Subordinations, closed relations and compact Hausdorff spaces

Sumit Sourabh

ILLC, University of Amsterdam

Applied Logic Seminar TU Delft This talk is in two parts:

Part I: Duality results for Boolean algebra with a relation

(based on *Subordinations, closed relations and compact Hausdorff spaces.* Guram Bezhanishvili, Nick Bezhanishvili, Sumit Sourabh, Yde Venema. Submitted, December 2014.)

Part II: Canonicity results for Boolean algebra with a relation (work in progress)

Stone Duality (1936)

Stone duality (1936)

A Stone space is a compact Hausdorff and zero-dimensional space.

Jóhnsson-Tarski duality

A modal space is a Stone space W with a relation R which satisfies:

(i) R[w] is a closed set (ii) $R^{-1}(C)$ is a clopen set for each clopen $C \subseteq W$.

Dualities for Compact Hausdorff spaces

de Vries algebra [de Vries (1962)]

A de Vries algebra is a pair (A, \prec) consisting of a complete Boolean algebra A and a binary relation \prec on A satisfying the following

- (S1) 0 < 0 and 1 < 1;
- (S2) a < b, c implies $a < b \land c$;
- (S3) a, b < c implies $a \lor b < c$;
- (S4) $a \le b < c \le d$ implies a < d.
- (S5) a < b implies $a \le b$;
- (S6) a < b implies $\neg b < \neg a$;
- (S7) a < b implies there is $c \in B$ with a < c < b;
- (S8) $a \neq 0$ implies there is $b \neq 0$ with b < a.

Example 1 The set of regular open sets (U = ICU) of a compact Hausdorff space X form a complete Boolean algebra.

For $U, V \in \text{RegOp}(X)$ define U < V if $\mathbb{C}U \subseteq V$. Then (RegOp(X), <) is a de Vries algebra.

Example 2 For B a complete Boolean algebra, (B, \leq) is de Vries.

Example 3 Let $B = \mathcal{P}\mathbb{N}$ be the power set of the natural numbers and define S < T iff $S \subseteq T$ and at least one of S, T is finite or cofinite.

For a de Vries algebra (B, \prec) and $A \subset B$, define

$$\uparrow A = \{b : a < b \text{ for some } a \in A\}$$

A filter F of a de Vries algebra B is round if $F = \uparrow F$. The maximal round filters are called ends. The set $\mathcal{E}B$ of ends of B is topologized by the basis of sets $\varphi(b) = \{E : b \in E\}$.

Theorem

 $\mathcal{E}B$ is a compact Hausdorff space whose de Vries algebra of regular open sets is isomorphic to B.

Definition

A subordination on a Boolean algebra B is a binary relation \prec satisfying:

- (S1) 0 < 0 and 1 < 1;
- (S2) a < b, c implies $a < b \land c$;
- (S3) a, b < c implies $a \lor b < c$;
- (S4) $a \le b < c \le d$ implies a < d.

Let Sub be the category whose objects are pairs (B, <), where B is a BA and < is a subordination on B, and whose morphisms are Boolean homomorphisms h satisfying a < b implies h(a) < h(b). Let StR be the category whose objects are pairs (X, R), where X is a Stone space and R is a closed relation on X, and whose morphisms are continuous stable morphisms¹.

For $(B, \prec) \in$ Sub, let $(B, \prec)_* = (X, R)$, where X is the Stone space of B and xRy iff $\uparrow x \subseteq y$. Then $(X, R) \in$ StR

For $(X, R) \in StR$, let $(X, R)^* = (Clop(X), \prec)$, where $U \prec V$ iff $R[U] \subseteq V$. Then $(Clop(X), \prec) \in Sub$.

Theorem

The categories Sub and StR are dually equivalent.

¹We say $f: X_1 \to X_2$ is stable if xR_1y implies $f(x)R_2f(y) = A = A = A$

Characteristic function of the relation

A map \rightarrow : $B \times B \rightarrow 2$ a strict implication if it satisfies (11) $0 \rightarrow a = a \rightarrow 1 = 1$. (12) $(a \vee b) \rightarrow c = (a \rightarrow c) \land (b \rightarrow c)$. (13) $a \rightarrow (b \land c) = (a \rightarrow b) \land (a \rightarrow c)$.

Example If $(B, \prec) \in$ Sub, then $\prec_R : B \times B \rightarrow 2$ as defined below is a strict implication.

$$\rightarrow_{\prec} (x, y) \coloneqq \begin{cases} 1 & \text{if } x \prec y \\ 0 & \text{otherwise.} \end{cases}$$

Conversely, if $\rightarrow: B \times B \rightarrow 2$ is a strict implication, then $\prec_{\rightarrow} \subseteq B \times B$ as defined below is a subordination.

$$a \prec_{\rightarrow} b \text{ iff } a \rightarrow b = 1$$

By the generalized Jónsson-Tarski duality the dual ternary relation $S \subseteq X \times Y \times Z$ of a dual operator map $f : A \times B \rightarrow C$ is given by

 $(x, y, z) \in S$ iff $(\forall a \in A)(\forall b \in B)(f(a, b) \in z \text{ implies } a \notin x \text{ or } b \in y);$

The Stone space of **2** is the singleton discrete space $\{z\}$, where $z = \{1\}$ is the only ultrafilter of **2**.

Therefore, the dual ternary relation $S \subseteq X \times X \times \{z\}$ of $\rightarrow : B \times B \rightarrow \mathbf{2}$ is given by

 $(x, y, z) \in S$ iff $(\forall a, b \in B)(a \rightarrow b = 1 \text{ implies } a \notin x \text{ or } b \in y)$.

The ternary relation S reduces to a binary relation $R \subseteq X \times X$ by

xRy iff $(x, y, 1) \in S$.

Using equivalence between strict implications and subordinations,

xRy iff $(\forall a, b \in B)(a < b \text{ implies } a \notin x \text{ or } b \in y)$ iff $\uparrow x \subseteq y$.

From Jónsson-Tarski duality, the dual ternary relation $S \subseteq X \times X \times \{z\}$ satisfies: $S^{-1}(\{z\})$ is closed. Hence, $R = S^{-1}(\{1\})$ is a closed relation.

Precontact algebra [Düntsch, Vakarelov (2003)]

A precontact algebra is a pair (A, C) where A is a BA and C is a binary relation on A satisfying: (C0) aCb implies $a, b \neq 0$. (C+) $aC(b \lor c)$ implies aCb or aCc; $(a \lor b)Cc$ implies aCb or aCc.

Precontact algebra and their subvarieties are used in the algebraic analysis of theory of regions.

Proximity lattice [Jung, Sünderhauf (1996)]

A proximity lattice is a pair (\mathbb{L}, R) , where *L* is a lattice and $R \subseteq L \times L$ is a relation satisfying the following axioms:

$$I R \circ R = R.$$

- **2** For any finite set $A \subseteq L$ and $b \in L$, $\bigvee ARb \Leftrightarrow \forall a \in A \ aRb$.
- **③** For any finite set *B* ⊆ *L* and *b* ∈ *L*, *aR* ∧ *B* ⇔ \forall *b* ∈ *B aRb*.

Strong proximity lattices are the algebraic structures dual to stably compact spaces.

A "modal" de Vries duality?

Elementary conditions

Let (B, \prec) be a subordination, which satisfies the following axioms.

```
(S5) a < b implies a \le b;
```

```
(S6) a < b implies \neg b < \neg a;
```

(S7) a < b implies there is $c \in B$ with a < c < b;

Lemma

Let $(X, R) \in StR$ be the dual space of (B, \prec) .

- R is reflexive iff < satisfies (S5).</p>
- R is symmetric iff < satisfies (S6).
 </p>
- Is transitive iff ≺ satisfies (S7).

Lattice subordination [G. Bezhanishvili (2013)]

A lattice subordination is a subordination (A, \prec) where \prec additionally satisfies:

(S9) a < b implies that there exists $c \in B$ with c < c and $a \le c \le b$.

A quasi-order on a Stone space X is a Priestly quasi-order if $x \notin y$ implies that there exists a clopen up-set U of X with $x \in U$ and $y \notin U$.

Lemma

R is a Priestley quasi-order iff < satisfies (S9).

A continuous map $f: X \to Y$ between compact Hausdorff spaces is irreducible provided the *f*-image of each proper closed subset of *X* is a proper subset of *Y*.

We call a closed equivalence relation R on a compact Hausdorff space X irreducible if the factor-map $\pi: X \to X/R$ is irreducible.

A closed equivalence relation R is irreducible iff for each proper closed subset F of X, we have R[F] is a proper subset of X (non-elementary!).

(S8) $a \neq 0$ implies there is $b \neq 0$ with b < a.

Lemma

Let $(B, \prec) \in \text{Sub}$ and let (X, R) be the dual of (B, \prec) . Then the closed equivalence relation R is irreducible iff \prec satisfies (S8).

We call a pair (X, R) a *Gleason space* if X is an extremely disconnected space and R is an irreducible equivalence relation on X.

Theorem

Gle is dually equivalent to DeV, hence Gle is equivalent to KHaus.

Category	Objects
Sub	Boolean algebras with a subordination
PCon	Boolean algebras with a precontact relation
MSub	Boolean algebras with a modally definable subordination
SubK4	Sub satisfying (S7)
SubS4	Sub satisfying (S5) and (S7)
SubS5	Sub satisfying (S5), (S6), and (S7)
LSub	Boolean algebras with a lattice subordination
Com	Sub satisfying (S5), (S6), (S7) and (S8)
DeV	De vries algebras

Categories of Boolean algebras with subordination

Category	Objects
StR	Stone spaces with a closed relation
MS	Modal spaces
StR ^{tr}	Stone spaces with a closed transitive relation
StR ^{qo}	Stone spaces with a closed reflexive and transitive relation
StR ^{eq}	Stone spaces with a closed equivalence relation
QPS	Quasi-ordered Priestley spaces
StR ^{ieq}	Stone space with an irreducible closed relation
KHaus	Compact Hausdorff spaces
Gle	Gleason spaces

Categories of spaces

$PCon \cong Sub \sim^d StR$			
MSub ∼ ^d MS st			
$MA \cong MSub^m \sim^d MS$			
SubK4 ~ ^d StR ^{tr}			
SubS4 ~ ^{<i>d</i>} StR ^{qo}			
SubS5 ~ ^d StR ^{eq}			
LSub ~ ^d QPS			
Com ~ ^d StR ^{ieq}			
DeV ~ ^d Gle ~ KHaus			

Main isomorphisms, equivalences, and dual equivalences

- ∢ ≣ ▶

э

Canonical extension of a BA provides an algebraic characterization of its double dual.

Canonical extension of a BA

The *canonical extension* of a BA A is a complete BA A^{δ} containing A as a subalgebra, such that

- (denseness) Every element of A^δ can be expressed both as a join of meets and as a meet of joins of elements from A;
- (compactness) For all $S, T \subseteq A$ with $\bigwedge S \leq \bigvee T$ in A^{δ} , there exist finite sets $F \subseteq S$ and $G \subseteq T$ such that $\bigwedge F \leq \bigvee G$.

Theorem [Jónsson, Tarksi (1951)] The canonical extension of a BA exists and is unique.

Extension for maps

- An element $x \in A^{\delta}$ is closed (resp. open) if it is the meet (resp. join) of some subset of A.
- A monotone map $f: A \rightarrow B$ can be extended to a map $: A^{\delta} \to B^{\delta}$ in two canonical ways. For all $u \in \mathbb{A}^{\delta}$, define

$$f^{\sigma}(u) = \bigvee \{\bigwedge \{f(a) : x \le a \in A\} : u \ge x \in K(A^{\delta})\}$$
$$f^{\pi}(u) = \bigwedge \{\bigvee \{f(a) : y \ge a \in A\} : u \le y \in O(A^{\delta})\}$$
The map f is smooth if $f^{\sigma} = f^{\pi}$.

• Lemma [Gehrke, Jónsson (1994)]

1 The σ -extension of an operator is a complete operator.

2 The π -extension of a dual operator is a complete dual operator.

Canonical extension for Sub

$$(B^{\delta}, \prec_{f_{<}}) \xleftarrow{\cong} (B^{\delta}, f_{<}^{\pi} : B^{\delta} \times B^{\delta} \to \mathbf{2})$$

$$(.)^{\delta}$$

$$(B, \prec) \xleftarrow{\cong} (B, f_{<} : B \times B \to \mathbf{2})$$

Sumit Sourabh Subordinations, closed relations and KHaus

Canonical extension for Sub

Canonical extension for Sub

Theorem

The canonical extension of a Sub exists and is unique.

Using
$$(B^{\delta}, R_{f_R^{\pi}}) \cong (\mathcal{P}(Prl(B)), \prec_{[R]}).$$

Recall, the axioms (S5), (S6), (S7), (S8) and (S9) define sub-(quasi)varieties of Boolean algebra with a subordination.

Proposition

The axioms (S5), (S6), (S7), (S8) and (S9) are preserved under taking canonical extension of Sub.

Hence, the existence and uniqueness of the canonical extensions for sub-(quasi)varieties of a Sub follows from the above proposition.

Jónsson-style canonicity [Jónsson (1994), Gehrke, Nagahashi, Venema (2005)]

Jónsson-style canonicity [Jónsson (1994), Gehrke, Nagahashi, Venema (2005)]

Canonicity
$$A \models \phi \le \psi \Rightarrow A^{\delta} \models \varphi \le \psi$$

 $A \models \varphi \le \psi$
 \downarrow
 $\varphi^{A} \le \psi^{A}$
 ψ
 $\varphi^{A^{\delta}} \le (\varphi^{A})^{\sigma} \le (\psi^{A})^{\sigma} \le \psi^{A^{\delta}}$
 σ -expanding σ -contracting
 $A^{\delta} \models \varphi \le \psi$
Sublaviet parteredent $a \models \phi$

- Characterize the classes of Kripke frames dual to lattice subordinations, de Vries algebras (Correspondence theory).
- Finitary calculus for (modal) compact Hausdorff spaces.
- Generalize this approach to (distributive) lattice setting and compare it to the notion of canonical extension for stably compact spaces in [van Gool 2012].

Thank you!

æ

Э