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¿ We study an interpretation of lattice connectives proposed by Vadim Tropashko
from Oracle: as natural join and inner union between DB relations ?

¿ We show that this interpretation yields a class of lattices which has not been
considered in the existing lattice-theoretical literature ?

¿ We propose an equational axiomatization for a corresponding abstract algebraic
class ?

¿ It turns out that addition of just the header constant to the lattice signature
leads to undecidabilty of the quasiequational theory ?

¿ Relational lattices, however, are not as intangible as one may fear: for example,
they do form a pseudoelementary class ?

¿ We also apply the tools of Formal Concept Analysis and investigate standard
contexts of relational lattices. In particular, we’ll see that finite relational
lattices are subdirectly irreducible ?



Relational Model

We investigate the (named) relational model of database theory
from an algebraic point of view

Databases in relational model
Collections of relations over a fixed domain Domain
with possibly different arities and different headers
taken from some fixed supply of attributes Attr

A relation R
Consists of:

• Header (scheme): H(R) ⊆ Attr
• Body: a set of tuples that have the same attributes

Body(R) ⊆ DomainH(R)
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An Example

Capital

Prefecture Region

Mie Kansai
Shiga Kansai
Aomori Tohoku
Iwate Tohoku
Aichi Chubu

Takamatsu

Kagawa Shikoku
Ishikawa Chubu

LOCATION



An Example

Capital Prefecture

Takamatsu Kagawa
Kanazawa Ishikawa
Sapporo Hokkaido
Yokohama Kanagawa
Naha Okinawa

CAPITALS

LOCATION



Codd’s Relational Algebra

Codd Relational algebra (not relation algebra!)

Partial algebra underlying the relational model

Basic operations (named or typed case):

• selection σφR where φ is a condition on attribute values

• projection πAR where A is a collection of attribute names

• (natural) join R1onR2 (not to be confused with lattice join!)

• renaming ρa1 7→b1,...,an 7→bnR where a and b are attribute names

• union R1 ∪ R2 (crashes for inputs with different types)

• difference (relative complementation) R1 − R2 (as above)

The goal: expressive completeness

ability to express domain-independent FO queries
(in an algebraic language)
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If this is unfamiliar, see . . .

. . . the Alice Book!

Available freely online: http://webdam.inria.fr/Alice/

http://webdam.inria.fr/Alice/


Some of you may ask why Codd did not choose

• cylindric algebras (CA’s)

• polyadic algebras (PA’s)

• or Tarski’s relation algebras (RA’s)?



Reason I: History

Charles S. Peirce
pioneer of: algebra of relations,

FOL , SOL, computer science . . .

Arthur W. Burks
one of ENIAC designers

and cellular automata pioneers,
Peirce editor, one-time president

of Peirce Society

Edgar A. Codd
relational calculus, relational algebra . . .

SQL, Oracle, modern DB theory . . .

Ernst Schröder

Alfred Tarski

Maddux, Givant, Monk,
Jónsson, Pigozzi,

Hungarians starting with
Andreka & Németi . . .

Imieliński and Lipski in 1980’s:
relational algebra can be embedded into cylindric algebra



Reason II: DB People Do Not Want Uniform Headers

Database reasons to be unhappy with CA’s:

• Tarskian uniformization:

We artificially make all headers equal
filling missing columns (axes, dimensions, attributes)

with all possible values from the domain

• Unrestricted nature of CA operations
(cylindrification and unary negation)

Immediate problems with

• Domain Independence Property

• Boyce-Codd Normal Form . . .
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Briefly on Domain Independence Property

Definition
A query expression φ(R1, . . . ,Rn) is domain-independent if for any
two domains of values Domain1, Domain2 and relations R1, . . . ,
Rn s.t. for any i ≤ n

Body(Ri ) ⊆ Domain
H(Ri )
1 ∩ Domain

H(Ri )
2

it holds that

[φ(R1, . . . , Rn)]Domain1 = [φ(R1, . . . , Rn)]Domain2

In other words, the value of such a query depends only on its active domain

Queries which are not domain-independent are often called unsafe



The Effect of Tarskian Uniformization I

Capital Prefecture Region

Takamatsu Mie Kansai
Sapporo Mie Kansai
Yokohama Mie Kansai
Naha Mie Kansai
Takamatsu Shiga Kansai
Sapporo Shiga Kansai
Yokohama Shiga Kansai
Naha Shiga Kansai
Takamatsu Aomori Tohoku
Sapporo Aomori Tohoku
Yokohama Aomori Tohoku
Naha Aomori Tohoku
Takamatsu Iwate Tohoku
Sapporo Iwate Tohoku
Yokohama Iwate Tohoku
Naha Iwate Tohoku

. . .

UNIF LOCATION = ({Capital}, Domain{Capital}) on LOCATION

(assuming Attr = {Capital, Prefecture, Region})



The Effect of Tarskian Uniformization II

Capital Prefecture Region

Takamatsu Kagawa Chubu
Takamatsu Kagawa Shikoku
Takamatsu Kagawa Kansai
Takamatsu Kagawa Tohoku
Kanazawa Ishikawa Chubu
Kanazawa Ishikawa Shikoku
Kanazawa Ishikawa Kansai
Kanazawa Ishikawa Tohoku
Sapporo Hokkaido Chubu
Sapporo Hokkaido Shikoku
Sapporo Hokkaido Kansai
Sapporo Hokkaido Tohoku

. . .

UNIF CAPITALS = CAPITALS on ({Region}, Domain{Region})

(assuming Attr = {Capital, Prefecture, Region})



Can We Do Any Better Then?

Thus, it seems of intrinsic interest to investigate an alternative,
heterogeneous algebraic setting
which models the database operations more faithfully

Perhaps one can obtain more positive results concerning
equational/quasiequational theory?
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Whence Our Hopes?

On the algebraic side
Craig’s finite axiomatization for

another heterogeneous and expressively complete
algebra of finite sequences

(his setting is somewhat different:

even single relations are not homogenous)

On the DB side
Relational algebra operations without relative difference yield
unions of conjunctive queries:
a paradigm example of well-behaved, decidable class of queries
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Our goal

To provide a heterogeneous algebraic structure for relational
queries

• which is a total algebra

(unlike Codd’s relational algebra)

• which preserves the Domain Independence Property

(unlike CA’s)

• whose primitive operations are natural from both DB and
algebraic point of view

and investigate its equational/quasi-equational theory



First Basic Operation: Natural Join on
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Formal Definition of on

(H(R),Body(R))on(H(S),Body(S)) = (H(R) ∪ H(S),Body(R)onBody(S))

where

Body(R)onBody(S) = {t ∈ DomainH(R)∪H(S) |t �H(R)∈ Body(R) &

& t �H(S)∈ Body(S)}

on intuitively: a hybrid of product and intersection

Can be considered a generalization of relational composition
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Second Basic Operation: Inner Union ⊕
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Formal Definition of ⊕

(H(R),Body(R))⊕ (H(S),Body(S)) = (H(R) ∩ H(S),Body(R)⊕Body(S))

where

Body(R)⊕Body(S) = Body(R) �H(R)∩H(S) ∪Body(S) �H(R)∩H(S)

⊕ intuitively: a hybrid of union and projection

As opposed to union in relational algebras,
does not require that both arguments have the same header
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Extensions of the Signature (Sec. 6.1)

Just by adding constants to the basic (⊕ , on)–signature,
it is possible to define/express/simulate
the following operations of relational algebra:

• projections to concrete headers (inner unions with attribute
constants)

• constant-based selection queries (natural joins with unary
singleton constants)

• equality-based selection queries (natural join with equality
constants)
not respecting d.i.p., we need an unary operator to do better



However, in this paper we work either

• with pure lattice signature L or

• extension LH with only one constant H:
relation with empty body and empty header
which together with ⊕ allows to define relative projection:

(HonR1)⊕R2

projection of R2 to H(R1), i.e., to the header of R1



Relational Lattice

Lemma (Tropashko)

For any fixed domain Domain and any set of attributes Attr
the family of all relations over Domain
with headers contained in Attr

forms a lattice with connectives ⊕ and on

We call such lattices full relational lattices
Their S-closure are concrete lattices
Their (I)SP-closure are representable lattices

This is standard algebraic logic terminology

The full ones will be also called Tropashko lattices
to honour the Founding Father
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Lemma 2.1

Proof.
• Define Dom = A ∪ AD and for any X ⊆ Dom let

Cl(X ) = X ∪ {x ∈ AD | ∃y ∈ (X ∩ AD).∀a ∈ (A− X ).x(a) = y(a)}

In other words, Cl(X ) is the sum of X ∩ A (the set of attributes contained in
X ) with the cylindrification of X ∩ AD along the attributes in X ∩ A.
This means attributes in X ∩ A are irrelevant!

• Cl is a closure operator and hence Cl-closed sets form a lattice, with the order
being obviously ⊆ inherited from the powerset of Dom.

• R(D,A) is isomorphic to this lattice and the isomorphism is given by

(H,B) 7→ (A− H) ∪ {x ∈ AD | x[H] ∈ B}.



As above, so below?

We take on (natural join) to be lattice meet ∧
and ⊕ (inner union) to be lattice join ∨

(H(R),Body(R)) v (H(S),Body(S))

iff

H(R)⊇H(S) & Body(R) �H(S) ⊆Body(S)
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Grothendieck Interlude (Sec. 2.1)

FAD (H) : P⊇(A) 3 H −→ P(HD)

FAD (H ⊇ H ′) = (HD ⊇ B 7→ B[H ′] ⊆ H′D)

defines a quasifunctor

• R(D,A) is an instance of the (covariant) Grothendieck

construction/completion
∫ P⊇(A)

FAD
• Note that to preserve the lattice structure we cannot consider
FAD as a functor into Set

• Note also that we chose the covariant definition on P⊇(A)
rather than the contravariant definition on P(A) to ensure
the order v does not get reversed inside each slice P(HD)



A related recent categorical approach by Samson Abramsky

Relational Databases and Bell Theorem



On Equations and Quasiequations



Question
Are the Tropasko lattices always distributive?
Or perhaps all lattices are HSP-images of relational lattices?



Answer . . .

NEITHER IS TRUE!



Answer . . .
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A Negative Example

Attr = {a}, Domain = {1, 2}

H = 〈∅, ∅〉

> = 〈∅, {∅}〉

〈{a}, ∅〉

〈{a}, {(a : 1), (a : 2)}〉



Properties Relational Lattices Do NOT Have

• semidistributivity (and hence also almost distributivity and
neardistributivity)

SD∨: a ∨ b = a ∨ c implies a ∨ b = a ∨ (b ∧ c)

• upper- or lower- semimodularity (and hence also modularity)

if a ∧ b covers a and b, then a ∨ b is covered by a and b

• local distributivity/local modularity

• the Jordan-Dedekind chain condition

The cardinalities of two maximal chains between common end points are equal

• supersolvability
for finite lattices:

∃ a maximal chain generating a distributive lattice with any other chain

• . . .



... But There Are Non-trivial Lattice Identities Valid

(AxRL1) xony ⊕ xonz = xon(yon(x ⊕ z)⊕ zon(x ⊕ y)),

(AxRL2) ton((x ⊕ y)on(x ⊕ z)⊕ (u⊕w)on(u⊕ v)) =
ton((x ⊕ y)on(x ⊕ z)⊕u⊕wonv)⊕ ton((u⊕w)on(u⊕ v)⊕ x ⊕ yonz).

Both equalities are independent!
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Lemma (Padmanabhan/McCune/Veroff)

Lattices satisfying

(AxRL1) xony ⊕ xonz = xon(yon(x ⊕ z)⊕ zon(x ⊕ y)),

satisfy also

(CD∨) x ⊕ y = x ⊕ z implies (xony)⊕ (xonz) = xon(y ⊕ z)

and this in turn implies the Huntington property.

A class of lattices K has the Huntington property
iff

all uniquely complemented lattices from K are distributive



Proposed Axioms for Abstract Relational Lattices

With constant H
all lattice axioms plus

AxRH1 Honxon(y ⊕ z)⊕ yonz = (Honxony ⊕ z)on(Honxonz ⊕ y)

AxRH2 xon(y ⊕ z) = xon(z ⊕Hony)⊕ xon(y ⊕Honz)

Without H
all lattice axioms plus

AxRL1 xony ⊕ xonz = xon(yon(x ⊕ z)⊕ zon(x ⊕ y))

AxRL2 ton((x ⊕ y)on(x ⊕ z)⊕ (u⊕w)on(u⊕ v)) = ton((x ⊕ y)on(x ⊕ z)⊕u⊕wonv)⊕
⊕ ton((u⊕w)on(u⊕ v)⊕ x ⊕ yonz)

(derivable in the full signature)



Additional (quasi-)equations derivable in RH and R:

Qu1 x ⊕y = x ⊕z ⇒ xon(y ⊕z) = xony ⊕xonz .
Qu2 Hon(x ⊕y) = Hon(x ⊕z) ⇒ xon(y ⊕z) = xony ⊕xonz .
Eq1 Honxon(y ⊕z) = Honxony ⊕Honxonz
Der1 Honx ⊕xony = xon(y ⊕Honx)





Jipsen & Rose: The Lattice of Varieties of Lattices



Jipsen & Rose: Covers of Nonmodularity



As you see, the equational theory is intriguing

Nevertheless, there are are both database
and algebraic reasons to be
even more interested in the quasi-equational theory
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The Algebraic Reason for Importance of Quasi-Equations

Theorem
The class of relational lattices is pseudoelementary

hence closed under ultraproducts

hence its SP-closure is a quasivariety

Corollary

The quasi-equational theory of relational lattices is

recursively enumerable

Proof.
The elementary axiomatization in extended multi-sorted language
used in the pseudoelementarity proof is finite
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Theorem 4.1

Proof.
• Recall Dom = A ∪ AD and for any X ⊆ Dom let

Cl(X ) = X ∪ {x ∈ AD | ∃y ∈ (X ∩ AD).∀a ∈ (A− X ).x(a) = y(a)}

In other words, Cl(X ) is the sum of X ∩ A (the set of attributes contained in
X ) with the cylindrification of X ∩ AD along the axes in X ∩ A.

• Take sorts A = A, F = AD, D = D and R for Cl-closed subsets of Dom

• on, ⊕ : R × R → R, H : R

• assign : F × A 7→ D (value of F on A)

• inR ⊆ (A ∪ F )× R (membership of attribute/sequence in a closed subset)

(to be continued)



Proof.
(continued) FO axioms forcing the correctness of this interpretation:

• extensionality for F and R (via axioms on inR),

• each element of R is closed/cylindrified

• on and ⊕ are, respectively, genuine infimum and supremum operations on R.

• inR assigns no elements of R and all elements of A to H.



Aside: Automatization and Proof Assistants

• The above proof shows how an encoding into a first-order theory in a richer
language looks like

• We can (and should . . . ) use it in a proof assistant

• So far, only used equational theorem provers/countermodel finders
(Prover9/Mace4) to investigate the equational theory

• It is worth mentioning though that the inventor of relational lattices, Vadim
Tropashko, has developed in the meantime a dedicated tool QBQL:
https://code.google.com/p/qbql/

https://code.google.com/p/qbql/


The Database Reason for Importance of Quasi-Equations

Reasoning over database constraints

(key constraints, foreign keys)

can be reduced to quasi-equational reasoning.

Also relevant for rule-based query optimization

Note: in order to formulate
simplest constraints or just type infomation:

“R1 and R2 have the same header”

it is necessary to add H:

HonR1 = HonR2
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Theorem 4.7

Unfortunately, the addition of identity AxRH1 to lattice axioms:

Honxon(y ⊕z)⊕yonz = (Honxony ⊕z)on(Honxonz ⊕y)

allows to imitate Maddux’ technique for CA3 and

embed the word problem for semigroups

into quasi-equational theory . . .



Corollary (4.8)

Any quasiequational theory contained between

• the eq. theory of lattices with AxRH1 and

• the quasiequational theory of finite relational lattices

is undecidable

Corollary (4.9)

The quasiequational theory of finite relational lattices

is not finitely axiomatizable

Undecidability knocks on our door earlier than expected . . .
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Finite Duality and Formal Concept Analysis



• Let L be a finite lattice

• J(L) the set of its join-irreducibles and M(L) the set of its
meet-irreducibles

• The standard context con(L) := (J(L),M(L), I≤ ), where
I≤ :=≤ ∩ (J(L)×M(L))

• Define:

g ↙ m : g is ≤-minimal in {h ∈ J(L) | NOT h I≤m}
g ↖ m : m is ≤-maximal in {n ∈M(L) | NOT g I≤ n}
g ↖↙ m : g ↙ m & g ↖ m (modified notation!)

• ↙↙ is the smallest relation containing ↙ and closed s.t.
g ↙↙ m, h↖ m and h↙ n imply g ↙↙ n



n

⇒

n
↙

↙↙
h
↖

m
↙↙

g g



Theorem (Ganter, Wille)

A finite lattice is

• subdirrectly irreducible iff there is m ∈M(L) s.t.
↙↙⊇ J(L)× {m}

• simple iff ↙↙= J(L)×M(L)

Hence, in order to investigate the structure of finite Tropashko
lattices, it would be useful to have a description of
J(R(D,A)) and M(R(D,A)) . . .



ADomD,A := {adom(x) | x ∈ AD} where adom(x) := (A, {x})
AAttD,A := {aatt(a) | a ∈ A} where aatt(a) := (A− {a}, ∅)
CoDomD,H := {codomH(x) | x ∈ HD} where codomH(x) := (H, HD − {x})
CoAttD,A := {coatt(a) | a ∈ A} where coatt(a) := ({a}, {a}D)

JD,A := ADomD,A ∪ AAttD,A
MD,A := CoAttD,A ∪

⋃
H⊆A

CoDomD,H

Theorem (5.2)
For any finite A and D such that |D| ≥ 2, we have

JD,A = J(R(D,A)) (join-irreducibles)

MD,A = M(R(D,A)) (meet-irreducibles)





Theorem (5.3)

Assume D,A are finite sets s.t. |D| ≥ 2 and A 6= ∅. Then I≤ , ↙,
↖ and ↙↙ look for R(D,A) as follows:

r = adom(x) aatt(a) adom(x) aatt(a)

s = coatt(a) coatt(b) codomH(y) codomH(y)

r I≤ s always a 6= b x [H] 6= y a 6∈ H

r ↙ s never a = b x [H] = y a ∈ H

r ↖ s never a = b x [H] = y never

r ↙↙ s never a = b always always



Corollary (5.4)

Whenever D,A are finite sets s.t. |D| ≥ 2 and A 6= ∅, then

• R(D,A) is subdirectly irreducible

• R(D,A) is not simple



Recap

? We study an interpretation of lattice connectives proposed by Vadim Tropashko
from Oracle: as natural join and inner union between DB relations

? We show that this interpretation yields a class of lattices which has not been
considered in the existing lattice-theoretical literature

? We propose an equational axiomatization for a corresponding abstract algebraic
class

? It turns out that addition of just the header constant to the lattice signature
leads to undecidabilty of the quasiequational theory

? Relational lattices, however, are not as intangible as one may fear: for example,
they do form a pseudoelementary class

? We also apply the tools of Formal Concept Analysis and investigate standard
contexts of relational lattices. In particular, we’ll see that finite relational
lattices, while not ”bounded” in the McKenzie sense, are subdirectly irreducible
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List of questions

• Is quasi-equational theory of arbitrary relational lattices
axiomatizable?

• How about decidability/axiomatizability of quasi-equational
and equational theories of lattice reducts (i.e., without H)?

• Prove that representable relational lattices

do not form an equational class (or do they?)

• Investigate the connections with
• boolean algebras of finite sequences

(Craig and Quine/Kuhn)

• multi-sorted cylindric algebras

(Bernays/Schwartz/Börner)

• (Venema) Duality theory?
• more or less done for full relational lattices via our FCA
• generalize to: concrete, representable, abstract ones

• (Hirsch) Representability? Also should use the FCA results . . .
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