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Abstract. The twist-structure construction is used to represent algebras related to
non-classical logics (e.g., Nelson algebras, bilattices) as a special kind of power of

better-known algebraic structures (distributive lattices, Heyting algebras). We study
a specific type of twist-structure (called implicative twist-structure) obtained as a

power of a generalized Boolean algebra, focusing on the implication-negation frag-

ment of the usual algebraic language of twist-structures. We prove that implicative
twist-structures form a variety which is semisimple, congruence-distributive, finitely

generated and has equationally definable principal congruences. We characterize the

congruences of each algebra in the variety in terms of the congruences of the asso-
ciated generalized Boolean algebra. We classify and axiomatize the subvarieties of

implicative twist-structures. We define a corresponding logic and prove that it is

algebraizable with respect to our variety.

1. Introduction

The twist-structure construction is a convenient way to represent algebras

related to non-classical logics as a special kind of power of some other algebraic

structure. The usefulness of this representation lies mainly in the fact that it

allows us to investigate and solve logical, topological and algebraic problems

concerning relatively esoteric classes of algebras by using results on better-

known structures, such as Heyting or Boolean algebras.

For instance, it is well-known that Nelson lattices, the algebraic counterpart

of Nelson logic [24], can be represented as twist-structures over (i.e., special

powers of) Heyting algebras [33, 31]. The more recent [25] generalizes the

result on Nelson lattices obtaining a twist-structure representation for N4-

lattices, the algebraic semantics of the paraconsistent version of Nelson logic

[2]. The twist-structure construction has also been applied to the study of
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residuated lattices [32, 11, 12] and of algebras used as semantics for modal

paraconsistent logics [27, 26, 30, 28, 20].

In [7, 19] extensions of the twist-structure construction have been used to

obtain a convenient representation for several classes of bilattices: algebras

originally introduced in computer science to unify a variety of inference sys-

tems, which turned out to have an independent interest both from a logical

and an algebraic point of view [22, 23, 29, 8, 7].

The present work introduces and studies a specific type of twist-structure

construction and the corresponding logic, restricting our attention to a reduced

subset of the usual algebraic language of twist-structures, corresponding, on a

logical level, to negation and implication. We try to show that the structures

thus constructed have an independent interest, both from a logical and a purely

algebraic point of view, showing that most of the known results on general

twist-structures can be obtained even when working within such a reduced

fragment of the language.

Some of the results of the present paper can also be found, although in a

slightly different guise, in the dissertation [29]. It is proved there that the

bilattice logic of Arieli and Avron [3] is algebraizable (in the sense of [5]) with

respect to a variety of algebras introduced in [29] under the name of implica-

tive bilattices. The implicative twist-structures that we are going to define

in the next section correspond, on a logical level, to the negation-implication

fragment of the Arieli-Avron logic and, on an algebraic level, to the negation-

implication subreducts of implicative bilattices.

The paper is organized as follows.

In Section 2 we introduce the concrete construction that allows us to build

what we call an implicative twist-structure as a special power of a distributive

lattice satisfying certain additional properties (a classical implicative lattice).

We consider some especially interesting examples of algebras obtained through

this construction and fix the notation that will be used throughout the paper.

In Section 3 we introduce through an equational presentation an abstract

class of algebras, called I-algebras, and we prove (Theorem 3.8) that these

correspond precisely to the implicative twist-structures of Section 2. We end

the section with a brief discussion of a problem that is still open: namely,

whether the representation given by Theorem 3.8 can be improved to obtain

a characterization result similar to the ones that are known for Nelson and

N4-lattices.

Section 4 studies the variety of I-algebras from the point of view of uni-

versal algebra. The main result (Theorem 4.7) is a characterization of the

congruences of each algebra in the variety in terms of the congruences of its

associated classical implicative lattice. This allows us to prove that I-algebras

form an arithmetical variety that is generated by a single finite algebra. We

also use the main result to axiomatize the subvarieties of I-algebras, showing
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that for some of them it is actually possible to improve the representation re-

sult of Theorem 3.8 as indicated above. We end the section by mentioning the

problem of classifying the subquasivarieties of I-algebras, which is still open.

In Section 5 we introduce a Hilbert-style calculus as a syntactic counterpart

of our algebraic structures. We prove that the logic defined by our calculus is

algebraizable (in the sense of [5]) with respect to the class of I-algebras and

give syntactic presentations for its axiomatic extensions, which correspond to

subvarieties of I-algebras.

In the concluding Section 6 we briefly discuss some topics that in our opinion

deserve further investigation.

2. The implicative twist-structure construction

By a classical implicative lattice we mean an algebra L = 〈L,u,t, \, 1〉 of

type 〈2, 2, 2, 0〉 such that 〈L,u,t, 1〉 is a lattice (whose order we denote by ≤)

with top element 1 that satisfies the following properties: for all x, y, z ∈ L,

x u y ≤ z if and only if y ≤ x\z, (R)

(x\y)\x = x. (P)

Property (R) is usually called residuation, while (P) is known in logical con-

texts as Peirce’s law.

The name “classical implicative lattices”, which can be found in [16], is

motivated by the fact that this class of algebras is the algebraic semantics of the

negation-free fragment of classical propositional logic. The name generalized

Boolean algebras [1] can also be found in the literature, as classical implicative

lattices coincide in fact with 0-free subreducts of Boolean algebras.

It is well-known [18] that (R) can be expressed by equations, therefore

classical implicative lattices form a variety. It is also easy to prove that (R)

implies that the lattice reduct 〈L,u,t〉 of any classical implicative lattice L

is distributive. Let us also note that the reduct 〈L, \, 1〉 forms what is known

as a Tarski algebra [34], which we will define formally in the next section. For

now let us just notice that any Tarski algebra is a join semilattice in which the

join t is given by

x t y = (x\y)\y

and that the semilattice order ≤ can be defined by

x ≤ y if and only if x\y = 1.

In the case of classical implicative lattices, this implies that the join t need

not be included in the set of primitive operations because it can be explicitly

defined as shown above. Likewise, the constant 1 can be omitted from the

signature because the following conditions hold in any classical implicative
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lattice (and in any Taski algebra):

x ≤ x\x x\x = y\y,

that is, one can simply define 1 := x\x.

We are now ready to introduce our construction.

Definition 2.1. Let L = 〈L,u,t, \, 1〉 be a classical implicative lattice. The

full implicative twist-structure over L is the algebra L./ = 〈L× L,⊃,¬〉 with

operations defined, for all 〈a1, a2〉 , 〈b1, b2〉 ∈ L× L, as follows:

〈a1, a2〉 ⊃ 〈b1, b2〉 := 〈a1\b1, a1 u b2〉,
¬ 〈a1, a2〉 := 〈a2, a1〉 .

An implicative twist-structure over L is a subalgebra A (with respect to the

language {⊃,¬}) of the full twist-structure L./ satisfying the property that

π1(A) = L, where π1(A) = {a1 ∈ L : 〈a1, a2〉 ∈ A for some a2 ∈ L}. We write

A ⊆ L./ to mean that A is a twist-structure over L.

Consistently with the logical interpretation of the algebraic operations of

N4-lattices (and also bilattices), we think of the ⊃ operation as an implication

and of ¬ as a negation. Notice that negation is involutive, i.e., ¬¬ = IdA.

The technical condition that π1(A) = L is meant to ensure that the relation

between an implicative twist-structure and its associated classical implicative

lattice is in some sense canonical (i.e., that A is somehow maximal inside

L./). This will become more clear later, when we will start with an abstractly-

defined class of algebras and will prove that they coincide with the implicative

twist-structures defined above. Notice also that, because of the presence of

negation, it holds that π1(A) = π2(A), where π2(A) = {a2 ∈ L : 〈a1, a2〉 ∈
A for some a1 ∈ L}.

As mentioned above, our implicative twist-structures can be seen as a special

case of the twist-structures of [25], the only differences being that (i) we admit

only two algebraic operations in the language (corresponding, on a logical

level, to implication and negation) and (ii) that we assume that the underlying

lattice satisfies Peirce’s law. Formally, this can be expressed by saying that

our implicative twist-structures coincide with the {⊃,¬}-subreducts of the

implicative bilattices of [29, 7, 9] and also with the {⊃,¬}-subreducts of the

subvariety of N4-lattices satisfying the following identity:

((x ⊃ y) ⊃ x) ⊃ x = x ⊃ x.

On any implicative twist-structure A ⊆ L./ it is possible to define several

(pre-)order relations by using the order ≤ of the associated lattice L. Following

the existing theory (and notation) of twist-structures, we focus our attention

on the pre-order � defined as follows: for all 〈a1, a2〉, 〈b1, b2〉 ∈ A ⊆ L× L,

〈a1, a2〉 � 〈b1, b2〉 if and only if a1 ≤ b1.
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Figure 1. Examples of implicative twist-structures

It is easy to check that � is in fact a pre-order and also that, for all a, b ∈ A,

the following holds:

a � b if and only if a ⊃ b = (a ⊃ b) ⊃ (a ⊃ b). (2.1)

It is also obvious that the following conditions are equivalent:

(i) a = b,

(ii) a � b, b � a, ¬a � ¬b and ¬b � ¬a.

Using � we can further define the following relations, which are readily seen

to be partial orders:

≤1 := {〈a, b〉 ∈ A×A : a � b and ¬b � ¬a},
≤2 := {〈a, b〉 ∈ A×A : a � b and ¬a � ¬b}.

Component-wise, we have that, for all 〈a1, a2〉, 〈b1, b2〉 ∈ L× L,

〈a1, a2〉 ≤1 〈b1, b2〉 iff a1 ≤ b1 and b2 ≤ a2,
〈a1, a2〉 ≤2 〈b1, b2〉 iff a1 ≤ b1 and a2 ≤ b2.

The minimum and maximum elements corresponding to ≤1 (which need not

belong to an arbitrary non-full implicative twist-structure) are then, respec-

tively, 〈0, 1〉 and 〈1, 0〉, where 0 and 1 denote the minimum and maximum

elements of L. Similarly, the minimum and maximum elements of ≤2 are

〈0, 0〉 and 〈1, 1〉. Notice that the negation operator is anti-monotonic w.r.t. ≤1

and monotonic w.r.t. ≤2. In fact, if our implicative twist-structure happens to

be (the reduct of) an N4-lattice, then ≤1 is its natural lattice order. Likewise,

if the implicative twist-structure is (the reduct of) an implicative bilattice in

the sense of [29], then ≤1 corresponds to the so-called truth order and ≤2 to

the so-called knowledge order of the bilattice.
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Figure 1 shows some interesting examples of implicative twist-structures

(the poset structure represented in the Hasse diagram is the one correspond-

ing to the ≤1 order defined above). The algebra A4 is the (full) implica-

tive twist-structure over the two-element classical implicative lattice L2 =

〈{0, 1},u,t, \, 1〉 which is the {u,t, \, 1}-reduct of the two-element Boolean

algebra. A4 has three non-trivial subalgebras, which we denote by A+
3 ,

A−3 and A2, corresponding to universes A+
3 = {〈1, 1〉, 〈1, 0〉, 〈0, 1〉}, A−3 =

{〈0, 0〉, 〈1, 0〉, 〈0, 1〉}, A2 = {〈1, 0〉, 〈0, 1〉}, and a trivial one having as universe

{〈1, 1〉}. Notice that, while the trivial subalgebra is in fact an implicative

twist-structure over the one-element classical implicative lattice, A+
3 , A−3 and

A2 are all implicative twist-structures over L2 because they meet the condition

that π1(A+
3 ) = π1(A−3 ) = π1(A2) = {0, 1}. As we will see in a later section,

A4, A+
3 and A−3 play an important role within the class of all implicative

twist-structures. Let us also note that A2 is isomorphic to the two-element

Boolean algebra (where the operation ⊃ is the Boolean implication and ¬ is

the Boolean complementation).

The algebra A9 is another example that will turn out to be especially in-

teresting for us. It is an implicative twist-structure over the four-element clas-

sical implicative lattice L4 = 〈{0, a, b, 1},u,t, \, 1〉 which is the {u,t, \, 1}-
reduct of the four-element Boolean algebra. Notice that the eight-element set

A9−{〈a, a〉} is the universe of a subalgebra of A9, which we will denote by A8.

It is easy to check that A8 is generated inside (L4)./ by the set {〈1, a〉, 〈a, 0〉}.
Notice also that in all the above-mentioned examples except A8, the partial

order ≤1 is in fact a lattice order, i.e., any finite set has a least upper bound

and a greatest lower bound. This is not true in A8 because for instance 〈1, a〉
and 〈a, 0〉 do not have a greatest lower bound (which is precisely 〈a, a〉 in A9).

On the other hand, in the above examples the partial order ≤2 never forms a

lattice except in A4.

Let us introduce some more abbreviations that will be convenient. Given

an implicative twist-structure A ⊆ L./ and elements a, b ∈ A, we define

a ∗ b := ¬(a ⊃ ¬b),
a→ b := (a ⊃ b) ∗ (¬b ⊃ ¬a),

a↔ b := (a→ b) ∗ (b→ a).

Viewing the elements of A as pairs 〈a1, a2〉, 〈b1, b2〉 ∈ L× L and applying the

definitions, we have that

〈a1, a2〉 ∗ 〈b1, b2〉 = 〈a1 u b1, a1\b2〉.

From our point of view the key feature of the above-defined operation is that

it allows us to recover the meet of the underlying lattice, if only in the first

component. For instance, it is easy to check that the condition that a1 = 1

can be expressed as follows:

〈a1, a2〉 = 〈a1, a2〉 ⊃ 〈a1, a2〉.
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This is so because, applying the definitions, we have that

〈a1, a2〉 ⊃ 〈a1, a2〉 = 〈a1\a1, a1 u a2〉 = 〈1, a1 u a2〉.

Now, if we want to express the two conditions that a1 = 1 and b1 = 1 together

using only one equation, we can do it as follows:

〈a1, a2〉 ∗ 〈b1, b2〉 = (〈a1, a2〉 ∗ 〈b1, b2〉) ⊃ (〈a1, a2〉 ∗ 〈b1, b2〉).

For analogous reasons we are mainly interested in the behaviour of the oper-

ations → and ↔ in the first component of each pair. According to the above

definitions, these are, for all 〈a1, a2〉, 〈b1, b2〉 ∈ L× L,

π1(〈a1, a2〉 → 〈b1, b2〉) = (a1\b1) u (b2\a2),

π1(〈a1, a2〉 ↔ 〈b1, b2〉) = (a1\b1) u (b2\a2) u (b1\a1) u (a2\b2).

We see then that, for all a, b ∈ A, the following equivalences hold:

a ≤1 b if and only if a→ b = (a→ b) ⊃ (a→ b)

and

a = b if and only if a↔ b = (a↔ b) ⊃ (a↔ b).

The above properties suggest that, from a logical point of view, the operation

→ behaves somehow like an implication connective (alternative to the other

implication ⊃) and that ↔ behaves like an equivalence connective.

We end the section by showing how, given an implicative twist-structure

A ⊆ L./, it is possible to recover the underlying classical implicative lattice

L. This will give us hints on how to proceed in order to obtain an abstract

characterization of implicative twist-structures.

From the pre-order� introduced above we can define an equivalence relation

in the usual way: for all a, b ∈ A,

a ≡ b if and only if a � b and b � a.

On ordered pairs 〈a1, a2〉, 〈b1, b2〉 ∈ L× L, we see that

〈a1, a2〉 ≡ 〈b1, b2〉 if and only if a1 = b1.

It is therefore easy to check that the relation ≡ is compatible with the op-

erations ⊃ and ∗ but it is not compatible with any other operation of the

implicative twist-structure. We can thus consider the quotient 〈A/≡, ∗,⊃〉.
We note that 〈A/≡, ∗〉 is a meet semilattice and that 〈∗,⊃〉 form a residuated

pair in A/≡. Moreover, 〈A/≡,⊃〉 is a Tarski algebra whose maximum element

1 is given by the equivalence class of a ⊃ a for any a ∈ A. As mentioned

before, this implies that we can define a join operation on A/≡ as follows: for

all equivalence classes [a], [b] ∈ A/≡,

[a] t [b] = ([a] ⊃ [b]) ⊃ [b].

Putting all these observations together, one can check that the order associ-

ated with the meet semilattice 〈A/≡, ∗〉 and the one associated with the join

semilattice 〈A/≡,t〉 are actually the same, i.e., 〈A/≡, ∗,t,⊃, 1〉 is indeed a
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classical implicative lattice which is isomorphic to L. As we will see in the

next section, the important point is that the construction sketched above can

be carried out even if we start from an abstract definition of implicative twist-

structures, as long as we impose certain (equational) properties on the class of

algebras we are defining (for instance, that the relation � defined as in (2.1)

be a pre-order, etc.).

3. Abstract twist-structures

We are now going to introduce a variety of algebras that will be proven to

correspond precisely to the implicative twist-structures defined in the previous

section. We will be working with algebras A = 〈A,⊃,¬〉 of type 〈2, 1〉 and will

adopt the same abbreviations used in the previous section, that is, we define,

for all a, b ∈ A,

a ∗ b := ¬(a ⊃ ¬b),
a→ b := (a ⊃ b) ∗ (¬b ⊃ ¬a),

a↔ b := (a→ b) ∗ (b→ a),

a � b ⇔ a ⊃ b = (a ⊃ b) ⊃ (a ⊃ b),
a ≡ b ⇔ a � b and b � a.

Let us also introduce the following abbreviation: for any element a ∈ A, we

write E(a) as a shorthand for a = a ⊃ a and we let

E(A) := {a ∈ A : a = a ⊃ a}.

Using this notation, we have that a � b if and only if E(a ⊃ b) if and only if

a ⊃ b ∈ E(A).

We are now ready to introduce our definition of abstract implicative twist-

structures.

Definition 3.1. An I-algebra is an algebra A = 〈A,⊃,¬〉 satisfying the

following equations:

(x ⊃ x) ⊃ y = y, (I1)

x ⊃ (y ⊃ z) = (x ⊃ y) ⊃ (x ⊃ z) = y ⊃ (x ⊃ z), (I2)

((x ⊃ y) ⊃ x) ⊃ x = x ⊃ x, (I3)

x ⊃ (y ⊃ z) = (x ∗ y) ⊃ z, (I4)

¬¬x = x, (I5)

(x↔ y) ⊃ x = (x↔ y) ⊃ y. (I6)

We denote by I-Alg the variety of I-algebras.

We should point out that the name I-algebra has already been used in

the literature (for instance in [17] and, in a different sense yet, in [21]); these

algebraic structures are not related to ours.
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Let us first check that the proposed axiomatization is sound, in the sense

that the implicative twist-structures defined in the previous section actually

satisfy the above axioms. The following known properties of classical implica-

tive lattices will be useful (Cf. [29, Proposition 5.1.1]).

Proposition 3.2. In a classical implicative lattice L = 〈L,u,t, \, 1〉, for all

a, b, c ∈ L:

(i) a\a = 1

(ii) 1\a = a

(iii) a\(b\c) = (a\b)\(a\c) = (a u b)\c
(iv) a u (a\b) = a u b
(v) (a\b)\a = a

(vi) ((a\b) u (b\a))\a = ((a\b) u (b\a))\b
(vii) a t (a\b) = 1

(viii) a u (b\a) = a

(ix) a\(b u c) = (a\b) u (a\c).

Proposition 3.3. Any implicative twist-structure is an I-algebra.

Proof. We are going to check that (I1) to (I6) are satisfied by any twist-

structure A ⊆ L./, where L = 〈L,u,t, \, 1〉. Let a1, a2, b1, b2, c1, c2 ∈ L.

(I1) Applying the definitions, we have that

(〈a1, a2〉 ⊃ 〈a1, a2〉) ⊃ 〈b1, b2〉 = 〈(a1\a1)\b1, (a1\a1) u b2〉
= 〈1\b1, 1 u b2〉 by Prop. 3.2 (i)

= 〈b1, b2〉 by Prop. 3.2 (ii).

(I2) Let us first prove that x ⊃ (y ⊃ z) = y ⊃ (x ⊃ z) holds:

〈a1, a2〉 ⊃ (〈b1, b2〉 ⊃ 〈c1, c2〉)
= 〈a1\(b1\c1), a1 u b1 u c2〉
= 〈b1\(a1\c1), b1 u a1 u c2〉 by Prop. 3.2 (iii)

= 〈b1, b2〉 ⊃ (〈a1, a2〉 ⊃ 〈c1, c2〉).

As to the remaining equation, applying Proposition 3.2 (iii) and (iv), we have:

(〈a1, a2〉 ⊃ 〈b1, b2〉) ⊃ (〈a1, a2〉 ⊃ 〈c1, c2〉)
= 〈(a1\b1)\(a1\c1), (a1\b1) u a1 u c2〉
= 〈a1\(b1\c1), a1 u b1 u c2〉.

(I3) We have that

((〈a1, a2〉 ⊃ 〈b1, b2〉) ⊃ 〈a1, a2〉) ⊃ 〈a1, a2〉
= 〈((a1\b1)\a1)\a1, ((a1\b1)\a1) u a2〉
= 〈a1\a1, a1 u a2〉 by Prop. 3.2 (v)

= 〈a1, a2〉 ⊃ 〈a1, a2〉.
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(I4). We have that

〈a1, a2〉 ⊃ (〈b1, b2〉 ⊃ 〈c1, c2〉)
= 〈a1\(b1\c1), a1 u b1 u c2〉
= 〈(a1 u b1)\c1, a1 u b1 u c2〉 by Prop. 3.2 (iii)

= (〈a1, a2〉 ∗ 〈b1, b2〉) ⊃ 〈c1, c2〉.

(I5) Immediate.

(I6) We need to check that

(〈a1, a2〉 ↔ 〈b1, b2〉) ⊃ 〈a1, a2〉 = (〈a1, a2〉 ↔ 〈b1, b2〉) ⊃ 〈b1, b2〉.

According to our definitions, we have that the first component of 〈a1, a2〉 ↔
〈b1, b2〉 is (a1\b1) u (b2\a2) u (b1\a1) u (a2\b2). Therefore we need to check

that

((a1\b1) u (b2\a2) u (b1\a1) u (a2\b2))\a1
= ((a1\b1) u (b2\a2) u (b1\a1) u (a2\b2))\b1

and

(a1\b1) u (b2\a2) u (b1\a1) u (a2\b2) u a2
= (a1\b1) u (b2\a2) u (b1\a1) u (a2\b2) u b2.

As to the former equality, we have that

((a1\b1) u (b2\a2) u (b1\a1) u (a2\b2))\a1
= ((a2\b2) u (b2\a2))\(((a1\b1) u (b1\a1))\a1) by Prop. 3.2 (iii)

= ((a2\b2) u (b2\a2))\(((a1\b1) u (b1\a1))\b1) by Prop. 3.2 (vi)

= ((a1\b1) u (b2\a2) u (b1\a1) u (a2\b2))\b1 by Prop. 3.2 (iii).

As to the latter, we have

(a1\b1) u (b2\a2) u (b1\a1) u (a2\b2) u a2
= (a1\b1) u (b1\a1) u a2 u b2 by Prop. 3.2 (iv)

= (a1\b1) u (b2\a2) u (b1\a1) u (a2\b2) u b2 by Prop. 3.2 (iv). �

We now turn to the issue of proving the converse of Proposition 3.3, i.e.,

that any I-algebra can be represented as a twist-structure. The first step

is to check that the relation ≡ is an equivalence relation which is moreover

compatible with the operations {⊃, ∗}. For this we will need some lemmas.

Let us start by stating some facts that follow immediately from Definition

3.1. First of all, notice that the set E(A) can be alternatively defined as

follows:

E(A) := {a ⊃ a : a ∈ A}.
This is so because, if a = a ⊃ a, then obviously the element a satisfies the

above condition. On the other hand, if a = b ⊃ b for some other b ∈ A, then

by (I1) we have a ⊃ a = (b ⊃ b) ⊃ (b ⊃ b) = b ⊃ b = a.

Lemma 3.4. Let A be an I-algebra and a, b, c, d ∈ A. Then,
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(i) a ≡ b if and only if a ⊃ e = b ⊃ e for all e ∈ A,

(ii) if a ≡ b and c ≡ d, then (a ⊃ c) ≡ (b ⊃ d) and (a ∗ c) ≡ (b ∗ d).

Proof. (i) Assume a ⊃ b = (a ⊃ b) ⊃ (a ⊃ b) and b ⊃ a = (b ⊃ a) ⊃ (b ⊃ a).

Let e ∈ A. Then,

a ⊃ e = (a ⊃ b) ⊃ (a ⊃ e) by hyp. and (I1)

= a ⊃ (b ⊃ e) by (I2)

= b ⊃ (a ⊃ e) by (I2)

= (b ⊃ a) ⊃ (b ⊃ e) by (I2)

= b ⊃ e by hyp. and (I1).

Conversely, assume a ⊃ e = b ⊃ e for all e ∈ A. Then,

a ⊃ b = b ⊃ b by hypothesis

= (b ⊃ b) ⊃ (b ⊃ b) by (I1)

= (a ⊃ b) ⊃ (a ⊃ b) by hypothesis.

By symmetry, we obtain b ⊃ a = (b ⊃ a) ⊃ (b ⊃ a).

(ii) Assume a ≡ b and c ≡ d. Then, by (i), we have that a ⊃ e = b ⊃ e and

c ⊃ e = d ⊃ e for any element e ∈ A. Thus,

(a ⊃ c) ⊃ (b ⊃ d) = (a ⊃ c) ⊃ (a ⊃ d) by hypothesis

= a ⊃ (c ⊃ d) by (I2)

= a ⊃ (d ⊃ d) by hypothesis

= (a ⊃ d) ⊃ (a ⊃ d) by (I2).

This means that (a ⊃ c) � (b ⊃ d) as desired. A symmetrical reasoning shows

that (b ⊃ d) � (a ⊃ c) as well. So we conclude that (a ⊃ c) ≡ (b ⊃ d). In

order to prove that (a ∗ c) ≡ (b ∗ d), just observe that, for any element e ∈ A,

we have that

(a ∗ c) ⊃ e = a ⊃ (c ⊃ e) by (I4)

= b ⊃ (c ⊃ e) by hypothesis

= b ⊃ (d ⊃ e) by hypothesis

= (b ∗ d) ⊃ e by (I4).

Then, applying (i) again we obtain the desired result. �

Proposition 3.5. For any I-algebra A, the relation ≡ defined as above is an

equivalence relation which is moreover compatible with the operations ∗ and ⊃.

Proof. It is easy to check that ≡ is an equivalence relation. In fact, a ≡ a

holds because a ⊃ a = (a ⊃ a) ⊃ (a ⊃ a) is an instance of (I1). Symmetry

of ≡ follows immediately from the definition, while transitivity follows from

Lemma 3.4 (i). Finally, compatibility with the operations ∗ and ⊃ has been

established in Lemma 3.4 (ii). �
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Next we prove that the quotient algebra 〈A/≡,⊃〉 is a Tarski algebra. Let

us recall the definition: a Tarski algebra [34] is an algebra 〈B,⊃〉 of type 〈2〉
satisfying the following equations:

(T1) (x ⊃ y) ⊃ x = x,

(T2) x ⊃ (y ⊃ z) = y ⊃ (x ⊃ z),
(T3) (x ⊃ y) ⊃ y = (y ⊃ x) ⊃ x.

Tarski algebras obviously form a variety. Given that the equation x ⊃ x = y ⊃
y is valid in this variety, a constant 1 := x ⊃ x can be added to the algebraic

language without loss of generality.

Proposition 3.6. For any I-algebra A, the quotient algebra 〈A/≡,⊃〉 is a

Tarski algebra.

Proof. We have to check that A/≡ satisfies equations (T1) to (T3).

(T1) Let a, b ∈ A and let [a], [b] ∈ A/≡ be the corresponding equivalence

classes. We need to prove that [(a ⊃ b) ⊃ a] = [a]. This amounts to proving

that (a ⊃ b) ⊃ a � a and a � (a ⊃ b) ⊃ a. The former is an immediate

consequence of (I1) and (I3). As to the latter, applying (I2) we have that

a ⊃ ((a ⊃ b) ⊃ a) = (a ⊃ b) ⊃ (a ⊃ a)

= ((a ⊃ b) ⊃ a) ⊃ ((a ⊃ b) ⊃ a)

which means that a ⊃ ((a ⊃ b) ⊃ a) ∈ E(A), i.e., a � (a ⊃ b) ⊃ a.

(T2) Follows immediately from (I2).

(T3) Let us first notice that

(a ⊃ b) ⊃ ((b ⊃ a) ⊃ b) � (b ⊃ a) ⊃ ((a ⊃ b) ⊃ a).

This holds because, applying repeatedly (I2), we have that

((a ⊃ b) ⊃ ((b ⊃ a) ⊃ b)) ⊃ ((b ⊃ a) ⊃ ((a ⊃ b) ⊃ a))

= ((a ⊃ b) ⊃ ((b ⊃ a) ⊃ b)) ⊃ ((a ⊃ b) ⊃ ((b ⊃ a) ⊃ a))

= (a ⊃ b) ⊃ (((b ⊃ a) ⊃ b)) ⊃ ((b ⊃ a) ⊃ a)))

= (a ⊃ b) ⊃ ((b ⊃ a) ⊃ (b ⊃ a))

= ((a ⊃ b) ⊃ (b ⊃ a)) ⊃ ((a ⊃ b) ⊃ (b ⊃ a)).

By symmetry, it follows that

(b ⊃ a) ⊃ ((a ⊃ b) ⊃ a) � (a ⊃ b) ⊃ ((b ⊃ a) ⊃ b)

i.e.,

[(a ⊃ b) ⊃ ((b ⊃ a) ⊃ b)] = [(b ⊃ a) ⊃ ((a ⊃ b) ⊃ a)].

Now, having already proved that (T1) holds, we can use it as follows:

[(a ⊃ b) ⊃ ((b ⊃ a) ⊃ b)] = [a ⊃ b] ⊃ [(b ⊃ a) ⊃ b]
= [a ⊃ b] ⊃ [b] by (T1)

= [(a ⊃ b) ⊃ b].
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Symmetrically, we have that [(b ⊃ a) ⊃ ((a ⊃ b) ⊃ a)] = [(b ⊃ a) ⊃ a] and

this immediately implies the desired result. �

By the previous proposition, to any I-algebra A we can associate the alge-

bra L(A) = 〈A/≡, ∗,t,⊃, 1〉 whose operations are defined, for all equivalence

classes [a], [b] ∈ A/≡ corresponding to elements a, b ∈ A, as follows:

[a] ∗ [b] := [a ∗ b]
[a] ⊃ [b] := [a ⊃ b]
[a] t [b] := ([a] ⊃ [b]) ⊃ [b] = [(a ⊃ b) ⊃ b]

1 := [a ⊃ a].

We also know that 〈A/≡,t, 1〉 is a join semilattice whose order ≤ is defined

by [a] ≤ [b] if and only if [a] ⊃ [b] = 1 (notice that this condition is equivalent

to a � b). It remains to show that the ∗ operation is actually the meet

corresponding to ≤ and that the pair 〈∗,⊃〉 satisfies the residuation property

(R).

Proposition 3.7. For any I-algebra A, the algebra L(A) is a classical im-

plicative lattice.

Proof. As mentioned above, we have to prove that, for all [a], [b] ∈ A/≡
corresponding to elements a, b ∈ A, it holds that [a] ≤ [b] if and only if

[a] ∗ [b] = [a]. Assume then that [a] ≤ [b], i.e., a � b. We need to prove that

a ∗ b � a and a � a ∗ b. The first one holds in general, for we have that

(a ∗ b) ⊃ a = a ⊃ (b ⊃ a) by (I4)

= b ⊃ (a ⊃ a) by (I2)

= (b ⊃ a) ⊃ (b ⊃ a) by (I2).

As to the second, using the fact that a � b, we have that

a ⊃ (a ∗ b) = (a ⊃ b) ⊃ (a ⊃ (a ∗ b)) by (I1)

= a ⊃ (b ⊃ (a ∗ b)) by (I2)

= (a ∗ b) ⊃ (a ∗ b) by (I4).

Conversely, assume a ∗ b � a and a � a ∗ b. Reasoning as above, we can show

that a ∗ b � b holds in general:

(a ∗ b) ⊃ b = a ⊃ (b ⊃ b) by (I4)

= (a ⊃ b) ⊃ (a ⊃ b) by (I2).

Then we have that a � a ∗ b � b, so the result follows by transitivity of �.

Finally, the residuation properly (R) is easily proved, because we have that,

for all a, b, c ∈ A,

a ∗ b � c iff a � b ⊃ c by (I4)

iff b � a ⊃ c by (I2). �
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Our next aim is to prove that any I-algebra A is isomorphic to an implica-

tive twist-structure over L(A). In order to do this, we are going to show that

A can be embedded into the full implicative twist-structure (L(A))./ through

the map ι : A→ A/≡ ×A/≡ defined as

ι(a) := 〈[a], [¬a]〉, (3.1)

where [a] denotes the equivalence class modulo ≡ of a ∈ A.

Theorem 3.8. Let A be an I-algebra. Then:

(i) the map ι : A → A/≡ ×A/≡ defined in (3.1) is an embedding of A into

the full implicative twist-structure (L(A))./,

(ii) π1(ι(A)) = A/≡, so A is isomorphic to an implicative twist-structure

over L(A).

Proof. (i) To check that ι is injective, assume ι(a) = ι(b) for some a, b ∈ A.

That is, [a] = [b] and [¬a] = [¬b], with means that

a ⊃ b, b ⊃ a, ¬a ⊃ ¬b, ¬b ⊃ ¬a ∈ E(A).

This implies that a→ b ∈ E(A) because we have that

a→ b = (a ⊃ b) ∗ (¬b ⊃ ¬a)

= ¬((a ⊃ b) ⊃ ¬(¬b ⊃ ¬a))

= ¬¬(¬b ⊃ ¬a) by assumptions and (I1)

= ¬b ⊃ ¬a by (I5).

The same reasoning shows that b → a ∈ E(A), which implies that a ↔ b ∈
E(A) because

(a→ b) ∗ (b→ a) = ¬((a→ b) ⊃ ¬(b→ a))

= ¬¬(b→ a) by assumptions and (I1)

= b→ a ∈ E(A) by (I5).

Then, by (I1) and (I6), we have that

a = (a↔ b) ⊃ a = (a↔ b) ⊃ b = b.

Thus, ι is injective. It is also clear that ι(¬a) = ¬ι(a) for all a ∈ A. It remains

to check that ι(a ⊃ b) = ι(a) ⊃ ι(b). We have that

ι(a ⊃ b) = 〈[a ⊃ b], [¬(a ⊃ b)]〉
= 〈[a ⊃ b], [¬(a ⊃ ¬¬b)]〉 by (I5)

= 〈[a ⊃ b], [a ∗ ¬b]〉
= 〈[a] ⊃ [b], [a] ∗ [¬b]〉
= 〈[a], [¬a]〉 ⊃ 〈[b], [¬b]〉
= ι(a) ⊃ ι(b).

(ii) Obvious, because A/≡ is obtained as a quotient from A. �



Vol. 00, XX Implicative twist-structures 15

Theorem 3.8 tells us that I-algebras coincide, up to isomorphism, with the

implicative twist-structures introduced in Section 2. We know therefore that

we can view any I-algebra A as a subalgebra of the full implicative twist-

structure (L(A))./ and from now on we will often make use of this result.

Let us start with a simple application. As mentioned in the previous section,

any full twist-structure L./ has four natural bounds corresponding to the two

partial orders ≤1 and ≤2. Adopting the notation used for bilattices in [29, 9, 7],

let us denote:

f := 〈0, 1〉, t := 〈1, 0〉,
⊥ := 〈0, 0〉, > := 〈1, 1〉.

Using the representation given in Theorem 3.8, it is easy to check that an

I-algebra can have either just one of the above bounds (in which case it needs

to be >) or two (f, t), three (f, t,⊥ or f, t,>), or all four. If we want to add

any of these as constants to the algebraic language of I-algebras, it is sufficient

to expand the axiomatization of Definition 3.1 with the appropriate equations

shown below:

(>) > = ¬> and > ⊃ x = x,

(⊥) ⊥ = ¬⊥ and ⊥ ⊃ x = ⊥ ⊃ ⊥,
(t) x ⊃ t = t,

(f) f = ¬ t.

A natural question to ask is whether it is possible to characterize precisely

the subsets of a given full implicative twist-structure L./ that are universes

of implicative twist-structures over L. The corresponding problem for N4-

lattices has been solved in [25, Theorem 3.1], but in our case we only know of

a sufficient condition, as we are going to see.

Let us start by observing that, if A,B ⊆ L×L are universes of implicative

twist-structures A,B ⊆ L./, then A ∪B is also the universe of an implicative

twist-structure over L. To see this, notice that A ∪ B is obviously closed

under the ¬ operation. Moreover, if 〈a1, a2〉 ∈ A and 〈b1, b2〉 ∈ B, then

〈a1, a2〉 ⊃ 〈b1, b2〉 ∈ B. This holds because π1(B) = L, therefore there must

be some c ∈ L such that 〈a1, c〉 ∈ B and we have that

〈a1, a2〉 ⊃ 〈b1, b2〉 = 〈a1\b1, a1 u b2〉 = 〈a1, c〉 ⊃ 〈b1, b2〉 ∈ B.

Thus, A∪B is closed under ⊃ as well and obviously π1(A∪B) = L, i.e., A∪B
is in fact the universe of an implicative twist-structure over L. This reasoning

obviously extends to arbitrary unions of subsets Ai ⊆ L× L corresponding to

implicative twist-structures Ai ⊆ L./.

It is easy to check that a sufficient condition for a subset of L×L to be the

universe of an implicative twist-structure is the following (Cf. [25, Proposition

3.3]). Let U,D ⊆ L be, respectively, a non-empty up-set and a non-empty

down-set with respect to the lattice order of the classical implicative lattice L.
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Then the set

A := {〈a1, a2〉 ∈ L× L : a1 t a2 ∈ U, a1 u a2 ∈ D} (3.2)

is the universe of an implicative twist-structure. Let us check that A is closed

under the algebraic operations. The case of ¬ is immediate. Let us then assume

that 〈a1, a2〉, 〈b1, b2〉 ∈ A and check that 〈a1, a2〉 ⊃ 〈b1, b2〉 = 〈a1\b1, a1u b2〉 ∈
A. This amounts to proving that (a1\b1)t(a1ub2) ∈ U and (a1\b1)ua1ub2 ∈
D. As to the former, we have that

(a1\b1) t (a1 u b2) = ((a1\b1) t a1) u ((a1\b1) t b2) by distributivity

= 1 u ((a1\b1) t b2) by Prop. 3.2 (vii)

= (a1\b1) t b2
≥ b1 t b2 by Prop. 3.2 (viii).

By assumption, b1 t b2 ∈ U and U is an up-set, so we are done. As to the

latter, applying by Proposition 3.2 (iv), we have

(a1\b1) u a1 u b2 = a1 u b1 u b2 ≤ b1 u b2.

Again, by assumption, b1 u b2 ∈ D and D is a down-set, so we are done. A

is then the universe of an implicative twist-structure. In general, it might

happen that π1(A) ( L, but it is easy to prove that π1(A) is the universe of a

subalgebra of L, which means that A is the universe of an implicative twist-

structure over some classical implicative lattice having as universe π1(A).

Conversely, given an arbitrary implicative twist-structure A ⊆ L./, we can

define

U(A) := {a1 t a2 : 〈a1, a2〉 ∈ A},
D(A) := {a1 u a2 : 〈a1, a2〉 ∈ A}.

It is easy to check that U(A) is an up-set and D(A) is a down-set of L. In

fact, suppose a ∈ U(A), i.e., a = a1 t a2 for some 〈a1, a2〉 ∈ A, and a ≤ b for

some b ∈ L. Since π1(A) = π2(A) = L, we may assume that there is c ∈ L
such that 〈b, c〉 ∈ A. Then we have that

(〈b, c〉 ⊃ 〈a1, a2〉) ⊃ 〈a1, a2〉 = 〈b t a1, (b\a1) u a2〉
= 〈b, (b\a1) u a2〉.

By assumption b ≥ a2, so bt ((b\a1)ua2) = b and we conclude that b ∈ U(A).

A similar reasoning shows that D(A) is a down-set. Given a = a1ua2 ∈ D(A)

for some 〈a1, a2〉 ∈ A and b ≤ a, we consider 〈b, c〉 ∈ A and check that

〈b, c〉 ⊃ 〈a1, a2〉 = 〈b\a1, b u a2〉 = 〈1, b〉 ∈ A.

Since 1 u b = b, we conclude that b ∈ D(A).
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Let us further notice that in any implicative twist-structure A it holds that,

for all 〈a1, a2〉 ∈ A,

(〈a1, a2〉 ⊃ ¬〈a1, a2〉) ⊃ ¬〈a1, a2〉 = (〈a1, a2〉 ⊃ 〈a2, a1〉) ⊃ 〈a2, a1〉
= 〈a1\a2, a1〉 ⊃ 〈a2, a1〉
= 〈(a1\a2)\a2, (a1\a2) u a1〉
= 〈a1 t a2, a1 u a2〉.

This means that, defining

I(A) := {(〈a1, a2〉 ⊃ ¬〈a1, a2〉) ⊃ ¬〈a1, a2〉 : 〈a1, a2〉 ∈ A}

we have

I(A) = {〈a1 t a2, a1 u a2〉 : 〈a1, a2〉 ∈ A},
which means that π1(I(A)) = U(A) and π2(I(A)) = D(A). It is also easy to

check that

I(A) = {〈a1, a2〉 ∈ A : a1 ≥ a2}.
Thus, given an arbitrary implicative twist-structure A ⊆ L./, we can con-

struct the up-set U(A) ⊆ L and the down-set D(A) ⊆ L and then apply (3.2)

to define

A′ := {〈a1, a2〉 ∈ L× L : a1 t a2 ∈ U(A), a1 u a2 ∈ D(A)}. (3.3)

It is easy to see that A ⊆ A′. If we could prove that A′ ⊆ A, then we would

have shown that any implicative twist-structure can be constructed in this way.

As mentioned above, this is false in general, as it can happen that A ( A′. For

a counterexample, consider the implicative twist-structure A8 ⊆ L4
./ shown

in Figure 1. The universe of A8 is

A8 = {〈1, a〉, 〈a, 0〉, 〈a, b〉, 〈1, 0〉, 〈a, 1〉, 〈0, a〉, 〈b, a〉, 〈0, 1〉}.

This means that U(A8) = {a, 1} and D(A8) = {0, a}. According to the

definition given in (3.2), we have that 〈a, a〉 ∈ A′8, but 〈a, a〉 /∈ A8. That is,

A8 ( A′8.

Drawing inspiration from this counterexample, we can try to refine the

construction of (3.2) as follows. Given a classical implicative lattice L, let

{〈Ui, Di〉 : i ∈ I} be a family of pairs such that Ui ⊆ L is an up-set and

Di ⊆ L is a down-set of L for each i ∈ I. Define

A :=
⋃
i∈I
{〈a1, a2〉 ∈ L× L : a1 t a2 ∈ Ui, a1 u a2 ∈ Di}. (3.4)

Notice that, consistently with the observation made above about the union

of universes of implicative twist-structures being itself the universe of an im-

plicative twist-structure, an arbitrary union of sets satisfying (3.4) will again

satisfy (3.4).

Let us check that A is closed under the algebraic operations of implica-

tive twist-structures. As before, the case of ¬ is trivial. Now assume that
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〈a1, a2〉, 〈b1, b2〉 ∈ A, i.e., a1 ta2 ∈ Uj , a1 ua2 ∈ Dj , b1 t b2 ∈ Uk, b1 u b2 ∈ Dk

for some j, k ∈ I. Repeating the reasoning applied before, we have that

(a1\b1) t (a1 u b2) = (a1\b1) t b2 ≥ b1 t b2 ∈ Uk
and

(a1\b1) u a1 u b2 = a1 u b1 u b2 ≤ b1 u b2 ∈ Dk

which implies that 〈a1, a2〉 ⊃ 〈b1, b2〉 ∈ A.

The implicative twist-structure A8 of our counterexample can actually be

obtained through the construction defined in (3.4) by taking the two pairs

U1 = {a, 1}, D1 = {0} and U2 = {1}, D2 = {a, 0}. The set A8 is obtained as

the union

{〈a, 0〉, 〈0, a〉, 〈a, b〉, 〈b, a〉, 〈0, 1〉, 〈1, 0〉}∪{〈a, 1〉, 〈1, a〉, 〈a, b〉, 〈b, a〉, 〈0, 1〉, 〈1, 0〉}

in which the first set corresponds to the pair 〈U1, D1〉 and the second one to

〈U2, D2〉. We see then that element 〈a, a〉 is ruled out as it does not satisfy the

condition for belonging to either of the above sets.

As mentioned before, although we have seen that (3.4) provides a way to

construct implicative twist-structures, the question whether all implicative

twist-structures can be obtained in this way is still open.

4. Universal algebraic properties

In this section we study the class of implicative twist-structures (the variety

of I-algebras) from a universal algebraic point of view. We start by looking

at congruences.

The first result we prove is that I-algebras have equationally definable prin-

ciple congruences. Recall that a variety of algebras is said to have equationally

definable principal congruences (abbreviated EDPC) if there is a finite set Σ

of equations of the form t(x, y, z, u) = t′(x, y, z, u) such that, for any algebra

A in the variety and for all elements a, b, c, d ∈ A, it holds that 〈c, d〉 ∈ Θ(a, b)

if and only if t(a, b, c, d) = t′(a, b, c, d) for all equations in Σ. EDPC is a

rather strong property: in particular it implies congruence-distributivity and

the congruence extension property [4, Theorem 1.2].

Lemma 4.1. Let A be an I-algebra and a, b, c, d, e ∈ A. Then:

(i) if a ⊃ b = a ⊃ c, then a ⊃ ¬b = a ⊃ ¬c,
(ii) if a ⊃ b = a ⊃ c and a ⊃ d = a ⊃ e, then a ⊃ (b ⊃ d) = a ⊃ (c ⊃ e).

Proof. (i) We view our I-algebra as an implicative twist-structure A ⊆ L./

whose elements are pairs a = 〈a1, a2〉, b = 〈b1, b2〉 etc. Our assumption is then

that 〈a1, a2〉 ⊃ 〈b1, b2〉 = 〈a1, a2〉 ⊃ 〈c1, c2〉, which means that a1\b1 = a1\c1
and a1 u b2 = a1 u c2. From the former equality we obtain a1 u (a1\b1) =

a1 u (a1\c1). By Proposition 3.2 (iv), we have a1 u (a1\b1) = a1 u b1 and

a1 u (a1\c1) = a1 u c1. Hence, a1 u b1 = a1 u c1. From a1 u b2 = a1 u c2
we obtain a1\(a1 u b2) = a1\(a1 u c2). Applying Proposition 3.2 (ix), we have
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a1\(a1ub2) = (a1\a1)u(a1\b2) = a1\b2 and a1\(a1uc2) = (a1\a1)u(a1\c2) =

a1\c2. Hence, a1\b2 = a1\c2. These together mean that, as desired,

〈a1, a2〉 ⊃ ¬〈b1, b2〉 = 〈a1\b2, a1 u b1〉 = 〈a1\c2, a1 u c1〉 = 〈a1, a2〉 ⊃ ¬〈c1, c2〉.

(ii) Straightforward, given that

a ⊃ (b ⊃ d) = (a ⊃ b) ⊃ (a ⊃ d) by (I2)

= (a ⊃ c) ⊃ (a ⊃ e) by assumptions

= a ⊃ (c ⊃ e) by (I2). �

Theorem 4.2. The variety of I-algebras has EDPC.

Proof. Given an I-algebra A and a, b ∈ A, let us denote by Θ(a, b) the con-

gruence generated by the pair 〈a, b〉. Define

θ := {〈c, d〉 ∈ A×A : (a↔ b) ⊃ c = (a↔ b) ⊃ d}.

We will prove that θ = Θ(a, b). Clearly θ is an equivalence relation and, by

(I6), we have that 〈a, b〉 ∈ θ. Lemma 4.1 implies that θ is a congruence of A.

Hence we have that Θ(a, b) ⊆ θ.
To prove the other inclusion, assume 〈c, d〉 ∈ θ. Notice that 〈a, b〉 ∈ Θ(a, b)

implies that 〈a ↔ a, a ↔ b〉 ∈ Θ(a, b). Then we also have that 〈(a ↔ a) ⊃
c, (a ↔ b) ⊃ c〉, 〈(a ↔ a) ⊃ d, (a ↔ b) ⊃ d〉 ∈ Θ(a, b). By assumption

(a↔ b) ⊃ c = (a↔ b) ⊃ d, so by transitivity of Θ(a, b) we obtain 〈(a↔ a) ⊃
c, (a↔ a) ⊃ d〉 ∈ Θ(a, b). But (a↔ a) ⊃ c = (¬a ⊃ ¬a) ⊃ c = c and similarly

(a ↔ a) ⊃ d = d, as can easily be checked in any implicative twist-structure.

Hence, we conclude that 〈c, d〉 ∈ Θ(a, b), i.e., θ ⊆ Θ(a, b). �

Corollary 4.3. The variety of I-algebras is congruence-distributive and en-

joys the congruence-extension property.

The proof of Theorem 4.2 actually shows that (x ↔ y) ⊃ z is a ternary

deductive term in the sense of [6, Definition 2.1]. This implies EDPC [6,

Corollary 2.5], but is even stronger. For instance, it follows that I-algebras

have 3-permutable congruences [6, Theorem 2.9] and enjoy a stronger form of

the congruence-extension property [6, Lemma 2.11].

We proceed to obtain further information on congruences of I-algebras.

Our next aim is to prove that the lattice Con(A) of congruences of any I-

algebra A ⊆ (L(A))./ is isomorphic to the lattice Con(L(A)) of congruences

of the classical implicative lattice L(A).

For this we define a map H : Con(A) → Con(L(A)) in the following way.

For any θ ∈ Con(A), let

H(θ) := {〈[a], [b]〉 : 〈a ⊃ b, (a ⊃ b) ⊃ (a ⊃ b)〉, 〈b ⊃ a, (b ⊃ a) ⊃ (b ⊃ a)〉 ∈ θ}.

where [a], [b] ∈ L(A) are equivalence classes modulo ≡ corresponding to ele-

ments a, b ∈ A.

Let us start by checking that H(θ) ∈ Con(L(A)). We will often make use

of the following fact.
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Lemma 4.4. Let A be an I-algebra, a, b ∈ A and θ ∈ Con(A). The following

conditions are equivalent:

(i) 〈a ⊃ b, (a ⊃ b) ⊃ (a ⊃ b)〉, 〈b ⊃ a, (b ⊃ a) ⊃ (b ⊃ a)〉 ∈ θ,

(ii) 〈a ⊃ b, c〉, 〈b ⊃ a, d〉 ∈ θ for some c, d ∈ E(A),

(iii) 〈a ⊃ c, b ⊃ c〉 ∈ θ for all c ∈ A.

Proof. Obviously (i) implies (ii), given that (a ⊃ b) ⊃ (a ⊃ b), (b ⊃ a) ⊃ (b ⊃
a) ∈ E(A). The converse implication is also easy, because (ii) implies that

〈(a ⊃ b) ⊃ (a ⊃ b), c ⊃ (a ⊃ b)〉 ∈ θ and, by (I1), we have that c ⊃ (a ⊃ b) =

(a ⊃ b). A symmetrical reasoning shows that (ii) implies that 〈b ⊃ a, (b ⊃ a) ⊃
(b ⊃ a)〉 ∈ θ. So (i) and (ii) are equivalent. We can show that (i) is equivalent

to (iii) as follows. Notice that (i) means that the quotient algebra A/θ (which

is an I-algebra too, because the class of I-algebras is a variety, hence closed

under the operation of taking quotients, i.e., homomorphic images) satisfies the

identities [a ⊃ b]θ = [(a ⊃ b) ⊃ (a ⊃ b)]θ and [b ⊃ a]θ = [(b ⊃ a) ⊃ (b ⊃ a)]θ.

This means that [a]θ � [b]θ and [b]θ � [a]θ. By Lemma 3.4 (i), these two

conditions are equivalent to [a]θ ⊃ [c]θ = [b]θ ⊃ [c]θ for all [c] ∈ A/θ, which

means that 〈a ⊃ c, b ⊃ c〉 ∈ θ for all c ∈ A. �

Proposition 4.5. Let A ⊆ (L(A))./ be an I-algebra and θ ∈ Con(A). Then

H(θ) ∈ Con(L(A)).

Proof. In order to check that the map H is well-defined, assume 〈[a], [b]〉 ∈
H(θ) and [a] = [a′] and [b] = [b′] for some a′, b′ ∈ A. We have to prove that

〈[a′], [b′]〉 ∈ H(θ), i.e. (using Lemma 4.4), that 〈a′ ⊃ b′, c〉, 〈b′ ⊃ a′, d〉 ∈ θ for

some c, d ∈ E(A). By assumption, we have that [a] ⊃ [b] = [a ⊃ b] = [a′ ⊃
b′] = [a′] ⊃ [b′]. By definition, this means that (a ⊃ b) ⊃ (a′ ⊃ b′) ∈ E(A).

By assumption, 〈a ⊃ b, (a ⊃ b) ⊃ (a ⊃ b)〉 ∈ θ. Then

(a ⊃ b) ⊃ (a′ ⊃ b′) θ ((a ⊃ b) ⊃ (a ⊃ b)) ⊃ (a′ ⊃ b′) = a′ ⊃ b,

where the last equality holds because of (I1). By Lemma 4.4, taking c =

(a ⊃ b) ⊃ (a′ ⊃ b′), we obtain that 〈a′ ⊃ b′, c〉 ∈ θ. By symmetry, the same

reasoning allows to prove that 〈b′ ⊃ a′, d〉 ∈ θ, where d = (b ⊃ a) ⊃ (b′ ⊃ a′).
Now we have to check that H(θ) is actually a congruence of the classical

implicative lattice L(A). Symmetry of H(θ) is obvious. Reflexivity follows

immediately from the fact that, by (I1), we have that (a ⊃ a) ⊃ (a ⊃ a) =

a ⊃ a for all a ∈ A. Transitivity can easily be proved using the equivalence

between (i) and (iii) of Lemma 4.4. Next we prove that H(θ) is compatible

with the algebraic operations of the classical implicative lattice L(A). Assume

〈[a], [b]〉, 〈[c], [d]〉 ∈ H(θ). Let us check that 〈[a] ⊃ [c], [b] ⊃ [d]〉 ∈ H(θ), i.e.,

that 〈[a ⊃ c], [b ⊃ d]〉 ∈ H(θ), i.e., that there are elements a′, b′ ∈ E(A) such

that 〈(a ⊃ c) ⊃ (b ⊃ d), a′〉, 〈(b ⊃ d) ⊃ (a ⊃ c), b′〉 ∈ θ. Reasoning as in

the proof of Lemma 4.4, we notice that for instance 〈[a], [b]〉 ∈ H(θ) implies

that [a ⊃ b]θ, [b ⊃ a]θ ∈ E(A/θ), where A/θ is the usual quotient of A by

the congruence θ. Given that the relation ≡ ⊆ A/θ×A/θ is compatible with
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the operation ⊃ in A/θ, we know that [a ⊃ b]θ, [b ⊃ a]θ, [c ⊃ d]θ, [d ⊃ c]θ ∈
E(A/θ) implies that [(a ⊃ c) ⊃ (b ⊃ d)]θ, [(b ⊃ d) ⊃ (a ⊃ c)]θ ∈ E(A/θ).

This means that [(a ⊃ c) ⊃ (b ⊃ d)]θ = [a′]θ for some a′ ∈ A such that

[a′]θ ∈ E(A/θ), i.e., such that [a′]θ = [a′]θ ⊃ [a′]θ = [a′ ⊃ a′]θ. Thus, we have

that [(a ⊃ c) ⊃ (b ⊃ d)]θ = [a′]θ = [a′ ⊃ a′]θ, i.e., 〈(a ⊃ c) ⊃ (b ⊃ d), a′〉 ∈ θ
as required. A symmetrical argument shows that 〈(b ⊃ d) ⊃ (a ⊃ c), b′〉 ∈ θ
for some b′ ∈ E(A). Compatibility with the operation t of L(A) follows

immediately from the previous case because [a] t [b] = ([a] ⊃ [b]) ⊃ [b] for

all a, b ∈ A. To prove compatibility with the operation ∗ of L(A) recall that,

in any I-algebra, it holds that [a] = [b] and [c] = [d] imply [a ∗ c] = [b ∗ d].

We can then apply the same strategy as above to conclude that [(a ∗ c) ⊃
(b ∗ d)]θ, [(b ∗ d) ⊃ (a ∗ c)]θ ∈ E(A/θ), which means that 〈[a ∗ c], [b ∗ d]〉 =

〈[a] ∗ [c], [b] ∗ [d]〉 ∈ H(θ). �

We claim that the map H : Con(A)→ Con(L(A)) has an inverse

H−1 : Con(L(A))→ Con(A)

given, for all η ∈ Con(L(A)), by

H−1(η) := {〈a, b〉 ∈ A×A : 〈[a], [b]〉, 〈[¬a], [¬b]〉 ∈ η}. (4.1)

Let us check that H−1(η) is actually a congruence of A. Compatibility

with the ¬ operation easily follows from (I5). As to the implication operation,

we need to prove that 〈[a ⊃ c], [b ⊃ d]〉, 〈[¬(a ⊃ c)], [¬(b ⊃ d)]〉 ∈ η whenever

〈[a], [b]〉, 〈[¬a], [¬b]〉, 〈[c], [d]〉, 〈[¬c], [¬d]〉 ∈ η. Given that [a] ⊃ [c] = [a ⊃ c]

and [b] ⊃ [d] = [b ⊃ d], the assumptions immediately imply that 〈[a ⊃ c], [b ⊃
d]〉 ∈ η. To see that 〈[¬(a ⊃ c)], [¬(b ⊃ d)]〉 ∈ η, notice that, by (I5), we have

that [¬(a ⊃ c)] = [¬(a ⊃ ¬¬c)] = [a ∗ ¬c] = [a] ∗ [¬c]. Similarly, we have

that [¬(b ⊃ d)] = [b] ∗ [¬d]. Then compatibility of η with the operation ∗
immediately implies the desired result.

Next we check that H and H−1 are mutually inverse.

Proposition 4.6. Let A ⊆ (L(A))./ be an I-algebra, θ ∈ Con(A) and η ∈
Con(L(A)). Then H−1(H(θ)) = θ and H(H−1(η)) = η.

Proof. Let θ ∈ Con(A). By definition, 〈a, b〉 ∈ H−1(H(θ)) means that 〈[a], [b]〉,
〈[¬a], [¬b]〉 ∈ H(θ). By Lemma 4.4, this means that there are elements

c, d, c′, d′ ∈ E(A) such that 〈a ⊃ b, c〉, 〈b ⊃ a, d〉, 〈¬a ⊃ ¬b, c′〉, 〈¬b ⊃ ¬a, d′〉 ∈
θ. If this happens, then in the quotient I-algebra A/θ we have that a ⊃
b, b ⊃ a,¬a ⊃ ¬b,¬b ⊃ ¬a ∈ E(A/θ). As can be easily checked in any im-

plicative twist-structure, these last conditions imply that a ↔ b ∈ E(A/θ).

Applying (I6) we have then that [a]θ = [b]θ. This means that 〈a, b〉 ∈ θ, i.e.,

H−1(H(θ)) ⊆ θ.
Conversely, if 〈a, b〉 ∈ θ, then 〈a ⊃ b, b ⊃ b〉 ∈ θ as well and b ⊃ b ∈ E(A). Sim-

ilarly, we have that 〈a ⊃ a, b ⊃ a〉 ∈ θ and a ⊃ a ∈ E(A). Given that 〈a, b〉 ∈ θ
implies 〈¬a,¬b〉 ∈ θ, the same reasoning yields 〈¬a ⊃ ¬b,¬b ⊃ ¬b〉, 〈¬a ⊃
¬a,¬b ⊃ ¬a〉 ∈ θ. Then, by Lemma 4.4, we have that 〈a, b〉 ∈ H−1(H(θ)),
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i.e., θ ⊆ H−1(H(θ)). Hence, θ = H−1(H(θ)).

Assume η ∈ Con(L(A)). By Lemma 4.4 we have that 〈[a], [b]〉 ∈ H(H−1(η))

if and only if there are c, d ∈ E(A) such that 〈a ⊃ b, (a ⊃ b) ⊃ (a ⊃ b)〉, 〈b ⊃
a, (b ⊃ a) ⊃ (b ⊃ a)〉 ∈ H−1(η). This means that 〈[a ⊃ b], [(a ⊃ b) ⊃ (a ⊃
b)]〉, 〈[b ⊃ a], [(b ⊃ a) ⊃ (b ⊃ a)]〉, 〈[¬(a ⊃ b)], [¬((a ⊃ b) ⊃ (a ⊃ b))]〉, 〈[¬(b ⊃
a)][¬((b ⊃ a) ⊃ (b ⊃ a))]〉 ∈ η. Since L(A) is a classical implicative lattice,

we have that [(a ⊃ b) ⊃ (a ⊃ b)] = [(b ⊃ a) ⊃ (b ⊃ a)] = 1. That is, in the

quotient L(A)/η, which is also a classical implicative lattice because this class

of algebras is a variety, we have that [[a ⊃ b]]η = [[b ⊃ a]]η = [1]η. Hence,

[[a]]η = [[b]]η, which means that 〈[a], [b]〉 ∈ η. Thus, H(H−1(η)) ⊆ η.

Conversely, if 〈[a], [b]〉 ∈ η, then 〈[a] ⊃ [b], [b] ⊃ [b]〉 as well. Since [a] ⊃ [b] =

[a ⊃ b] and [b] ⊃ [b] = [b ⊃ b] = 1, we can conclude that 〈[a ⊃ b], [(a ⊃ b) ⊃
(a ⊃ b)]〉 ∈ η. Similarly, we obtain 〈[b ⊃ a], [(b ⊃ a) ⊃ (b ⊃ a)]〉 ∈ η. To see

that 〈[¬(a ⊃ b)], [¬((a ⊃ b) ⊃ (a ⊃ b))]〉 ∈ η, notice that 〈[a], [b]〉 ∈ η implies

〈[a]∗ [a], [a]∗ [b]〉 = 〈[a], [a]∗ [b]〉 ∈ η, which implies 〈[a]∗ [¬b], [a]∗ [b]∗ [¬b]〉 ∈ η.

On the one hand, by (I5) we have that [a] ∗ [¬b] = [a ∗ ¬b] = [¬(a ⊃ ¬¬b)] =

[¬(a ⊃ b)]. On the other hand, since we are in a classical implicative lattice,

we have that

[a] ∗ [b] ∗ [¬b] = ([a] ⊃ [b]) ∗ [a] ∗ [¬b] by Prop. 3.2 (iv)

= [(a ⊃ b)] ∗ [a ∗ ¬b]
= [(a ⊃ b)] ∗ [¬(a ⊃ ¬¬b)]
= [(a ⊃ b)] ∗ [¬(a ⊃ b)] by (I5)

= [(a ⊃ b) ∗ (¬(a ⊃ b))]
= [¬((a ⊃ b) ⊃ ¬¬(a ⊃ b))]
= [¬((a ⊃ b) ⊃ (a ⊃ b))] by (I5).

Therefore we can conclude that 〈[a] ∗ [¬b], [a] ∗ [b] ∗ [¬b]〉 = 〈[¬(a ⊃ b)], [¬((a ⊃
b) ⊃ (a ⊃ b))]〉 ∈ η as required. A symmetric argument allows to prove

that 〈[¬(b ⊃ a)][¬((b ⊃ a) ⊃ (b ⊃ a))]〉 ∈ η. Hence, we conclude that η ⊆
H(H−1(η)) and therefore η = H(H−1(η)). �

From the previous propositions we easily obtain the result announced ear-

lier.

Theorem 4.7. For any I-algebra A ⊆ (L(A))./, the maps H and H−1 defined

above establish a lattice isomorphism between Con(A) and Con(L(A)).

Proof. It suffices to note that both H and H−1 are clearly order-preserving

by definition and, by Proposition 4.6, they are inverse of one another. �

The above theorem tells us that, in order to obtain information on lattice-

theoretical properties of the congruence lattice of any I-algebra A ⊆ (L(A))./,

it is sufficient to look at the congruence lattice of L(A). In particular, it

provides us with an alternative proof that I-Alg is a congruence-distributive
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variety, since it is well-known that classical implicative lattices are congruence-

distributive.

We now also know that the subdirectly irreducible I-algebras are precisely

those A ⊆ (L(A))./ such that L(A) is a subdirectly irreducible classical im-

plicative lattice. Now the only subdirectly irreducible classical implicative

lattice is the two-element one L2 (see, for instance, [29, Proposition 5.1.10]).

It follows that the only subdirectly irreducible I-algebras are those which can

be embedded into the full implicative twist-structure (L2)./ shown in Figure

1. These are A4 = L2
./, A+

3 , A−3 and A2. Notice that all these algebras are

in fact simple, which implies that the variety of I-algebras is semisimple [10,

Lemma IV.12.2]. This, together with Theorem 4.2, implies that the variety of

I-algebras is filtral [4]. The following result is also straightforward.

Theorem 4.8. The variety of I-algebras is generated by its four-element

member A4.

Proof. By the above considerations, we have that the variety of I-algebras

is generated by {A4,A
+
3 ,A

−
3 ,A2}. But A+

3 ,A
−
3 and A2 are subalgebras of

A4, therefore we have that {A+
3 ,A

−
3 ,A2} ⊆ HSP(A4), from which the result

easily follows. �

Theorem 4.8 implies that I-Alg is locally finite [10, Theorem II.10.16]. It

is also easy to prove that the quasivariety generated by A4 coincides with

the class of all I-algebras. This follows from the fact that all the subdirectly

irreducible members of V(A4) are isomorphic to subalgebras of A4 (see, for

instance, [15, Theorem 3.6]).

As mentioned in Section 2, our implicative twist-structure construction can

be viewed as a specialization of those used in [25, 29, 7] to construct N4-

lattices and various classes of bilattices. On the other hand, the techniques we

have introduced here are in a certain sense more general than those used in the

above-mentioned works, because we have made use of a more reduced algebraic

language. In this respect, the message of the present paper is that many

interesting results can be proven even if we restrict ourselves to the negation-

implication language. For instance, since any implicative bilattice has an I-

algebra reduct, we see that the twist-structure representation of implicative

bilattices of [29, 7] can now be obtained as a corollary of our Theorem 3.8. A

similar reasoning also applies to the main logical results contained in Section

5 (e.g., Theorems 5.2 and 5.7). Obviously the correspondence of congruences

stated in Theorem 4.7 need not be preserved by language expansions, but it

is interesting to note that analogous results have been proven, using different

techniques, about N4-lattices [25, Corollary 4.3], various classes of bilattices

[8, Propositions 3.8 and 3.13], [7, Theorems 4.3 and 4.13] and even twist-

structures over residuated lattices [28, Theorem 5.3]. The following remark

presents an example of an important universal algebraic property which is

indeed lost when confine ourselves to the negation-implication language.
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Remark 4.9. N4-lattices and implicative bilattices are both arithmetical va-

rieties, i.e., congruence-distributive as well as congruence-permutable. The

same is true of classical implicative lattices, and we may wonder whether the

isomorphism established by Theorem 4.7 allows us to transfer this result to I-

algebras. The answer is negative, as shown by the following reasoning. Recall

that I-Alg is congruence-distributive, finitely-generated and semisimple. If it

was also congruence-permutable (hence arithmetical), then it would be directly

representable [10, Theorem IV.13.8], and this would imply that every finite

I-algebra A is congruence-uniform [10, Theorem IV.13.4]. This means [10,

Definition IV.13.3] that, for any congruence θ of A and any a, b ∈ A, we have

|[a]θ| = |[b]θ|. However, the algebra A8 shown in Figure 1 is not congruence-

uniform. To see this, consider the congruence θ corresponding to the follow-

ing partition: {〈1, 0〉, 〈a, 0〉, 〈a, b〉}, {〈1, a〉, 〈a, 1〉}, {〈0, 1〉, 〈b, a〉, 〈0, a〉}. Then

clearly |[〈1, 0〉]θ| 6= |[〈1, a〉]θ|. Taking into account what we observed above, we

conclude that congruences of I-algebras are 3-permutable yet not permutable.

We are now in a position to address the question of classifying the subva-

rieties of I-algebras. Given that A2 is a subalgebra of both A+
3 and A−3 , it

is easy to see that there are at most four non-trivial proper subvarieties to

consider, namely V({A+
3 ,A

−
3 }), V(A+

3 ), V(A−3 ) and V(A2). The next propo-

sition provides equational presentations for them and proves that they are

all distinct (their distinctness can alternatively be confirmed using Jónsson’s

Theorem [10, Corollary IV.6.10]).

Proposition 4.10. The subvarieties of I-algebras may be axiomatized by

adding the following equations to (I1)-(I6):

V({A+
3 ,A

−
3 }) ¬(x ⊃ x) � (y ⊃ ¬y) ⊃ ¬y

V(A+
3 ) (¬x ⊃ x) ⊃ x = x ⊃ x

V(A−3 ) x ⊃ x = y ⊃ y
V(A2) x ⊃ y = ¬y ⊃ ¬x.

Proof. It will be not only convenient but also instructive to check the above

equations in an implicative twist-structure A ⊆ L./. The first one, ¬(x ⊃ x) �
(y ⊃ ¬y) ⊃ ¬y, means that for arbitrary elements 〈a1, a2〉, 〈b1, b2〉 ∈ A ⊆ L×L,

a1 u a2 ≤ b1 t b2.

It is easy to check that this condition is satisfied in A+
3 , A−3 and A2 but not

in A4 because we can take 〈a1, a2〉 = 〈1, 1〉 and 〈b1, b2〉 = 〈0, 0〉. Notice also

that V({A+
3 ,A

−
3 }) = V({A+

3 ,A
−
3 ,A2}), because A2 is a subalgebra of both

A+
3 and A−3 . The same reasoning implies that V(A+

3 ) = V({A+
3 ,A2}) and

V(A−3 ) = V({A−3 ,A2}).
The second equation, (¬x ⊃ x) ⊃ x = x ⊃ x, means that, for any 〈a1, a2〉 ∈ A,

〈(a2\a1)\a1, (a2\a1) u a1〉 = 〈a1 t a2, a1 u a2〉 = 〈1, a1 u a2〉,
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Figure 2. The lattice of subvarieties of I-algebras

i.e., a1 t a2 = 1, where 1 is the maximum element of L. Again, we can check

that this is not true in A−3 (thus, a fortiori, in A4) because of the presence of

the element 〈0, 0〉.
The equation x ⊃ x = y ⊃ y plays a symmetrical role to the previous one. In

fact, it means that, for all 〈a1, a2〉, 〈b1, b2〉 ∈ A,

a1 u a2 = b1 u b2.

But this means that a1 u a2 ≤ c for any c ∈ L, i.e., a1 u a2 must be the

minimum element of the classical implicative lattice L. That is, L must be

(the reduct of) a Boolean algebra. This obviously fails in A+
3 because of the

presence of the element 〈1, 1〉.
Finally, if A ∈ V(A2) ⊆ V(A+

3 ) ∩ V(A−3 ), then, for any element 〈a1, a2〉 ∈ A,

a1 t a2 = 1 and a1 u a2 = 0.

This means that a1 and a2 must be Boolean complements of each other in L.

It is easy to see that this condition implies that the last equation x ⊃ y =

¬y ⊃ ¬x is satisfied, as it means that, for all 〈a1, a2〉, 〈b1, b2〉 ∈ A,

〈a1\b1, a1 u b2〉 = 〈b2\a2, a2 u b2〉,

that is, a1\b1 = b2\a2. Conversely, it is sufficient to check that x ⊃ y = ¬y ⊃
¬x fails both in A+

3 and in A−3 to conclude that V(A2) is in fact axiomatized

by adding the equation x ⊃ y = ¬y ⊃ ¬x to (I1)-(I6). �

Figure 2 shows the lattice of subvarieties of I-algebras. While it is obvious

that V(A2) coincides with the variety of Boolean algebras (presented in the

language of implication and negation), as far the author is aware, none of the

other varieties introduced above has been previously studied in the literature.

We can now check that the construction introduced in (3.3) is actually

sufficient for characterizing the implicative twist-structures corresponding to
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V(A+
3 ) and V(A−3 ). Let us recall the relevant definitions. Given a twist-

structure A ⊆ L./, we let

I(A) := {〈a1 t a2, a1 u a2〉 : 〈a1, a2〉 ∈ A},
U(A) := π1(I(A)),

D(A) := π2(I(A)),

A′ := {〈a1, a2〉 ∈ L× L : a1 t a2 ∈ U(A), a1 u a2 ∈ D(A)}.

It follows from what we have observed in the proof of Proposition 4.10 that:

• if A ∈ V(A+
3 ), then U(A) = {1} and I(A) = {〈1, a1ua2〉 : 〈a1, a2〉 ∈ A},

• if A ∈ V(A−3 ), then D(A) = {0} and I(A) = {〈a1 t a2, 0〉 : 〈a1, a2〉 ∈ A}
where 0 and 1 are the minimum and maximum elements of L. Either of these

additional conditions will enable us to prove that A = A′. We will need the

following lemma.

Lemma 4.11. Let A ⊆ L./ be an implicative twist-structure. Then, for all

〈a1, a2〉 ∈ L× L,

〈a1, a2〉 ∈ A if and only if 〈a1 t a2, a1 u a2〉 ∈ I(A).

Proof. (i) The rightward direction follows from the definition of I(A). To

prove the converse, assume 〈a1 t a2, a1 u a2〉 ∈ I(A). Note that, by definition,

we have that I(A) ⊆ A, hence 〈a1 t a2, a1 u a2〉 ∈ A, which implies that

¬〈a1ta2, a1ua2〉 = 〈a1ua2, a1ta2〉 ∈ A as well. Moreover, since π1(A) = L,

there must be b, c ∈ L such that 〈a1, b〉, 〈a2, c〉 ∈ A. Then we have that

〈a1, b〉 ⊃ 〈a2, c〉 = 〈a1\a2, a1 u c〉 ∈ A. Hence we have that

〈a1\a2, a1 u c〉 ⊃ 〈a1 u a2, a1 t a2〉
= 〈(a1\a2)\(a1 u a2), (a1\a2) u (a1 t a2)〉
= 〈((a1\a2)\a1) u ((a1\a2)\a2), (a1\a2) u (a1 t a2)〉 by Prop. 3.2 (ix)

= 〈a1 u (a1 t a2), (a1\a2) u (a1 t a2)〉 Prop. 3.2 (v)

= 〈a1, (a1\a2) u (a1 t a2)〉 absorption

= 〈a1, ((a1\a2) u a1) t ((a1\a2) u a2))〉 distributivity

= 〈a1, (a1 u a2) t a2〉 Prop. 3.2 (iv), (viii)

= 〈a1, a2〉 ∈ A absorption. �

We are now able to prove the announced result.

Theorem 4.12. For any implicative twist-structure A ⊆ L./,

(i) if A ∈ V(A+
3 ), then

A = {〈a1, a2〉 ∈ L× L : a1 t a2 = 1 and a1 u a2 ∈ D(A)},

(ii) if A ∈ V(A−3 ), then

A = {〈a1, a2〉 ∈ L× L : a1 t a2 ∈ U(A) and a1 u a2 = 0}.
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Proof. In order to prove that A = A′, we will use Lemma 4.11, showing that

I(A) = I(A′), where

I(A′) = {〈a1, a2〉 ∈ A′ : a1 ≥ a2}.

As noted earlier, it is easy to see that A ⊆ A′. This implies that I(A) ⊆ I(A′),

therefore we only need to prove the other inclusion. Assume then 〈a1, a2〉 ∈
I(A′). This means that a1 ∈ U(A), a2 ∈ D(A) and a1 ≥ a2. Now we reason

by cases.

(i) If A ∈ V(A+
3 ), then U(A) = {1}, therefore a1 = 1. Moreover, a2 ∈ D(A) =

π2(I(A)), which means that 〈1, a2〉 = 〈a1, a2〉 ∈ I(A). Hence we conclude that

I(A′) ⊆ I(A) as required.

(ii) If A ∈ V(A−3 ), then D(A) = {0}, so a2 = 0. Moreover, a1 ∈ U(A) =

π1(I(A)), which means that 〈a1, 0〉 = 〈a1, a2〉 ∈ I(A), so again we are done. �

One consequence of Theorem 4.12 is that the variety V(A−3 ) coincides with

the class of {¬,⊃}-subreducts of Nelson lattices satisfying the identity:

((x ⊃ y) ⊃ x) ⊃ x = x ⊃ x.

Notice that we cannot hope to extend Theorem 4.12 to all the members of

V({A+
3 ,A

−
3 }), because the I-algebra A8 that was used as a counterexample

already belongs to this variety.

To end the section, let us briefly discuss the topic of subquasivarieties of

I-algebras, which is particularly relevant from an algebraic logic point of view

(see the next section). Although at present we are not able to give a classifi-

cation of these quasivatieties, we will try to show that the topic is interesting

enough to deserve further research.

As observed above, we know that Q(A4) = V(A4). The same reasoning

shows that Q(A+
3 ) = V(A+

3 ) and Q(A−3 ) = V(A−3 ), and obviously Q(A2) =

V(A2), as the latter is just the variety of Boolean algebras. We may wonder

whether there are any quasivatieties of I-algebras which are not varieties.

This question is easily answered in the affirmative. Consider the following

quasiequation:

x = ¬x ⇒ x = y (4.2)

which corresponds to the requirement that the negation operator of the I-

algebra has no fixed points. In terms of the twist-structure representation,

this means that a1 6= a2 for all 〈a1, a2〉 ∈ A. It is then easy to check that,

of all the examples of I-algebras considered so far, only A2 and A8 satisfy

(4.2). This implies for instance that Q(A8) cannot be a variety. If we denote

by K the quasivariety of all I-algebras that satisfy (4.2), then we have that

Q(A8) ⊆ K∩V({A+
3 ,A

−
3 }). By looking at the subalgebras of A8 it is equally

easy to show that K ∩ V(A+
3 ) and K ∩ V(A−3 ) are also proper (and distinct)

quasivatieties.
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5. Logics of implicative twist-structures

Given that the original motivation for studying implicative twist-structures

arose in [29] from an algebraic logic analysis of the Arieli-Avron bilattice logic,

it is interesting to look at the logical counterpart of our algebraic structures.

The language of the sentential logic we are going to introduce is the same

as the algebraic signature of implicative twist-structures.

Definition 5.1. Let L = 〈Fm,`〉 be the sentential logic defined through the

Hilbert style calculus with axiom schemata:

p ⊃ (q ⊃ p), (⊃ 1)

(p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ (p ⊃ r)), (⊃ 2)

((p ⊃ q) ⊃ p) ⊃ p, (⊃ 3)

¬(p ⊃ q) ⊃ p, ¬(p ⊃ q) ⊃ ¬q, (¬ ⊃)

p ⊃ (¬q ⊃ ¬(p ⊃ q)), (⊃ ¬)

p ⊃ ¬¬p, ¬¬p ⊃ p, (¬¬)

and with modus ponens as the only inference rule:

p p ⊃ q
q

(MP)

It is well-known [35, Theorem 2.4.2] that any calculus having axioms (⊃ 1)

and (⊃ 2) and (MP) as the only rule enjoys the classical Deduction-Detachment

Theorem:

Theorem 5.2 (DDT). For all Γ ∪ {ϕ,ψ} ⊆ Fm,

Γ, ϕ ` ψ iff Γ ` ϕ ⊃ ψ.

We will sometimes use the DDT without notice in order to simplify our

syntactical proofs in L.

We are now going to prove that our logic L is algebraizable with respect

to the variety of I-algebras. For this we need to define a translation τ from

formulas into equations in the language of I-algebras and a translation ρ from

equations into formulas. For ϕ ∈ Fm, we let

τ(ϕ) := (ϕ = ϕ ⊃ ϕ)

and for Γ ⊆ Fm, we let τ(Γ) := {τ(ϕ) : ϕ ∈ Γ}. Conversely, given an equation

ϕ = ψ ∈ Eq, we define

ρ(ϕ = ψ) := {ϕ ⊃ ψ, ψ ⊃ ϕ, ¬ϕ ⊃ ¬ψ, ¬ψ ⊃ ¬ϕ}.

We extend ρ to sets of equations in the same way as τ . It is not difficult to

prove that the above-defined set of formulas ρ(ϕ = ψ) is logically equivalent

in L with {ϕ→ ψ, ψ → ϕ} and also with the single formula ϕ↔ ψ, where as
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before we let

ϕ ∗ ψ := ¬(ϕ ⊃ ¬ψ),

ϕ→ ψ := (ϕ ⊃ ψ) ∗ (¬ψ ⊃ ¬ϕ),

ϕ↔ ψ := (ϕ→ ψ) ∗ (ψ → ϕ).

Therefore, either of these sets can be alternatively used to define ρ. Let us

also notice that, since the equation x ⊃ x = x → x is valid in any I-algebra,

we could also alternatively define τ(ϕ) as ϕ = ϕ→ ϕ.

Our next aim is to check that the calculus introduced in Definition 5.1 is

indeed algebraizable. We will need the following lemma.

Proposition 5.3. For all formulas ϕ,ψ, ϑ,∈ Fm,

(i) {ϕ ⊃ ψ, ψ ⊃ ϑ} ` ϕ ⊃ ϑ,

(ii) ` ϕ ⊃ ϕ.

Proof. (i) By (⊃ 1) and MP we have ψ ⊃ ϑ ` ϕ ⊃ (ψ ⊃ ϑ) and by (⊃ 2) we

have ` (ϕ ⊃ (ψ ⊃ ϑ)) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ ϑ)). So, applying MP, we have ψ ⊃
ϑ ` (ϕ ⊃ ψ) ⊃ (ϕ ⊃ ϑ). Hence, by MP, we obtain {ψ ⊃ ϑ, ϕ ⊃ ψ} ` (ϕ ⊃ ϑ).

(ii) (ϕ ⊃ ((ψ ⊃ ϕ) ⊃ ϕ)) ⊃ ((ϕ ⊃ (ψ ⊃ ϕ)) ⊃ (ϕ ⊃ ϕ)) is an instance of

(⊃ 2), with p = r = ϕ and q = ψ ⊃ ϕ. Moreover, (ϕ ⊃ ((ψ ⊃ ϕ) ⊃ ϕ)) and

(ϕ ⊃ (ψ ⊃ ϕ)) are instances of (⊃ 1). Hence, applying MP twice, we obtain

` ϕ ⊃ ϕ. �

Proposition 5.4. The logic L is algebraizable with defining equation ϕ = ϕ ⊃
ϕ and equivalence formulas {ϕ ⊃ ψ,ψ ⊃ ϕ,¬ϕ ⊃ ¬ψ,¬ψ ⊃ ¬ϕ}.

Proof. Using the intrinsic characterization given by Blok and Pigozzi [5, The-

orem 4.7], it is sufficient to check that the following conditions hold: for all

formulas ϕ,ψ, ϑ, ϕ1, ϕ2, ψ1, ψ2 ∈ Fm,

(a) ϕ a` {ϕ ⊃ (ϕ ⊃ ϕ), (ϕ ⊃ ϕ) ⊃ ϕ, ¬ϕ ⊃ ¬(ϕ ⊃ ϕ), ¬(ϕ ⊃ ϕ) ⊃ ¬ϕ},
(b) ` ϕ ⊃ ϕ,

(c) ` ¬ϕ ⊃ ¬ϕ,

(d) {ϕ ⊃ ψ, ψ ⊃ ϕ, ¬ϕ ⊃ ¬ψ, ¬ψ ⊃ ¬ϕ} ` {ϕ ⊃ ψ, ψ ⊃ ϕ, ¬ϕ ⊃ ¬ψ, ¬ψ ⊃
¬ϕ},

(e) {ϕ ⊃ ψ, ψ ⊃ ϕ, ¬ϕ ⊃ ¬ψ, ¬ψ ⊃ ¬ϕ, ψ ⊃ ϑ, ϑ ⊃ ψ, ¬ψ ⊃ ¬ϑ, ¬ϑ ⊃
¬ψ} ` {ϕ ⊃ ϑ, ϑ ⊃ ϕ, ¬ϕ ⊃ ¬ϑ, ¬ϑ ⊃ ¬ϕ},

(f) {ϕ ⊃ ψ, ψ ⊃ ϕ, ¬ϕ ⊃ ¬ψ, ¬ψ ⊃ ¬ϕ} ` {¬ϕ ⊃ ¬ψ, ¬ψ ⊃ ¬ϕ, ¬¬ϕ ⊃
¬¬ψ, ¬¬ψ ⊃ ¬¬ϕ},

(g) {ϕ1 ⊃ ψ1, ψ1 ⊃ ϕ1, ¬ϕ1 ⊃ ¬ψ1, ¬ψ1 ⊃ ¬ϕ1, ϕ2 ⊃ ψ2, ψ2 ⊃ ϕ2, ¬ϕ2 ⊃
¬ψ2, ¬ψ2 ⊃ ¬ϕ2} ` {(ϕ1 ⊃ ϕ2) ⊃ (ψ1 ⊃ ψ2), (ψ1 ⊃ ψ2) ⊃ (ϕ1 ⊃
ϕ2), ¬(ϕ1 ⊃ ϕ2) ⊃ ¬(ψ1 ⊃ ψ2), ¬(ψ1 ⊃ ψ2) ⊃ ¬(ϕ1 ⊃ ϕ2)}.

The non-trivial implications of (a) can be easily proved using (¬ ⊃). Items (b)

and (c) follow immediately from Proposition 5.3 (ii), while (d) is trivial. Item

(e) follows from Proposition 5.3 (i), while (f) can be easily proved using (¬¬).
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All the cases of (g) are also easily proved. Let us check just the last one as an

example. Using the DDT, we will prove that

{ψ1 ⊃ ϕ1, ¬ψ2 ⊃ ¬ϕ2, ¬(ψ1 ⊃ ψ2)} ` ¬(ϕ1 ⊃ ϕ2).

By (¬ ⊃), we have that ¬(ψ1 ⊃ ψ2) ` {ψ1, ¬ψ2. By transitivity of ` and

MP, we obtain then {ψ1 ⊃ ϕ1, ¬ψ2 ⊃ ¬ϕ2, ¬(ψ1 ⊃ ψ2)} ` {ϕ1, ¬ϕ2} By

(⊃ ¬), we have {ϕ1, ¬ϕ2} ` ¬(ϕ1 ⊃ ϕ2), so applying again transitivity of `
we obtain the desired result. �

We are now going to see that the equivalent algebraic semantics of our logic

L is precisely the variety of I-algebras. We will need to prove some more

syntactical properties of our calculus.

Proposition 5.5. For all formulas ϕ,ψ, ϑ,∈ Fm,

(i) ` ((ϕ ⊃ ϕ) ⊃ ψ) ⊃ ψ,

(ii) ` ϕ ⊃ ((ψ ⊃ ψ) ⊃ ϕ),

(iii) ` ¬((ϕ ⊃ ϕ) ⊃ ψ) ⊃ ¬ψ,

(iv) ` ¬ψ ⊃ ¬((ϕ ⊃ ϕ) ⊃ ψ),

(v) ` (ϕ ⊃ (ψ ⊃ ϑ)) ⊃ (ψ ⊃ (ϕ ⊃ ϑ)),

(vi) ` ¬(ϕ ⊃ (ψ ⊃ ϑ)) ⊃ ¬(ψ ⊃ (ϕ ⊃ ϑ)),

(vii) ` ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ ϑ)) ⊃ (ϕ ⊃ (ψ ⊃ ϑ)),

(viii) ` ¬(ϕ ⊃ (ψ ⊃ ϑ)) ⊃ ¬((ϕ ⊃ ψ) ⊃ (ϕ ⊃ ϑ)),

(ix) ` ¬((ϕ ⊃ ψ) ⊃ (ϕ ⊃ ϑ)) ⊃ ¬(ϕ ⊃ (ψ ⊃ ϑ)),

(x) ` ((ϕ ⊃ (¬ψ ⊃ ϑ)) ⊃ (¬(ϕ ⊃ ψ) ⊃ ϑ),

(xi) ` (¬(ϕ ⊃ ψ) ⊃ ϑ) ⊃ ((ϕ ⊃ (¬ψ ⊃ ϑ)),

(xii) ` ¬((ϕ ⊃ (¬ψ ⊃ ϑ)) ⊃ ¬(¬(ϕ ⊃ ψ) ⊃ ϑ),

(xiii) ` ¬(¬(ϕ ⊃ ψ) ⊃ ϑ) ⊃ ¬((ϕ ⊃ (¬ψ ⊃ ϑ)),

(xiv) ` ((ϕ↔ ψ) ⊃ ϕ) ⊃ ((ϕ↔ ψ) ⊃ ψ),

(xv) ` ¬((ϕ↔ ψ) ⊃ ϕ) ⊃ ¬((ϕ↔ ψ) ⊃ ψ),

(xvi) ¬(ϕ ⊃ ϕ) a` ¬(((ϕ ⊃ ψ) ⊃ ϕ) ⊃ ϕ).

Proof. (i) Easy, applying Proposition 5.3 (ii) and MP.

(ii) It is an instance of (⊃ 2).

(iii) It is an instance of (¬ ⊃).

(iv) Note that (ϕ ⊃ ϕ) ⊃ (¬ψ ⊃ ¬((ϕ ⊃ ϕ) ⊃ ψ)) is an instance of (⊃ ¬).

Then, applying Proposition 5.3 (ii) and MP, we easily obtain the result.

(v) Easy, since, using the DDT, it boils down to proving that ϕ ⊃ (ψ ⊃
ϑ), ψ, ϕ ` ϑ.

(vi) By (¬ ⊃), we have that ¬(ϕ ⊃ (ψ ⊃ ϑ)) ` {ϕ, ¬(ψ ⊃ ϑ)}. Using (¬ ⊃)

again we obtain ¬(ψ ⊃ ϑ) ` {ψ, ¬ϑ}. Hence, ¬(ϕ ⊃ (ψ ⊃ ϑ)) ` {ϕ, ψ, ¬ϑ}.
By (⊃ ¬), we have that ϕ,¬ϑ ` ¬(ϕ ⊃ ϑ) and ψ,¬(ϕ ⊃ ϑ) ` ¬(ψ ⊃ (ϕ ⊃ ϑ)).

Then, applying transitivity of `, we obtain ¬(ϕ ⊃ (ψ ⊃ ϑ)) ` ¬(ψ ⊃ (ϕ ⊃ ϑ))

as required.

(vii) All we have to prove is that (ϕ ⊃ ψ) ⊃ (ϕ ⊃ ϑ), ϕ, ψ ` ϑ. Since

ψ ` ϕ ⊃ ψ, this is easily obtained by MP.
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(viii) We will prove that ¬(ψ ⊃ (ϕ ⊃ ϑ)) ` ¬((ϕ ⊃ ψ) ⊃ (ϕ ⊃ ϑ)), so the

result will follow by (vi). By (¬ ⊃), we have that ¬(ψ ⊃ (ϕ ⊃ ϑ)) ` ψ and

¬(ψ ⊃ (ϕ ⊃ ϑ)) ` ¬(ϕ ⊃ ϑ). Since ψ ` ϕ ⊃ ψ, this implies that ¬(ψ ⊃ (ϕ ⊃
ϑ)) ` ϕ ⊃ ψ. By (⊃ ¬), we have ϕ ⊃ ψ,¬(ϕ ⊃ ϑ) ` ¬((ϕ ⊃ ψ) ⊃ (ϕ ⊃ ϑ)).

Hence the result easily follows by transitivity of the derivability relation.

(ix) By (¬ ⊃), we have that ¬((ϕ ⊃ ψ) ⊃ (ϕ ⊃ ϑ)) ` {ϕ ⊃ ψ, ¬(ϕ ⊃ ϑ)}.
Similarly we obtain ¬(ϕ ⊃ ϑ) ` {ϕ, ¬ϑ}. Applying transitivity of ` and MP,

we conclude that ¬((ϕ ⊃ ψ) ⊃ (ϕ ⊃ ϑ)) ` {ψ, ¬ϑ}. By (⊃ ¬), we have that

ψ,¬ϑ ` ¬(ψ ⊃ ϑ) and {¬(ψ ⊃ ϑ), ϕ} ` ¬(ϕ ⊃ (ψ ⊃ ϑ)). Hence, using again

transitivity of ` we obtain the desired result.

(x) By (¬ ⊃), we have that ¬(ϕ ⊃ ψ) ` {ϕ, ¬ψ}. Applying the transitivity of

` and twice MP, we have that {(ϕ ⊃ (¬ψ ⊃ ϑ), ¬(ϕ ⊃ ψ)} ` ϑ, from which

the result easily follows.

(xi) It is sufficient to prove that ¬(ϕ ⊃ ψ) ⊃ ϑ, ϕ,¬ψ ` ϑ. To see this, note

that, by (⊃ ¬), we have that {ϕ, ¬ψ} ` ¬(ϕ ⊃ ψ). Hence, modus ponens

yields the desired result.

(xii) By (¬ ⊃), we have that ¬((ϕ ⊃ (¬ψ ⊃ ϑ)) ` {ϕ, ¬(¬ψ ⊃ ϑ)}. Applying

monotonicity and (¬ ⊃) again, we have that {ϕ, ¬(¬ψ ⊃ ϑ)} ` {ϕ, ¬ψ, ¬ϑ}.
By (⊃ ¬), we have that ϕ,¬ψ ` ¬(ϕ ⊃ ψ) and ¬(ϕ ⊃ ψ),¬ϑ ` ¬(¬(ϕ ⊃ ψ) ⊃
ϑ). Hence, transitivity of ` yields the desired result.

(xiii) By (¬ ⊃), we have that ¬(¬(ϕ ⊃ ψ) ⊃ ϑ) ` {¬(ϕ ⊃ ψ), ¬ϑ} and

¬(ϕ ⊃ ψ) ` {ϕ, ¬ψ}. Hence, ¬(¬(ϕ ⊃ ψ) ⊃ ϑ) ` {ϕ, ¬ψ, ¬ϑ}. Now, using

(⊃ ¬), we obtain ¬ψ,¬ϑ ` ¬(¬ψ ⊃ ϑ) and ϕ,¬(¬ψ ⊃ ϑ) ` ¬((ϕ ⊃ (¬ψ ⊃ ϑ)).

Then by transitivity of ` the result easily follows.

(xiv) Let us observe that, for all ϕ,ψ ∈ Fm, it holds that {ϕ,ψ} a` ϕ∗ψ. The

rightward direction holds because, by (¬¬), we have that {ϕ,ψ} a` {ϕ,¬¬ψ}
and, by (⊃ ¬), we have that {ϕ,¬¬ψ} ` ¬(ϕ ⊃ ¬ψ) = ϕ ∗ ψ. Conversely, by

(¬ ⊃), we have that ϕ ∗ ψ ` {ϕ,¬¬ψ} and from this the result easily follows.

This means that

ϕ↔ ψ a` {ϕ→ ψ,ψ → ϕ} a` {ϕ ⊃ ψ,ψ ⊃ ϕ,¬ϕ ⊃ ¬ψ,¬ψ ⊃ ¬ϕ}.

Then, given that, by MP, (ϕ ↔ ψ) ⊃ ϕ,ϕ ↔ ψ ` ϕ, it is easy to see that

(ϕ↔ ψ) ⊃ ϕ,ϕ↔ ψ ` ψ. The desired result follows then by the DDT.

(xv) By (¬ ⊃), we have that ¬((ϕ ↔ ψ) ⊃ ϕ) ` {ϕ ↔ ψ,¬ϕ}. Reasoning as

in the proof of (xiv), we obtain {ϕ↔ ψ,¬ϕ} ` {ϕ↔ ψ,¬ψ}. Applying (¬ ⊃),

we have that {ϕ↔ ψ,¬ψ} ` ¬((ϕ↔ ψ) ⊃ ψ). Hence, by transitivity of ` we

obtain ¬((ϕ↔ ψ) ⊃ ϕ) ` ¬((ϕ↔ ψ) ⊃ ψ), so the result follows by the DDT.

(xvi) By (¬ ⊃) and (⊃ ¬), we have that ¬(ϕ ⊃ ϕ) a` {ϕ,¬ϕ}. By monotonic-

ity of ` and the DDT, we further have that {ϕ,¬ϕ} ` {(ϕ ⊃ ψ) ⊃ ϕ,¬ϕ}.
Also, applying MP to (⊃ 3), we have that {(ϕ ⊃ ψ) ⊃ ϕ,¬ϕ} ` {ϕ,¬ϕ}.
Finally, using again (⊃ ¬) and (¬ ⊃), we have that {(ϕ ⊃ ψ) ⊃ ϕ,¬ϕ} a`
¬(((ϕ ⊃ ψ) ⊃ ϕ) ⊃ ϕ), so the result follows by transitivity of the inter-

derivability relation. �
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Lemma 5.6. For every axiom ϕ of L, the equation ϕ = ϕ ⊃ ϕ is valid in the

variety of I-algebras.

Proof. It can be easily proved using the twist-structure representation, or we

can directly check that all equations are satisfied in A4 which is the generator

of the variety. �

We are now able to prove the announced result.

Theorem 5.7. The logic L is algebraizable with respect to the variety of I-

algebras, with equivalence formulas {ϕ ⊃ ψ,ψ ⊃ ϕ,¬ϕ ⊃ ¬ψ,¬ψ ⊃ ¬ϕ} and

defining equation ϕ = ϕ ⊃ ϕ.

Proof. We will prove that the equivalent algebraic semantics Alg∗L of our

logic L is precisely the class of I-algebras. By [5, Theorem 2.17], we know that

the class Alg∗L is axiomatized by the following equations and quasiequations

(recall that E(x) is a shorthand for the equation x = x ⊃ x):

(a) E(ϕ) for all axioms ϕ of L,

(b) E(x) & E(x ⊃ y) ⇒ E(y),

(c) E(x ⊃ y) & E(y ⊃ x) & E(¬x ⊃ ¬y) & E(¬y ⊃ ¬x) ⇒ x = y.

In order to prove that I-Alg ⊆ Alg∗L, it is then sufficient to prove that any

I-algebra A satisfies (a) to (c). The first item is Lemma 5.6. As to (b),

applying (I1), we have that, for all a, b ∈ A, the assumption E(a) implies that

(a ⊃ a) ⊃ b = a ⊃ b = b. But E(a ⊃ b) means that b = a ⊃ b = (a ⊃ b) ⊃
(a ⊃ b) = b ⊃ b, so we are done. Finally, we have already established (c) in

the proof of Theorem 3.8.

In order to show that Alg∗L ⊆ I-Alg, we have to check that any A ∈ Alg∗L
satisfies the equations valid in the variety of I-algebras. To see this, using (a)

and (c), it will be enough to prove that, for any equation ϕ = ψ of Definition

3.1, it holds that ` {ϕ ⊃ ψ, ψ ⊃ ϕ, ¬ϕ ⊃ ¬ψ, ¬ψ ⊃ ¬ϕ}. Some cases are

straighforward. The non-trivial ones have been proved in Proposition 5.5. �

A well-known result on algebraizable logics (see for instance [5, Corollary

4.9]) tells us that the finitary extensions of L are also algebraizable and that

the corresponding equivalent quasivariety semantics are the subquasivarieties

of I-algebras. In particular, we know that the axiomatic extensions of L are in

one-to-one correspondence with subvarieties of I-algebras. It follows then from

Proposition 4.10 that L has only four consistent axiomatic proper extensions,

which can be axiomatized by adding the following axioms to the calculus given

in Defintion 5.1:

(I) ¬(p ⊃ p) ⊃ ((q ⊃ ¬q) ⊃ ¬q),
(II) (¬p ⊃ p) ⊃ p,

(III) ¬(p ⊃ p) ⊃ ¬(q ⊃ q),
(IV) (p ⊃ q) ⊃ (¬q ⊃ ¬p).

Using the twist-structure representation of I-algebras, it is easy to check

that (I) allows us to axiomatize the logic corresponding to V({A+
3 ,A

−
3 }) and
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likewise (II), (III) and (IV) characterize the logics corresponding, respectively,

to V(A+
3 ), V(A−3 ) and V(A2).

In order to characterize the remaining finitary (non-axiomatic) extensions of

L we would need a description of the lattice of subquasivarieties of I-algebras

and this, as mentioned in the previous section, is still an open question. For

now, we can observe that it is easy to check that the rule corresponding to the

quasiequation 4.2 is the following:

p ⊃ ¬p ¬p ⊃ p
q

By the considerations made in Section 4, we know then that, if we add this rule

to L or to any of its axiomatic extensions, we obtain in each case a different

logic.

6. Further work

We hope that the previous sections have shown that the theory of implica-

tive twist-structures has an independent interest, both from a logical and an

algebraic point of view, which does not depend solely on its connections with

N4-lattices and bilattices. We would like to conclude the paper by mentioning

some topics that, in our opinion, deserve further investigation.

We have already discussed the issue of classifying the subquasivarieties of

I-algebras, which corresponds on the logical side to the study of finitary ex-

tensions of the logic.

Another problem that is particularly interesting from a logical point of view

is how to characterize the {→}-fragment of our logic L and the correspond-

ing algebraic semantics. It seems that the methods used in the paper cannot

be straightforwardly applied here, as no twist-structure representation is yet

available for algebras in the language with the→ implication as the only oper-

ation. However, as observed in Section 5, the → implication alone is sufficient

to define translations that guarantee algebraizability of the corresponding frag-

ment of the logic. This seems to indicate that even such a reduced language

might be expressive enough for our purposes, and also that the problem of

axiomatizing the logic can be reduced to that of finding a (quasi)equational

presentation for the class of {→}-subreducts of I-algebras.

A natural question to ask is whether the construction introduced in Section

2 could be easily generalized to define implicative twist-structures over, for

example, generalized Heyting algebras (the 0-free subreducts of Heyting alge-

bras). This is certainly possible and will be the object of future investigation,

although it seems that weakening certain algebraic properties of classical im-

plicative lattices will imply modifying in a non-trivial way the proof strategy

that we used to obtain the representation result of Theorem 3.8.

Another interesting possibility to be investigated is, in our opinion, the

development of a topological representation for our twist-structures, perhaps
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along the same lines of topological studies [13, 14] of other implication-based

algebras such as Tarski and Hilbert algebras (i.e., the purely implicational sub-

reducts of, respectively, Boolean algebras and Heyting algebras). The fact that

our structures do not have a lattice reduct but belong to a finitely generated va-

riety seems to indicate that the right approach to this problem might be found

within the framework of natural duality theory [15] rather than Priestley-style

duality.
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[35] Wójcicki, R.: Theory of logical calculi. Basic theory of consequence operations. Synth.

Libr., vol. 199. Reidel, Dordrecht, (1988)

Umberto Rivieccio

School of Computer Science, University of Birmingham, Edgbaston, Birmingham B15

2TT, United Kingdom
e-mail : u.rivieccio@cs.bham.ac.uk


	1. Introduction
	2. The implicative twist-structure construction
	3.  Abstract twist-structures
	4. Universal algebraic properties
	5. Logics of implicative twist-structures
	6. Further work

