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This talk is in two parts:

Part I: Duality results for Boolean algebra with a relation

(based on Subordinations, closed relations and compact Hausdor↵
spaces. Guram Bezhanishvili, Nick Bezhanishvili, Sumit Sourabh,
Yde Venema. Submitted, December 2014.)

Part II: Canonicity results for Boolean algebra with a relation

(work in progress)
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Stone Duality (1936)

StoneBA

Stone duality (1936)

A Stone space is a compact Hausdor↵ and zero-dimensional space.

Sumit Sourabh Subordinations, closed relations and KHaus



Jóhnsson-Tarski Duality (1951-52)

MSBAO

Jóhnsson-Tarski duality

A modal space is a Stone space W with a relation R which
satisfies:
(i) R[w] is a closed set
(ii) R−1(C) is a clopen set for each clopen C ⊆W .
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Dualities for Compact Hausdor↵ spaces

KHaus

C∗Alg KRegFr

DeV

Gelfand duality Isbell duality

de Vries duality

Dualities for KHaus
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de Vries algebra

de Vries algebra [de Vries (1962)]

A de Vries algebra is a pair (A,�) consisting of a complete Boolean
algebra A and a binary relation � on A satisfying the following

(S1) 0 � 0 and 1 � 1;
(S2) a � b, c implies a � b ∧ c ;
(S3) a,b � c implies a ∨ b � c ;
(S4) a ≤ b � c ≤ d implies a � d .
(S5) a � b implies a ≤ b;
(S6) a � b implies ¬b � ¬a;
(S7) a � b implies there is c ∈ B with a � c � b;
(S8) a ≠ 0 implies there is b ≠ 0 with b � a.
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de Vries algebra

Example 1 The set of regular open sets (U = ICU) of a compact
Hausdor↵ space X form a complete Boolean algebra.

For U,V ∈ RegOp(X ) define U � V if CU ⊆ V . Then(RegOp(X ),�) is a de Vries algebra.

Example 2 For B a complete Boolean algebra, (B ,≤) is de Vries.

Example 3 Let B = PN be the power set of the natural numbers
and define S � T i↵ S ⊆ T and at least one of S ,T is finite or
cofinite.
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de Vries duality

For a de Vries algebra (B ,�) and A ⊂ B , define
� A = {b ∶ a � b for some a ∈ A}

A filter F of a de Vries algebra B is round if F =� F . The maximal
round filters are called ends. The set EB of ends of B is
topologized by the basis of sets '(b) = {E ∶ b ∈ E}.

Theorem

EB is a compact Hausdor↵ space whose de Vries algebra of regular
open sets is isomorphic to B.
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Subordinations

Definition

A subordination on a Boolean algebra B is a binary relation �
satisfying:

(S1) 0 � 0 and 1 � 1;
(S2) a � b, c implies a � b ∧ c ;
(S3) a,b � c implies a ∨ b � c ;
(S4) a ≤ b � c ≤ d implies a � d .

Let Sub be the category whose objects are pairs (B ,�), where B is
a BA and � is a subordination on B , and whose morphisms are
Boolean homomorphisms h satisfying a � b implies h(a) � h(b).

Sumit Sourabh Subordinations, closed relations and KHaus



Duality for Subordinations

Let StR be the category whose objects are pairs (X ,R), where X
is a Stone space and R is a closed relation on X , and whose
morphisms are continuous stable morphisms1.

For (B ,�) ∈ Sub, let (B ,�)∗ = (X ,R), where X is the Stone space
of B and xRy i↵ � x ⊆ y . Then (X ,R) ∈ StR
For (X ,R) ∈ StR, let (X ,R)∗ = (Clop(X ),�), where U � V i↵
R[U] ⊆ V . Then (Clop(X ),�) ∈ Sub.

Theorem

The categories Sub and StR are dually equivalent.

1We say f ∶ X1 → X2 is stable if xR1y implies f (x)R2f (y)
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Characteristic function of the relation

A map →∶ B ×B → 2 a strict implication if it satisfies

(I1) 0→ a = a → 1 = 1.
(I2) (a ∨ b)→ c = (a → c) ∧ (b → c).
(I3) a → (b ∧ c) = (a → b) ∧ (a → c).
Example If (B ,�) ∈ Sub, then �R ∶ B ×B → 2 as defined below is a
strict implication.

→� (x , y) ∶= � 1 if x � y
0 otherwise.

Conversely, if →∶ B ×B → 2 is a strict implication, then �→⊆ B ×B
as defined below is a subordination.

a �→ b i↵ a → b = 1
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Generalized Jónsson-Tarski duality

By the generalized Jónsson-Tarski duality the dual ternary relation
S ⊆ X ×Y × Z of a dual operator map f ∶ A ×B → C is given by

(x , y , z) ∈ S i↵ (∀a ∈ A)(∀b ∈ B)(f (a,b) ∈ z implies a ∉ x or b ∈ y);

The Stone space of 2 is the singleton discrete space {z}, where
z = {1} is the only ultrafilter of 2.

Therefore, the dual ternary relation S ⊆ X ×X × {z} of→∶ B ×B → 2 is given by

(x , y , z) ∈ S i↵ (∀a,b ∈ B)(a → b = 1 implies a ∉ x or b ∈ y).
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Generalized Jónsson-Tarski duality

The ternary relation S reduces to a binary relation R ⊆ X ×X by

xRy i↵ (x , y ,1) ∈ S .
Using equivalence between strict implications and subordinations,

xRy i↵ (∀a,b ∈ B)(a � b implies a ∉ x or b ∈ y) i↵ � x ⊆ y .

From Jónsson-Tarski duality, the dual ternary relation
S ⊆ X ×X × {z} satisfies: S−1({z}) is closed. Hence,
R = S−1({1}) is a closed relation.
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Precontact algebra

Precontact algebra [Düntsch, Vakarelov (2003)]

A precontact algebra is a pair (A,C) where A is a BA and C is a
binary relation on A satisfying:(C0) aCb implies a,b ≠ 0.(C+) aC(b∨ c) implies aCb or aCc ; (a∨b)Cc implies aCb or aCc .

Precontact algebra and their subvarieties are used in the algebraic
analysis of theory of regions.
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Proximity lattices

Proximity lattice [Jung, Sünderhauf (1996)]

A proximity lattice is a pair (L,R), where L is a lattice and
R ⊆ L × L is a relation satisfying the following axioms:

1 R ○ R = R .
2 For any finite set A ⊆ L and b ∈ L, �ARb⇔ ∀a ∈ A aRb.

3 For any finite set B ⊆ L and b ∈ L, aR �B⇔ ∀b ∈ B aRb.

Strong proximity lattices are the algebraic structures dual to stably
compact spaces.
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A ”modal” de Vries duality?

KHausDeV

DeV ?

Sub StR

DeV ?
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Elementary conditions

Let (B ,�) be a subordination, which satisfies the following axioms.

(S5) a � b implies a ≤ b;
(S6) a � b implies ¬b � ¬a;
(S7) a � b implies there is c ∈ B with a � c � b;
Lemma

Let (X ,R) ∈ StR be the dual space of (B ,�).
1 R is reflexive i↵ � satisfies (S5).

2 R is symmetric i↵ � satisfies (S6).

3 R is transitive i↵ � satisfies (S7).
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Lattice subordination

Lattice subordination [G. Bezhanishvili (2013)]

A lattice subordination is a subordination (A,�) where �
additionally satisfies:(S9) a � b implies that there exists c ∈ B with c � c and a ≤ c ≤ b.

A quasi-order on a Stone space X is a Priestly quasi-order if x � y
implies that there exists a clopen up-set U of X with x ∈ U and
y ∉ U.

Lemma

R is a Priestley quasi-order i↵ � satisfies (S9).
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A “modal” de Vries duality

A continuous map f ∶ X → Y between compact Hausdor↵ spaces is
irreducible provided the f -image of each proper closed subset of X
is a proper subset of Y .

We call a closed equivalence relation R on a compact Hausdor↵
space X irreducible if the factor-map ⇡ ∶ X → X �R is irreducible.

A closed equivalence relation R is irreducible i↵ for each proper
closed subset F of X , we have R[F ] is a proper subset of X
(non-elementary!).
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Gleason spaces

(S8) a ≠ 0 implies there is b ≠ 0 with b � a.
Lemma

Let (B ,�) ∈ Sub and let (X ,R) be the dual of (B ,�). Then the
closed equivalence relation R is irreducible i↵ � satisfies (S8).

We call a pair (X ,R) a Gleason space if X is an extremely
disconnected space and R is an irreducible equivalence relation on
X .

Theorem

Gle is dually equivalent to DeV, hence Gle is equivalent to KHaus.
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Categories of algebras

Category Objects

Sub Boolean algebras with a subordination
PCon Boolean algebras with a precontact relation
MSub Boolean algebras with a modally definable subordination
SubK4 Sub satisfying (S7)
SubS4 Sub satisfying (S5) and (S7)
SubS5 Sub satisfying (S5), (S6), and (S7)
LSub Boolean algebras with a lattice subordination
Com Sub satisfying (S5), (S6), (S7) and (S8)
DeV De vries algebras

Categories of Boolean algebras with subordination
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Categories of spaces

Category Objects

StR Stone spaces with a closed relation
MS Modal spaces
StRtr Stone spaces with a closed transitive relation
StRqo Stone spaces with a closed reflexive and transitive relation
StReq Stone spaces with a closed equivalence relation
QPS Quasi-ordered Priestley spaces
StRieq Stone space with an irreducible closed relation
KHaus Compact Hausdor↵ spaces
Gle Gleason spaces

Categories of spaces
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Main results

PCon ≅ Sub ∼d StR

MSub ∼d MSst

MA ≅ MSubm ∼d MS

SubK4 ∼d StRtr

SubS4 ∼d StRqo

SubS5 ∼d StReq

LSub ∼d QPS
Com ∼d StRieq

DeV ∼d Gle ∼ KHaus

Main isomorphisms, equivalences, and dual equivalences

Sumit Sourabh Subordinations, closed relations and KHaus



Canonical extensions

Canonical extension of a BA provides an algebraic characterization
of its double dual.

CBA Set

StoneBA

U(.)�
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Canonical extensions

Canonical extension of a BA

The canonical extension of a BA A is a complete BA A� containing
A as a subalgebra, such that

(denseness) Every element of A� can be expressed both as a
join of meets and as a meet of joins of elements from A;

(compactness) For all S ,T ⊆ A with �S ≤ �T in A�, there
exist finite sets F ⊆ S and G ⊆ T such that �F ≤ �G .

Theorem [Jónsson, Tarksi (1951) ] The canonical extension of a
BA exists and is unique.
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Extension for maps

An element x ∈ A� is closed (resp. open) if it is the meet
(resp. join) of some subset of A.

A monotone map f ∶ A→ B can be extended to a map∶ A� → B� in two canonical ways. For all u ∈ A�, define

f �(u) =�{�{f (a) ∶ x ≤ a ∈ A} ∶ u ≥ x ∈ K(A�)}
f ⇡(u) =�{�{f (a) ∶ y ≥ a ∈ A} ∶ u ≤ y ∈ O(A�)}

The map f is smooth if f � = f ⇡.
Lemma [Gehrke, Jónsson (1994)]

1 The �-extension of an operator is a complete operator.
2 The ⇡-extension of a dual operator is a complete dual operator.
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Canonical extension for Sub

(B ,�) (B , f� ∶ B ×B → 2)

(B�, f ⇡� ∶ B� ×B� → 2)(B�,�f ⇡� )

≅

(.)�

≅

(.)�

Theorem

The canonical extension of a Sub exists and is unique.

Using (B�,Rf ⇡R
) ≅ (P(PrI (B)),�[R]).
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Applications

Recall, the axioms (S5), (S6), (S7), (S8) and (S9) define
sub-(quasi)varieties of Boolean algebra with a subordination.

Proposition

The axioms (S5), (S6), (S7), (S8) and (S9) are preserved under
taking canonical extension of Sub.

Hence, the existence and uniqueness of the canonical extensions for
sub-(quasi)varieties of a Sub follows from the above proposition.
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Jónsson-style canonicity [Jónsson (1994), Gehrke,
Nagahashi, Venema (2005)]

Canonicity A � � ≤  ⇒ A� � ' ≤  
A � ' ≤  

A� � ' ≤  

�
'A ≤  A

⇓
'A� ≤ ('A)� ≤ ( A)� ≤  A�

�-expanding �-contracting

add. coord. mult. prod.+ ∨ ∧ g− ∧ ∨ f
+ ∧− ∨

SMP

+p−p −p

'

SAC

Sahlqvist antecedent
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Future work

Characterize the classes of Kripke frames dual to lattice
subordinations, de Vries algebras (Correspondence theory).

Finitary calculus for (modal) compact Hausdor↵ spaces.

Generalize this approach to (distributive) lattice setting and
compare it to the notion of canonical extension for stably
compact spaces in [van Gool 2012].
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Thank you!
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