L}$, if $s \in P$, then $s \xrightarrow{P?} s$.
- **1 Repeatability:** For any $s, t \in \Sigma$ and $P \in \mathcal{L}$, if $s \xrightarrow{P?} t$, then $t \in P$.
- **§ Self-Adjointness:** For any $s,t,u\in\Sigma$ and $P\in\mathcal{L}$, if $s\xrightarrow{P?}t\to u$, then there is a $v\in\Sigma$ such that $u\xrightarrow{P?}v\to s$.
- **6 Covering Property:** Suppose $s \xrightarrow{P?} t$ for $s, t \in \Sigma$ and $P \in \mathcal{L}$. Then, for any $u \in P$, if $u \neq t$ then $u \to v \not\to s$ for some $v \in P$.
- **OPPROOF Proper Superposition:** For any $s, t \in \Sigma$ there is a $u \in \Sigma$ such that $u \to s$ and $u \to t$.

Quantum Kripke Frames and Classical Frames

Definition (Classical Frame)

A classical frame \mathfrak{F} is a Kripke frame (Σ, \to) in which \to is the identity relation, i.e. $\to = \{(s, t) \in \Sigma \times \Sigma \mid s = t\}.$

For every classical frame \mathfrak{F} , $(\mathcal{L}_{\mathfrak{F}},\subseteq,\sim(-))$ is a Boolean lattice.

Proposition

Let $\mathfrak{F}=(\Sigma,\to)$ be a Kripke frame satisfying conditions (i) to (iii) in the definition of quantum Kripke frames but not condition (iv), i.e. superposition. Then

- \bullet \mathfrak{F} is a quantum Kripke frame, iff superposition holds;
- \mathfrak{F} is a classical frame, iff \to is transitive.

Moreover, if Σ has at least 2 elements, then superposition and transitivity of \rightarrow can **not** hold simultaneously.