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Abstract. Building on recent work on bilattice modal logic and extensions of public
announcement logic to a non-classical base, we introduce a simple dynamic epistemic logic

having the logic of bilattices as its propositional support. Bilattice logic is both paracon-
sistent and paracomplete, thus suited for applications in contexts with multiple sources of

information, where lacking as well as potentially contradictory evidence must be accounted

for. We introduce an algebra-based semantics for bilattice public announcement logic and
axiomatize the resulting consequence relation by means of a Hilbert-style calculus. Our

results and methodology relate to recent work on non-classical dynamic epistemic logics

such as intuitionistic public announcement logic.
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Introduction

Dynamic logics are language expansions of classical (modal) logic designed
to reason about changes induced by actions of different kinds, e.g., updates
on the memory state of a computer, displacements of a moving robot, belief-
revisions changing the common ground among different cognitive agents,
knowledge update. Semantically, an action is represented as a transforma-
tion of a model describing a given state of affairs into a new one that encodes
the state of affairs after the action has been performed.

The logic of public announcements (PAL) [14, 2, 6, 4] is a simple and well-
known dynamic logic that models the epistemic change brought about on
the cognitive state of a group of agents once a given proposition has become
publicly known. To each proposition α one associates a dynamic modal
operator ⟨α⟩ whose semantic interpretation is given by the transformation
of models corresponding to its action-parameter α.

The present paper builds on the logic of public announcements devel-
oped in [13, 12, 2] on the one hand and on the bilattice-valued modal logic
[11] on the other. [13, 12] introduce a semantically justified definition of
dynamic epistemic logic on a base that is weaker than classical logic. The
main methodological feature of these papers is the dual characterization of
epistemic updates via Stone-type dualities.
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It is well known that epistemic updates induced by public announce-
ments are formalized in relational models by means of the relativization
construction, which creates a submodel of the original model. In [13] the
corresponding submodel injection map is dually represented as a quotient
construction between the complex algebras of the original model and of the
updated one. This construction allows one to study epistemic updates within
mathematical environments having a support that is weaker than classical
logic. In the present paper we develop a similar study in a context that is yet
more general than that of [13]. As propositional base we take the bilattice
logic introduced by Arieli and Avron [1], which is both an inconsistency-
tolerant and a paracomplete logic. Epistemic modalities are modeled using
the framework of the bilattice modal logic introduced in [11].

The algebraic framework of bilattices [9] and their associated logic builds
on seminal ideas of Belnap [3] motivated by the problem of dealing with
incomplete and potentially inconsistent information. This setting has been
further developed in [1] and generalized to weaker logics in, e.g., [10], [5]. In
particular, [11] expands the language of bilattice logic with modal operators
that are interpreted in many-valued analogues of Kripke frames.

In the present paper generalize the quotient construction of [13] to the
algebraic semantics of bilattice modal logic, which allows us to define a
natural interpretation of the language of PAL on modal bilattices. In this
way we establish which interaction axioms among dynamic modalities are
sound with respect to our intended semantics. The resulting calculus defines
a bilattice-based version of public announcement logic (called bilattice public
announcement logic, BPAL), which we prove to be complete with respect
to our algebra-based semantics analogously to classical PAL. This paper
aims at paving the way to a semantically-grounded analysis of epistemic
updates in the presence of incomplete and/or inconsistent information. It
is also a contribution to the research line initiated in [13, 12] which aims
at introducing methods of algebraic logic, duality and proof theory in the
study of mathematical foundations of dynamic logic (see also [7, 8]).

1. Bilattice modal logic

In this section we introduce the setting of bilattice modal logic and recall
facts and definitions that will be needed to develop our bilattice public
announcement logic. The reader is referred to [11] for proofs and fur-
ther details. The non-modal base of bilattice modal logic is the logic in-
troduced by Arieli and Avron [1], which can be defined through Belnap’s
(bi)lattice FOUR (Figure 1). We view FOUR as an algebra having op-
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Figure 1. The four-element Belnap bilattice FOUR in its two orders

erations ⟨∧,∨,⊗,⊕,⊃,¬, f, t,⊥,⊤⟩ of type ⟨2, 2, 2, 2, 2, 1, 0, 0, 0, 0⟩. Both
⟨FOUR,∧,∨, f, t⟩ and ⟨FOUR,⊗,⊕,⊥,⊤⟩ are bounded distributive lattices,
as shown in Figure 1, whose lattice orders are denoted, respectively, by ≤t

(truth order) and ≤k (knowledge order). We have, moreover, a binary weak
implication operation ⊃ defined by x ⊃ y := y if x ∈ {t,⊤} and x ⊃ y := t

otherwise. Negation is a unary operation ¬ having ⊥ and ⊤ as fixed points
and s.t. ¬f = t and ¬t = f.

The operations ⊗ and ⊕ need not be included in the primitive signature
as they can be retrieved as terms in the language ⟨∧,∨,⊃,¬, f, t,⊥,⊤⟩. Thus,
we will consider them as abbreviations of the terms shown below, together
with the following defined operations: x⊗ y := (x∧⊥)∨ (y ∧⊥)∨ (x∧ y);
x ⊕ y := (x ∧ ⊤) ∨ (y ∧ ⊤) ∨ (x ∧ y); x → y := (x ⊃ y) ∧ (¬y ⊃ ¬x);
∼x := x ⊃ f; x ∗ y := ¬(y → ¬x); x ≡ y := (x ⊃ y) ∧ (y ⊃ x);
x ↔ y := (x → y) ∧ (y → x). The operation ∼ provides an alternative
negation, while → is an alternative implication called strong implication.

The bilattice logic of [1] can then be introduced as the propositional logic
defined by the matrix ⟨FOUR, {t,⊤}⟩ as follows. Starting from a countable
set of propositional variables V ar, one constructs the formula algebra Fm =
⟨Fm,∧,∨,⊃,¬, f, t,⊥,⊤⟩ in the usual way. Given formulas Γ, {φ} ⊆ Fm,
one then sets Γ !FOUR φ iff, for all homomorphisms v : Fm → FOUR, if
v(γ) ∈ {t,⊤} for all γ ∈ Γ, then also v(φ) ∈ {t,⊤}. This logic can be
axiomatized through the Hilbert-style calculus of [11, Section III B]. It is
sufficient to take all axioms of classical logic in the language ⟨∧,∨,⊃, f, t⟩
plus the following:

⊤ ∧ ¬⊤ ¬(p ⊃ q) ≡ (p ∧ ¬q) ¬(p ∧ q) ≡ (¬p ∨ ¬q)

(⊥ ∨ ¬⊥) ⊃ f ¬(p ∨ q) ≡ (¬p ∧ ¬q)

The only rule is modus ponens (mp): p, p ⊃ q ⊢ q. This logic can be seman-
tically expanded with modal operators by considering four-valued Kripke
models. These are structures ⟨W,R, v⟩ such that both R and v are four-
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valued. That is, one defines R : W ×W → FOUR and v : Fm×W → FOUR.
We then call ⟨W,R⟩ a four-valued Kripke frame. Valuations are required to
be homomorphisms in their first argument, so they preserve all non-modal
connectives (including all four constants) of the logic of FOUR. The modal
operators " is defined as follows: for every w ∈ W and every φ ∈ Fm,
v("φ, w) :=

∧
{R(w,w′) → v(φ, w′) : w′ ∈ W}, where

∧
denotes the in-

finitary version of ∧ in FOUR and → is the strong implication introduced
above. The dual operator ♦ is defined as v(♦φ, w) :=

∨
{R(w,w′)∗v(φ, w′) :

w′ ∈ W}, where
∨

denotes the infinitary version of ∨ in FOUR and ∗ is
the fusion operation introduced above. It is straightforward to check that
v("φ, w) = v(¬♦¬φ, w) for all w ∈ W and all valuations v. Thus, as happens
in the classical case (and unlike the intuitionistic), the two modal operators
are inter-definable. In the present paper we take ♦ as primitive.

A modal consequence relation can now be defined in the usual way. We
say that a point w ∈ W of a four-valued model M = ⟨W,R, v⟩ satisfies a
formula φ ∈ Fm iff v(φ, w) ∈ {t,⊤}, and we write M,w ! φ. For a set of
formulas Γ ⊆ Fm, we write M,w ! Γ to mean that M,w ! γ for each γ ∈ Γ.
The (local) consequence Γ ! φ holds if, for every model M = ⟨W,R, v⟩ and
every w ∈ W , it is the case that M,w ! Γ implies M,w ! φ.

The above-defined consequence is axiomatized in [11]. The set of axioms
is the least set Σ ⊆ Fm containing all substitution instances of the schemata
axiomatizing non-modal bilattice logic plus the following ones: (i) "t ↔ t,
(ii) "(p ∧ q) ↔ ("p ∧"q), (iii) "(⊥ → p) ↔ (⊥ → "p). Moreover, Σ must
satisfy: (val-mp) if φ and φ ⊃ ψ are in Σ, then so is ψ; (val-mono) if φ→ ψ

is in Σ, then so is "φ→ "ψ. The only inference rule is (mp).
This calculus is complete not only with respect to the semantics of four-

valued Kripke models, but also with respect to an algebra-based semantics
given by the class of modal bilattices. We give a brief account of these results
in the remaining part of this section, as we will build on them later on. We
begin with completeness with respect to Kripke models [11, Theorem 19].

Theorem 1.1 (Relational completeness). For all Γ, {φ} ⊆ Fm, Γ ⊢ φ iff
M,w ! Γ implies M,w ! φ for every four-valued Kripke model M =
⟨W,R, v⟩ and every w ∈ W .

In order to state the algebraic completeness theorem we need to intro-
duce a class of algebras providing an alternative semantics for the local and
global calculi. Amodal bilattice is an algebra B = ⟨B,∧,∨,⊃,∼,♦, f, t,⊥,⊤⟩
such that the ♦-free reduct of B is an implicative bilattice, that is, the alge-
bra ⟨B,∧,∨,⊃,¬, f, t,⊥,⊤⟩ belongs to the variety generated by FOUR, and
moreover the following identities are satisfied: (i) ♦f = f, (ii) ♦(x ∨ y) =
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(♦x ∨ ♦y), (iii) "(x ⊃ ⊥) = ♦x ⊃ ⊥. Thus, in particular, ⟨B,∧,∨, f, t⟩
is a bounded distributive lattice. It is easy to show that identities (i)-(iii)
correspond, respectively, to axioms (i)-(iii) of our calculus, and that the
presentation of modal bilattices given here is equivalent to that of [11].

Given a modal bilattice B and a subset F ⊆ B, we say that F is a
bifilter if F is a lattice filter of ⟨B,∧,∨, f, t⟩ and moreover ⊤ ∈ F . Given a
pair ⟨B, F ⟩ and formulas Γ, {φ} ⊆ Fm, we write Γ !⟨B,F ⟩ φ to mean that,
for every modal bilattice homomorphism v : Fm → B, if v(γ) ∈ F for all
γ ∈ Γ, then also v(φ) ∈ F . We can then state the announced algebraic
completeness result as follows [11, Theorem 10].

Theorem 1.2 (Algebraic completeness). For all Γ, {φ} ⊆ Fm, Γ ⊢ φ iff
Γ !⟨B,F ⟩ φ for any modal bilattice B and any bifilter F ⊆ B.

Just as in the case of classical modal logic, the relational and the al-
gebraic semantics for bilattice modal logic are related to one another via
a Stone-type duality [11, Theorem 18]. In the case of bilattices, another
essential ingredient is the so-called twist-structure representation. Let A =
⟨A,∧,∨,∼,♦+,♦−, 0, 1⟩ be a bimodal Boolean algebra [11, Definition 11],
i.e., a structure such that ⟨A,∧,∨,∼, 0, 1⟩ is a Boolean algebra and ♦+ and
♦− are unary operators that preserve finite joins (no relation between the
two is required). The dual operators "+ and "− are defined in the usual
way as "+x := ∼♦+∼x and "−x := ∼♦−∼x. The twist-structure over A

is the algebra A◃▹ = ⟨A × A,∧,∨,⊃,¬,♦, f, t,⊥,⊤⟩ with operations given,
for all ⟨a1, a2⟩, ⟨b1, b2⟩ ∈ A × A, by: ⟨a1, a2⟩ ∧ ⟨b1, b2⟩ := ⟨a1 ∧ b1, a2 ∨ b2⟩;
⟨a1, a2⟩∨⟨b1, b2⟩ := ⟨a1∨b1, a2∧b2⟩; ⟨a1, a2⟩ ⊃ ⟨b1, b2⟩ := ⟨∼ a1∨b1, a1∧b2⟩;
¬⟨a1, a2⟩ := ⟨a2, a1⟩; ♦⟨a1, a2⟩ := ⟨♦+a1, "+a2 ∧ ∼♦−a1⟩; f := ⟨0, 1⟩;
t := ⟨1, 0⟩; ⊥ := ⟨0, 0⟩; ⊤ := ⟨1, 1⟩. It is straightforward to check that any
twist-structure is a modal bilattice. Conversely, any modal bilattice is iso-
morphic to a twist-structure [11, Theorem 12]. This means that instead of
working directly with modal bilattices, one can (as we will in the following
sections) without loss of generality focus only on twist-structures.

2. Pseudo-quotients on modal bilattices

When considering epistemic updates in the context of bilattice logic, we have
to take into account that validity of a formula in our logic only depends on
its “positive part”. By this we mean that any two formulas φ,ψ are logi-
cally equivalent if and only if, for every valuation v : Fm → FOUR, it holds
that π1(v(φ)) = π1(v(ψ)), where π1 denotes first component projection de-
fined by the twist-structure representation of FOUR. For instance, t and ⊤
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(seen as propositional constants) are both valid formulas (hence, logically
equivalent) because π1(t) = π1(⊤) = 1. Thus, in particular, both the public
announcement of t and of ⊤ should be vacuous. An alternative character-
ization of logical equivalence is the following. Any two formulas φ,ψ are
logically equivalent if and only if v(∼∼φ) = v(∼∼ψ) for any valuation v.
This remark motivates our definition of pseudo-quotients. Let B be a modal
bilattice and a ∈ B. We define a relation ≡a as follows: for all b, c ∈ B,
we let b ≡a c iff b ∧ ∼∼a = c ∧ ∼∼ a. This definition is adapted from
(and can indeed be seen as a special of) that of [13]. The only difference
is that, as noted above, here we need to consider only the “positive part”
of a ∈ B, hence the term ∼∼a. We are now going to prove that the above-
defined relation is indeed a congruence of the non-modal reduct of any modal
bilattice.

Lemma 2.1. Let A◃▹ be a twist-structure over a Boolean algebra A. Then,
for all ⟨a1, a2⟩, ⟨b1, b2⟩, ⟨c1, c2⟩ ∈ A× A, we have ⟨b1, b2⟩ ≡⟨a1,a2⟩ ⟨c1, c2⟩ iff
b1 ≡a1 c1 and b2 ≡a1 c2, where ≡a1 is defined as in [13, Section 3.2], i.e.,
x ≡a1 y iff x ∧ a1 = y ∧ a1.

Proof. Assume ⟨b1, b2⟩ ≡⟨a1,a2⟩ ⟨c1, c2⟩, which by definition means ⟨b1, b2⟩∧
∼∼⟨a1, a2⟩ = ⟨c1, c2⟩ ∧ ∼∼⟨a1, a2⟩. Applying the definitions of operations
in a twist-structure, we obtain ⟨b1, b2⟩ ∧ ∼∼⟨a1, a2⟩ = ⟨b1, b2⟩ ∧ ⟨a1,∼ a1⟩ =
⟨a1 ∧ b1,∼ a1 ∨ b2⟩. and similarly ⟨c1, c2⟩ ∧∼∼⟨a1, a2⟩ = ⟨a1 ∧ c1,∼ a1 ∨ c2⟩.
Thus, a1 ∧ b1 = a1 ∧ c1 and ∼ a1 ∨ b2 = ∼ a1 ∨ c2. The first equality means
that b1 ≡a1 c1 holds in A, while the second (applying Boolean negation to
both sides) implies ∼ b2 ≡a1 ∼ c2. Since ≡a1 is a congruence of A [13, Fact
8], we conclude ∼∼ b2 = b2 ≡a1 c2 = ∼∼ c2. Conversely, if b1 ≡a1 c1
and b2 ≡a1 c2, then clearly b1 ∧ a1 = c1 ∧ a1 and ∼a1 ∨ b2 = ∼a1 ∨ c2, which
means ⟨b1, b2⟩ ≡⟨a1,a2⟩ ⟨c1, c2⟩ as required.

Fact 2.2. For any modal bilattice B and any a ∈ B, the relation ≡a is a
congruence of the non-modal reduct of B.

Proof. It is sufficient to check that the statement holds in a twist-structure
B = A◃▹. Assume ⟨b1, b2⟩ ≡⟨a1,a2⟩ ⟨c1, c2⟩ and ⟨d1, d2⟩ ≡⟨a1,a2⟩ ⟨e1, e2⟩. By
Lemma 2.1, this is equivalent to b1 ≡a1 c1, b2 ≡a1 c2, d1 ≡a1 e1, d2 ≡a1 e2.
Since ≡a1 is a congruence of the Boolean algebra A, we have, for instance,
∼ b1 ∨ d1 ≡a1 ∼ c1 ∨ e1 and b1 ∧ d2 ≡a1 c1 ∧ e2. By Lemma 2.1 again, this
means that ⟨b1, b2⟩ ⊃ ⟨d1, d2⟩ ≡⟨a1,a2⟩ ⟨c1, c2⟩ ⊃ ⟨e1, e2⟩. Compatibility with
all the other bilattice operations can be shown in a similar way.

As happened in [13], our relation ≡a is in general not compatible with



Algebraic Semantics for Bilattice Public Announcement Logic 7

the modal operators. The next step is thus to find a suitable definition
for modal operators on the pseudo-quotient. We begin with the following
observation (the proof is essentially the same as as [13, Fact 6], replacing a

by ∼∼ a).

Fact 2.3. Let B be a modal bilattice and a ∈ B. Then, (i) [b∧∼∼ a] = [b]
for every b ∈ B. Hence, for every b ∈ B, there exists a unique c ∈ B such
that c ∈ [b]a and c ≤t ∼∼a. (ii) [b] ≤t [c] iff b ∧∼∼ a ≤t c ∧∼∼ a for
all b, c ∈ B.

Item (i) of Fact 2.3 implies that for each equivalence class modulo ≡a

we can choose a canonical representative, namely the unique element in the
given class that is below ∼∼ a in the truth order. Hence we can define
an (injective) map i′ = i′a : B

a → B given, for every [b] ∈ Ba, by i′[b] :=
b ∧ ∼∼ a. Notice also that π · i′ is the identity on Ba. At this point we
are ready to introduce modal operator(s) on the pseudo-quotient. We define
♦a[b] := [♦(b ∧ ∼∼ a)] = [♦(b ∧ ∼∼a) ∧ ∼∼ a] for all a, b ∈ B. The dual
operator is defined as "a[b] := ¬♦a¬[b]. Using Fact 2.2 and the identities
of modal bilattices, it is easy to check that, in keeping with [13, Section
3.3.2], "a[b] = ["(a ⊃ b)] = [a ⊃ "(a ⊃ b)]. This could thus be taken as
an alternative but equivalent definition. The following result shows that our
definition indeed suits our purpose (cf. [13, Fact 10]).

Fact 2.4. For every modal bilattice B and all a, b, c ∈ B: (i) ♦a[f] = [f]. (ii)
♦a([b] ∨ [c]) = ♦a[b] ∨ ♦a[c]. (iii) "a([b] ⊃ [⊥]) = ♦a[b] ⊃ [⊥]. (iv) Hence,
(Ba,♦a) is a modal bilattice.

Proof. (i) Immediate, since [♦(f ∧∼∼ a)] = [♦f] and ♦f = f in any modal
bilattice.

(ii) ♦a([b] ∨ [c]) = ♦a([b ∨ c]) = [♦((b ∨ c) ∧ ∼∼ a)] Fact 2.2

= [♦((b ∧ ∼∼ a) ∨ (c ∧ ∼∼ a)] distributivity

= [♦(b ∧∼∼ a) ∨ ♦(c ∧ ∼∼ a)] ♦ preserves ∨

= [♦(b ∧∼∼ a)] ∨ [♦(c ∧∼∼ a)] Fact 2.2

= ♦a[b] ∨ ♦a[c].

(iii) We preliminary observe that (1) ¬(x ⊃ ⊥) ∧ ∼∼ y = ¬((y ∧ x) ⊃ ⊥) is
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valid in any modal bilattice. Then:

"a([b] ⊃ [⊥]) = "a[b ⊃ ⊥] Fact 2.2

= ¬♦a¬[b ⊃ ⊥] "a[x] := ¬♦a¬[x]

= ¬♦a[¬(b ⊃ ⊥)] Fact 2.2

= ¬[♦((¬(b ⊃ ⊥)) ∧ ∼∼ a)]

= ¬[♦¬((b ∧ a) ⊃ ⊥)] (1)

= [¬♦¬((b ∧ a) ⊃ ⊥)] Fact 2.2

= [¬¬"¬¬((b ∧ a) ⊃ ⊥)] ♦x = ¬"¬x

= ["((b ∧ a) ⊃ ⊥)] ¬¬x = x

= ["((b ∧ ∼∼ a) ⊃ ⊥)] (x ∧ y) ⊃ z = (x ∧ ∼∼ y) ⊃ z

= [♦(b ∧∼∼ a) ⊃ ⊥] "(x ⊃ ⊥) = ♦x ⊃ ⊥

= [♦(b ∧∼∼ a)] ⊃ [⊥] Fact 2.2

= ♦a[b] ⊃ [⊥]. Fact 2.2

(iv) It follows from (i) and (ii) above that ♦a is a ∨-preserving operator,
which implies that"a is a ∧-preserving operator. Finally, by (iii), the algebra
(Ba,♦a) is a modal bilattice.

3. Axiomatization of BPAL

Our calculus for bilattice public announcement logic is defined over the lan-
guage ⟨∧,∨,⊃,¬,♦, ⟨α⟩, f, t,⊥,⊤⟩, where α ∈ Fm. Derived connectives
⟨∼,",⊗,⊕,→, ∗,↔⟩ are introduced as before. Moreover, we let [α]φ :=
¬⟨α⟩¬φ. BPAL is axiomatically defined by the axioms and rules of the (lo-
cal) calculus for bilattice modal logic augmented with the following axioms:

Interaction with constants ⟨α⟩f ↔ f ⟨α⟩t ↔ ∼∼α

⟨α⟩⊤ ↔ (α ∧ ⊤) ⟨α⟩⊥ ↔ ¬(α ⊃ ⊥)

Interaction with ∧ ⟨α⟩(φ ∧ ψ) ↔ (⟨α⟩φ ∧ ⟨α⟩φ)

Interaction with ∨ ⟨α⟩(φ ∨ ψ) ↔ (⟨α⟩φ ∨ ⟨α⟩φ)

Interaction with ⊃ ⟨α⟩(φ ⊃ ψ) ↔ (∼∼α∧(⟨α⟩φ ⊃ ⟨α⟩φ))

Interaction with ¬ ⟨α⟩¬φ ↔ (∼∼α ∧ ¬⟨α⟩φ)

Interaction with ♦ ⟨α⟩♦φ ↔ (∼∼α ∧ ♦⟨α⟩φ)

Preservation of facts ⟨α⟩p ↔ (∼∼α ∧ p)

where φ,ψ,α are arbitrary formulas, while p is a propositional variable.
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4. Algebraic models and completeness

In this section we introduce an algebra-based semantics and we prove com-
pleteness with respect to the calculus introduced in Section 3. We define
an algebraic model as a tuple M = (B, F, v) where B is a modal bilattice,
F ⊆ B a bifilter, and v : V ar → B. The extension map !·"M : Fm → B is
defined as follows:

!p"M := v(p)

!c"M := cB for c ∈ {f, t,⊥,⊤}

!◦φ"M := ◦B!φ"M for ◦ ∈ {¬,♦}

!φ • ψ"M := !φ"M •B !ψ"M for • ∈ {∧,∨,⊃}

!⟨α⟩φ"M := ∼∼!α"M ∧B i′(!φ"Mα)

![α]φ"M := !α"M ⊃B i′(!φ"Mα)

where Mα = (Bα, vα) is given by Bα = B!α"M and vα = π ◦ v : V ar → Bα.
That is, !p"Mα = V α(p) = π(V (p)) = π(!p"M ) for every p ∈ V ar. We
define Γ !BPAL φ iff, for every algebraic model M = (B, F, v), we have that
!γ" ∈ F for all γ ∈ Γ implies !φ" ∈ F . We are now going to see that the
calculus introduced in Section 3 is sound and complete with respect to the
semantics provided by the above-defined algebraic models. The following
lemmas are needed to establish this result (cf. [13, Lemmas 29-34]).

Lemma 4.1. Let M = (B, v) be an algebraic model and φ a formula such
that !φ"Mα = π(!φ"M ) for any α ∈ Fm. Then !⟨α⟩φ"M = ∼∼!α"M ∧ !φ"M
and ![α]φ"M = !α"M ⊃ !φ"M .

Proof. Concerning the first statement, we have !⟨α⟩φ"M = ∼∼!α"M ∧
i′(!φ"Mα) = ∼∼!α"M ∧ i′(π(!φ"M )) = ∼∼!α"M ∧ (!φ"M ∧ !∼∼α"M ) =
∼∼!α"M ∧ !φ"M . Concerning the second:

![α]φ"M = !α"M ⊃ i′(!φ"Mα) = !α"M ⊃ i′(π(!φ"M ))

= !α"M ⊃ (!φ"M ∧ !∼∼α"M )

= (!α"M ⊃ !φ"M) ∧ (!α"M ⊃ !∼∼α"M ) (1)

= (!α"M ⊃ !φ"M) ∧ (!α"M ⊃ ∼∼!α"M )

= (!α"M ⊃ !φ"M) ∧ t t = x ⊃ ∼∼x

= !α"M ⊃ !φ"M . x ≤t t

Here (1) holds because the equation x ⊃ (y ∧ z) = (x ⊃ y) ∧ (x ⊃ z) is
satisfied by every modal bilattice.
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Fact 4.2. Let B be modal bilattice, a ∈ B, and let i′ =: Ba → B be given,
for every [b] ∈ Ba, by i′[b] := b ∧ ∼∼ a. Then, for every [b], [c] ∈ Ba,

(i) i′([b] ∧ [c]) = i′[b] ∧ i′[c]

(ii) i′([b] ∨ [c]) = i′[b] ∨ i′[c]

(iii) i′([b] ⊃ [c]) = ∼∼ a ∧ (i′[b] ⊃ i′[c])

(iv) i′(¬[b]) = ∼∼ a ∧ ¬i′[b]

(v) i′(♦a[b]) = ∼∼ a ∧ ♦(i′[b]) = ∼∼a ∧ ♦(∼∼ a ∧ i′[b])

(vi) i′("a[b]) = ∼∼ a ∧"(a ⊃ i′[b]).

Proof. (i) Using Fact 2.2, we have i′([b]∧ [c]) = i′([b∧c]) = (b∧c)∧∼∼ a =
(b ∧ ∼∼ a) ∧ (c ∧ ∼∼ a) = i′[b] ∧ i′[c].

(ii) i′([b] ∨ [c]) = i′([b ∨ c]) = (b ∨ c) ∧ ∼∼ a Fact 2.2

= (b ∧ ∼∼ a) ∨ (c ∧ ∼∼ a) distributivity

= i′[b] ∨ i′[c].

(iii) We are going to use Fact 2.2 together with the following identities:
∼∼x ∧ (y ⊃ z) = ∼∼x ∧ ((y ∧ ∼∼x) ⊃ z), t = (x ∧ y) ⊃ ∼∼ y, and
(x ⊃ y) ∧ (x ⊃ z) = x ⊃ (y ∧ z), which are valid in any modal bilattice. We
have:

i′([b] ⊃ [c]) = i′[b ⊃ c] = ∼∼ a ∧ (b ⊃ c)

= ∼∼ a ∧ ((b ∧ ∼∼ a) ⊃ c)

= ∼∼ a ∧ (((b ∧∼∼ a) ⊃ c) ∧ t)

= ∼∼ a ∧ (((b ∧∼∼ a) ⊃ c) ∧ ((b ∧ ∼∼ a) ⊃ ∼∼ a))

= ∼∼ a ∧ ((b ∧ ∼∼ a) ⊃ (c ∧ ∼∼ a))

= ∼∼ a ∧ (i′[b] ⊃ i′[c]).

(iv) i′(¬[b]) = i′([¬b]) = ∼∼ a ∧ ¬b Fact 2.2

= (∼∼ a ∧ ¬b) ∨ f f ≤t x

= (∼∼ a ∧ ¬b) ∨ (∼∼a ∧ ¬∼∼ a) f = ∼∼x ∧ ¬∼∼x

= ∼∼ a ∧ (¬b ∨ ¬∼∼ a) distributivity

= ∼∼ a ∧ ¬(b ∧ ∼∼ a) De Morgan law

= ∼∼ a ∧ ¬i′[b].

(v) Straightforward, because we have on the one hand i′(♦a[b]) = i′[♦(b ∧
∼∼ a)] = ∼∼ a∧♦(b∧∼∼ a) = ∼∼ a∧♦(i′[b]), and on the other i′(♦a[b]) =
i′[♦(b ∧ ∼∼ a)] = i′[♦(b ∧ ∼∼ a) ∧ ∼∼a] = ∼∼ a ∧ ∼∼ a ∧ ♦(b ∧ ∼∼ a) =
∼∼ a ∧ ♦(i′[b]).
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Lemma 4.3. For any algebraic model M = (B, v) with underlying modal
bilattice B = ⟨B,∧,∨,⊃,¬,♦, f, t,⊥,⊤⟩ and for and all formulas α,φ,ψ ∈
Fm,

(i) !⟨α⟩(φ ∧ ψ)"M = !⟨α⟩φ"M ∧ !⟨α⟩ψ"M

(ii) !⟨α⟩(φ ∨ ψ)"M = !⟨α⟩φ"M ∨ !⟨α⟩ψ"M

(iii) !⟨α⟩(φ ⊃ ψ)"M = ∼∼!α"M ∧ (!⟨α⟩φ"M ⊃ !⟨α⟩ψ"M )

(iv) !⟨α⟩¬φ"M = ∼∼!α"M ∧ ¬!⟨α⟩φ"M

(v) ![α]φ"M = !¬⟨α⟩¬φ"M

(vi) !⟨α⟩♦φ"M = ∼∼!α"M ∧ ♦!⟨α⟩φ"M

(vii) !⟨α⟩"φ"M = ∼∼!α"M ∧"![α]φ"M .

Proof. (i)

!⟨α⟩(φ ∧ ψ)"M =

= ∼∼!α"M ∧ i′(!φ ∧ ψ"Mα)

= ∼∼!α"M ∧ i′(!φ"Mα ∧ !ψ"Mα)

= ∼∼!α"M ∧ i′!φ"Mα ∧ i′!ψ"Mα Fact 4.2 (i)

= (∼∼!α"M ∧ i′!φ"Mα) ∧ (∼∼!α"M ∧ i′!ψ"Mα)

= !⟨α⟩φ"M ∧ !⟨α⟩ψ"M .

(ii) Using Fact 4.2 (ii) and distributivity, we have:

!⟨α⟩(φ ∨ ψ)"M = ∼∼!α"M ∧ i′(!φ ∨ ψ"Mα)

= ∼∼!α"M ∧ (i′!φ"Mα ∨ i′!ψ"Mα)

= (∼∼!α"M ∧ i′(!φ"Mα)) ∨ (∼∼!α"M ∧ i′(!ψ"Mα))

= !⟨α⟩φ"M ∨ !⟨α⟩ψ"M .

(iii) We notice that ∼∼x ∧ (y ⊃ z) = ∼∼x ∧ ((∼∼x ∧ y) ⊃ z) and
(∼∼x ∧ y) ⊃ (∼∼x ∧ z) = (∼∼x ∧ y) ⊃ z are both valid in every modal
bilattice (this can be easily checked using the twist-structure representation).
Using this together with Fact 4.2 (iii), we have

!⟨α⟩(φ ⊃ ψ)"M = ∼∼!α"M ∧ i′!φ ⊃ ψ"Mα =

= ∼∼!α"M ∧ ∼∼!α"M ∧ (i′!φ"Mα ⊃ i′!ψ"Mα)

= ∼∼!α"M ∧ (i′!φ"Mα ⊃ i′!ψ"Mα)

= ∼∼!α"M ∧ ((∼∼!α"M ∧ i′!φ"Mα) ⊃ i′!ψ"Mα)

= ∼∼!α"M ∧ ((∼∼!α"M ∧ i′!φ"Mα) ⊃ (∼∼!α"M ∧ i′!ψ"Mα))

= ∼∼!α"M ∧ (!⟨α⟩φ"M ⊃ !⟨α⟩ψ"M ).
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(iv) We notice that identities (1) f = ∼∼x∧∼∼∼x, (2) ∼∼∼x = ¬∼∼x

and (3) ¬x∨ ¬y = ¬(x∧ y) hold in every modal bilattice. Then, using Fact
4.2 (iv), we have:

!⟨α⟩¬φ"M = ∼∼!α"M ∧ i′!¬φ"Mα

= ∼∼!α"M ∧ ∼∼!α"M ∧ ¬i′!φ"Mα

= ∼∼!α"M ∧ ¬i′!φ"Mα = f ∨ (∼∼!α"M ∧ ¬i′!φ"Mα)

= (∼∼!α"M ∧ ∼∼∼!α"M) ∨ (∼∼!α"M ∧ ¬i′!φ"Mα) (1)

= ∼∼!α"M ∧ (∼∼∼!α"M ∨ ¬i′!φ"Mα) distrib.

= ∼∼!α"M ∧ (¬∼∼!α"M ∨ ¬i′!φ"Mα) (2)

= ∼∼!α"M ∧ (¬∼∼!α"M ∨ ¬i′!φ"Mα)

= ∼∼!α"M ∧ ¬(∼∼!α"M ∧ i′!φ"Mα) (3)

= ∼∼!α"M ∧ ¬!⟨α⟩φ"M .

(v) !¬⟨α⟩¬φ"M = ¬(∼∼!α"M ∧ ¬i′!φ"Mα) Item (iv)

= ¬∼∼!α"M ∨ ¬¬i′!φ"Mα De Morgan law

= ¬∼∼!α"M ∨ i′!φ"Mα ¬¬x = x

= ∼!α"M ∨ i′!φ"Mα ¬∼∼x = ∼x

= !α"M ⊃ i′!φ"Mα ∼x ∨ y = x ⊃ y

= ![α]φ"M .

(vi) Using Fact 4.2 (v), we have !⟨α⟩♦φ"M = ∼∼!α"M ∧ i′!♦φ"Mα =
∼∼!α"M ∧ ∼∼!α"M ∧ ♦(∼∼!α"M ∧ i′!φ"Mα) = ∼∼!α"M ∧ ♦(∼∼!α"M ∧
i′!φ"Mα) = ∼∼!α"M ∧ ♦!⟨α⟩φ"Mα . (vii) Follows easily from (v) and (vii)
above.

Item (v) of the preceding lemma shows that the choice of considering the
formula [α]φ as an abbreviation for ¬⟨α⟩¬φ is sound. The following result
easily follows from Lemma 4.3.

Fact 4.4. For any algebraic model M = (B, v) with underlying modal bilat-
tice B = ⟨B,∧,∨,⊃,¬,♦, f, t,⊥,⊤⟩ and for and all formulas α,φ,ψ ∈ Fm,

(i) ![α](φ ∧ ψ)"M = ![α]φ"M ∧ ![α]ψ"M

(ii) ![α](φ ∨ ψ)"M = !α"M ⊃ (!⟨α⟩φ"M ∨ !⟨α⟩ψ"M )

(iii) ![α](φ ⊃ ψ)"M = !⟨α⟩φ"M ⊃ !⟨α⟩ψ"M

(iv) ![α]¬φ"M = ¬!⟨α⟩φ"M
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(v) ![α]♦φ"M = !α"M ⊃ ♦!⟨α⟩φ"M

(vi) ![α]"φ"M = !α"M ⊃ "![α]φ"M .

The above facts ensure that the axioms introduced in Section 3 are indeed
sound w.r.t. our algebraic semantics for BPAL. Completeness can be proved
following the same strategy used for classical and intuitionistic PAL [13,
Theorem 22], i.e., reducing BPAL to the bilattice modal logic of [11] via the
interaction axioms.

Theorem 4.5. The calculus for BPAL is sound and complete with respect
to algebraic models.

Proof. Soundness of the preservation of facts and logical constants axioms
follow from Lemma 4.1. For the remaining axioms we only need to invoke
Lemma 4.3. The proof of completeness is similar to those for classical and
intuitionistic PAL [13, Theorem 22] and follows from the reducibility of
BPAL to the bilattice modal logic of [11] via reduction axioms. Let φ be
a valid BPAL formula. Consider some innermost occurrence of a dynamic
modality in φ. Hence, the subformula ψ having that occurrence labeling the
root of its generation tree has the form ⟨α⟩ψ′ for some formula ψ′ in the static
language. The distribution axioms make it possible to equivalently transform
ψ by pushing the dynamic modality down the generation tree, through the
static connectives, until it attaches to a proposition letter or to a constant
symbol. Here the dynamic modality disappears by applying the appropriate
‘preservation of facts’ or ‘interaction with constant’ axiom. The process is
repeated for all dynamic modalities of φ, so as to obtain a formula φ′ which
is provably equivalent to φ. Since φ is valid by assumption, and since the
process preserves provable equivalence, by soundness we can conclude that
φ′ is valid. By Theorem 1.2, we can conclude that φ′ is provable in bilattice
modal logic and thus in BPAL. This, together with the provable equivalence
of φ and φ′, concludes the proof.

As mentioned earlier, Kripke-style and algebraic semantics for bilattice
modal logic are related, and can indeed be proved to be equivalent via du-
ality. This can be generalized to the setting of BPAL, thus introducing
a relational semantics and a suitable notion of epistemic update on four-
valued Kripke models. Also, along the line of [13, Section 5], one may think
of applying the logic introduced in the present paper to a concrete example
of multi-agent reasoning in order to better appreciate the potentiality and
limits of our new formalism. We leave these as suggestions for future work.
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