
reasoning about probabilities
in dynamical domains

from specification to goal regression and beyond

Vaishak Belle
Department of Computer Science

University of Toronto

(Joint work with Hector Levesque)

1

dynamical systems

Many (AI) systems operate in dynamical worlds, where properties change

and are unknown.

In general, require language for representing actions and incomplete

information (i.e. knowledge).

But also computational mechanisms for reasoning.

2

However, 2 disparate paradigms: logical and probabilistic

Logic camp: explicit actions, strict uncertainty (i.e. disjunctions,

quantification)

• e.g. STRIPS, situation calculus, dynamic logic

Probability camp: random variables over some joint distribution,

transition dynamics over continuous probability distributions

e.g. Bayesian Networks, Kalman filters

3

However, 2 disparate paradigms: logical and probabilistic

Logic camp: explicit actions, strict uncertainty (i.e. disjunctions,

quantification)

• e.g. STRIPS, situation calculus, dynamic logic

Probability camp: random variables over some joint distribution,

transition dynamics over continuous probability distributions

e.g. Bayesian Networks, Kalman filters

3

However, 2 disparate paradigms: logical and probabilistic

Logic camp: explicit actions, strict uncertainty (i.e. disjunctions,

quantification)

• e.g. STRIPS, situation calculus, dynamic logic

Probability camp: random variables over some joint distribution,

transition dynamics over continuous probability distributions

e.g. Bayesian Networks, Kalman filters

3

logical or probabilistic?

Clearly, most applications would benefit from both; e.g. cognitive robotics,

but also noisy data

Agenda: foundations for representing and reasoningwith all of logic
and all of probability

From specification to any required fragment

4

logical or probabilistic?

Clearly, most applications would benefit from both; e.g. cognitive robotics,

but also noisy data

Agenda: foundations for representing and reasoningwith all of logic
and all of probability

From specification to any required fragment

4

(some) related work

Many with limited first-order features.

• Bayes nets, filtering mechanisms, hybrid systems: no strict

uncertainty, explicit actions not always treated

• Bayesian logic, Markov logics: no explicit actions

• logic for reasoning about probability, e.g. Bacchus 1990: no actions

• logics for probability and time, e.g. Halpern-Tu�le: only discrete prob.

• planning languages: no strict uncertainty, limited contextual features

• action languages/program logics: lacking continuous fluents/

continuous noise

5

the situation calculus

The situation calculus is a dialect of FOL for representing dynamically

changing worlds in which all changes are the result of named actions
1
.

3 sorts: actions e.g. put(x,y), situations (histories) and objects (catch-all):

• S0 (initial) and do(put(x, y), S0)

Predicates or functions whose values may vary from situation to situation

are called fluents, e.g. ¬Broken(x, S0) but Broken(x, do(drop(x), S0)).

1
[McCarthy+Hayes 69, Reiter 01]

6

modeling a domain

A logical theory D:

• initial knowledge base: any FOL theory, e.g.

∃x.Broken(x, S0), value(house1, S0) = 1000 ∨ value(house1, S0) = 2000

• preconditions, e.g. Poss(pickup(x), s) ≡ ∀z ¬Holding(z, s)

• successor state axioms (solution to frame problem)

∀a, s. Broken(x, do(a, s)) ≡
a = drop(x) ∧ Holding(x, s) ∧ Fragile(x) ∨
Broken(x, s) ∧ a 6= repair(x).

Projection Problem: D |= φ[do(~a, S0)]? (Tarskian semantics)

fundamental for planning, verification, etc.

7

knowledge in the situation calculus

Treat situations as possible worlds [Moore 85, Scherl+Levesque 03]

• i.e. initial situations other than S0

• special fluent K : K(s′, s) means s′ is accessible from s

• Knows(φ, s) .= ∀s′. K(s′, s) ⊃ φ[s′]

• D now includes sensing axioms: SF (checkRed(x), s) ≡ Red(x, s).

Also a SSA for K :

K(s′, do(a, s)) ≡
∃s′′. s′ = do(a, s′′) ∧ K(s′′, s)∧

Poss(a, s′′) ∧ SF (a, s′′) ≡ SF (a, s).

8

knowledge: physical actions

dropping makes P false

9

knowledge: sensing actions

sensing tells you whether Q holds

10

knowledge: summary

• K successor state axiom (fixed) + SF axioms (domain dependent) in D

• definition of knowledge and how that changes a�er sensing;
2

• Epistemic formulas are regressable
D |= Knows(φ, do(~a, S0)) i� D0 |= R[Knows(φ, do(~a, S0))]

e.g.R[Broken(g, do(drop(g, S0)))] =

(a = drop(x) ∨ Broken(x, S0) ∧ a 6= repair(x))a,xdrop(g),g

e.g.R[Knows(φ, do(checkRed(g), S0))] =

Red(g, S0) ⊃ Knows(Red(g, now) ⊃ φ, S0) ∨
¬Red(g, S0) ⊃ Knows(¬Red(g, now) ⊃ φ, S0)

2
also see [Lakemeyer+Levesque 04, Van Ditmarsch+ 2011]

11

knowledge: summary

• K successor state axiom (fixed) + SF axioms (domain dependent) in D

• definition of knowledge and how that changes a�er sensing;
2

• Epistemic formulas are regressable
D |= Knows(φ, do(~a, S0)) i� D0 |= R[Knows(φ, do(~a, S0))]

e.g.R[Broken(g, do(drop(g, S0)))] =

(a = drop(x) ∨ Broken(x, S0) ∧ a 6= repair(x))a,xdrop(g),g

e.g.R[Knows(φ, do(checkRed(g), S0))] =

Red(g, S0) ⊃ Knows(Red(g, now) ⊃ φ, S0) ∨
¬Red(g, S0) ⊃ Knows(¬Red(g, now) ⊃ φ, S0)

2
also see [Lakemeyer+Levesque 04, Van Ditmarsch+ 2011]

11

degrees of belief, noisy acting and sensing

Belief via special fluent p:
3 p(s′, s) gives weight accorded to s′ when at s

l for action likelihoods: l(sonar(z), s) = N (z; distance(s), 4).

Successor state axiom for p:

p(s′, do(a, s)) = u ≡
∃s′′ [s′ = do(a, s′′) ∧ Poss(a, s′′)∧

u = p(s′′, s)× l(a, s′′)]

∨ ¬∃s′′ [s′ = do(a, s′′) ∧ Poss(a, s′′) ∧ u = 0]

3
[Bacchus+ 1999], following e.g. [Fagin+Halpern 1994]

12

probabilistic belief: illustration

noisy sensor says f = 1

13

modeling a domain

• l axioms (domain dependent) + successor state axiom for p (fixed)

• p axioms in D0

e.g. p(s, S0) = u ≡ (f (s) = 1 ∧ u = .5) ∨ (f (s) = 2 ∧ u = .5)

e.g. p(s, S0) = N (f (s); 0, 1)

e.g. ∀s(p(s, S0) = U(f (s); 0, 10)) ∨ ∀s(p(s, S0) = U(f (s); 10, 20))

Bel(φ, s) .=
∑

{s′:φ[s′]}

p(s′, s)

/∑
s′

p(s′, s)

subsumes Bayesian conditioning; but only well defined when s′ is finite

14

modeling a domain

• l axioms (domain dependent) + successor state axiom for p (fixed)

• p axioms in D0

e.g. p(s, S0) = u ≡ (f (s) = 1 ∧ u = .5) ∨ (f (s) = 2 ∧ u = .5)

e.g. p(s, S0) = N (f (s); 0, 1)

e.g. ∀s(p(s, S0) = U(f (s); 0, 10)) ∨ ∀s(p(s, S0) = U(f (s); 10, 20))

Bel(φ, s) .=
∑

{s′:φ[s′]}

p(s′, s)

/∑
s′

p(s′, s)

subsumes Bayesian conditioning; but only well defined when s′ is finite

14

a reformulation

Theorem:4 Bel(φ, do(~a, S0)) can also be given by

1

γ

∑
~x

p(do(~a, ι), do(~a, S0)) if ∃ι. fi(ι) = xi ∧ φ[do(~a, ι)]

0 otherwise

(include axiom that there is precisely one situation for every vector of

fluent values)

4
[B+L 13 (IJCAI)]

15

the continuous case

Bel(φ, do(~a, S0))
.
=

1

γ

∫
~x

p(do(~a, ι), do(~a, S0)) if ∃ι. fi(ι) = xi ∧ φ[do(~a, ι)]

0 otherwise

16

demonstration

Degrees of beliefs a�er acting and sensing5

0 5 10 15 20

−5 0 5 10

sharpening via repeated sensing beliefs worsen a�er noisy move

5
[B+L 14 (KR)]

17

demonstration (2)

Markov localization6

6
[B+L 14 (AAMAS)]

18

features

• generalizes categorical knowledge change account, subsumes

Bayesian conditioning

• incomplete/partial specifications (e.g. non-unique priors)

• expressive action specifications (e.g. continuous distribution to mixed)

• contextual likelihood axioms

l(sonar(z), s) = u ≡ humid(s) ∧ u = N (z; distance(s), 4)

¬humid(s) ∧ u = N (z; distance(s); 1)

• hypothetical reasoning, introspection, etc.

19

on projection

How can we solve projection?

D |= Bel(φ, do(~a, S0))

By a generalized form of regression!
7

Theorem: D |= Bel(φ, do(~a, S0)) i� D0 |= R[Bel(φ, do(~a, S0))]

(e.g. suppose D0 is a Bayesian network, reasoning about dynamics

becomes straightforward)

7
[B+L 13 (UAI)]; also see [Kaelbling+Lozano-Pérez 13] for a similar result applied to

robotic planning

20

on projection

How can we solve projection?

D |= Bel(φ, do(~a, S0))

By a generalized form of regression!
7

Theorem: D |= Bel(φ, do(~a, S0)) i� D0 |= R[Bel(φ, do(~a, S0))]

(e.g. suppose D0 is a Bayesian network, reasoning about dynamics

becomes straightforward)

7
[B+L 13 (UAI)]; also see [Kaelbling+Lozano-Pérez 13] for a similar result applied to

robotic planning

20

regression setup

h

Suppose p(s, S0) = U(h(s); 2, 12) and

h(do(a, s)) = u ≡ ∃z. a = move(z) ∧ u = max(0, h(s)− z) ∨
¬∃z. a = move(z) ∧ u = h(s).

21

regression example

Subsumes products of Gaussians, distribution transformations, etc.
22

prego

From that general specification language, we have implemented a

projection system called PREGO
8

• all families of successor state axioms, and contextual likelihood

axioms

• limited D0 to a joint distribution over continuous random variables

• empirical behavior is very promising, i.e. interesting bridge between

logic-based action languages and real-time needs of robotic

applications

8
[B+L 14 (AAAI)]

23

on projection (revisited)

Regression is appropriate for planning and plan search, but over the course

of millions of actions backward reasoning becomes infeasible.

The progression of basic action theories9

D |= φ[do(~a, S0)] i� Update(D,~a) |= φ[S0]

Needs second-order logic, in general;
10

provides clean semantics for

open/closed-world STRIPS, database updates, etc.

9
[Lin+Reiter 97, Vassos+Levesque 08]

10
Strong model-theoretic guarantees

24

on projection (revisited)

Regression is appropriate for planning and plan search, but over the course

of millions of actions backward reasoning becomes infeasible.

The progression of basic action theories9

D |= φ[do(~a, S0)] i� Update(D,~a) |= φ[S0]

Needs second-order logic, in general;
10

provides clean semantics for

open/closed-world STRIPS, database updates, etc.

9
[Lin+Reiter 97, Vassos+Levesque 08]

10
Strong model-theoretic guarantees

24

on progression

How classical progression works: list a�ected atoms, then forget these

atoms.

Example: Suppose D0 = {¬Broken(g, S0)} . Suppose agent does drop(g).

Then

• a�ected atom: Broken(g, S0)

• instantiated successor state axiom:

Broken(x, do(a, s)) ≡ (a = drop(x) ∨ Broken(x, s) ∧ a 6=
repair(x))a,x,sdrop(g),g,S0

• forget atom: D0

Broken(g,S0)

true ∨ D0

Broken(g,S0)

false (≡ true)

• new theory is union of above two

25

progression in continuous domains

Here: continuous likelihood axioms, degrees of belief

We introduce a new technique for progression.
11 Example:

• f (do(a, s)) = u ≡ (∃z. a = act(z) ∧ u = f (s) + z)

∨ ¬∃z(a = act(z)) ∧ u = f (s)

• invert them:
12

f (s) = u ≡ ∃z(a = act(z) ∧ u = f (do(a, s))− z) ∨ ¬∃z(a =

act(z) ∧ u = f (s)).

• for p sentences in D0, inverting wrt a amounts to replacing every

occurrence of p(s, S0) in D0 by p(s, S0)/Likelihood(a)

11
[B+L 14 (KR)]

12
Only possible for invertible successor state axioms.

26

progression in continuous domains (2)

Replace D by axiom inversions = new formulation of progression!

Generality: no noise and degrees of belief = classical definition

With noise = new general theory of belief propagation

e.g. Kalman filters special case

Space complexity results, e.g. e�iciency of context completeness

27

conclusion

A representation language for all of logic and all of probability,
with general projection methodologies

• semantic and computational connections and bridge between the

knowledge representation and probabilistic reasoning advances

• special purpose languages such as PREGO

In progress: a modal account, progression implementation, connections

between progression and particle filters, etc.

28

future work

From action languages to programs, e.g. GOLOG
13

constructs are actions from D, used on virtual/ physical agents.

A general version of GOLOG that admits noisy e�ectors and sensors and

the robot’s changing degrees of belief would lead to more realistic
high-level robot programs . . . stay tuned!

E�icient implementations would bring robotic technologies and logical

reasoners closer.

13
[Levesque+ 97]

29

future work

From action languages to programs, e.g. GOLOG
13

constructs are actions from D, used on virtual/ physical agents.

A general version of GOLOG that admits noisy e�ectors and sensors and

the robot’s changing degrees of belief would lead to more realistic
high-level robot programs . . . stay tuned!

E�icient implementations would bring robotic technologies and logical

reasoners closer.
13

[Levesque+ 97]

29

