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Abstract

Trilattices are algebraic structures introduced ten years ago into logic with
the aim to provide a uniform framework for the notions of constructive truth
and constructive falsity. In more recent years, trilattices have been used
to introduce a number of many-valued systems that generalize the Belnap-
Dunn logic of first-degree entailment, proposed as logics of how several com-
puters connected together in a network should think in order to deal with
incomplete and possibly contradictory information. The aim of the present
work is to develop a first purely algebraic study of trilattices, focusing in
particular on the problem of representing certain subclasses of trilattices as
special products of bilattices. This approach allows to extend the known
representation results for interlaced bilattices to the setting of trilattices and
to reduce many algebraic problems concerning these new structures to the
better-known framework of lattice theory.
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1. Introduction

Trilattices were first introduced into logic by Y. Shramko, J.M. Dunn and
T. Takenaka [19] with the aim to provide a uniform framework for the notions
of constructive truth and constructive falsity. These algebraic structures
were used to define some interesting many-valued logics that Shramko and
his collaborators proposed as generalizations of the systems introduced by
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A. Heyting as a formal counterpart of constructive (intuitionistic) logic and
by D. Nelson [15] as a logic for constructive falsity.

Logics based on trilattices are also closely related to other well-known
formal systems such as bilattice and relevance logics. This relationship has
been stressed and investigated in several works by Y. Shramko and H. Wans-
ing [20, 21, 22], who presented their trilattice logics as a generalization of the
“useful four-valued logic” introduced by N. Belnap and J.M. Dunn. [3, 1].
While the Belnap-Dunn system was originally proposed as a logic of how a
computer should think in order to handle information coming from different
and possibly conflicting sources, Shramko and Wansing proposed trilattice-
based systems as logics meant to model how several computers connected
together in a network should think in order to deal with incomplete and
possibly contradictory information.

The aim of the present work is to provide a first algebraic approach to
the study of trilattices, focusing in particular on the relationship between
trilattices and bilattices, in order to extend some of the representation results
obtained in [5] for bilattices to the setting of trilattices. The main appeal
of this approach, that proved to be useful in the case of bilattices, is that it
allows to reduce many algebraic problems concerning these new structures
to the better-known framework of lattices, in which they can be solved using
powerful tools and results of lattice theory.

The paper is organized as follows. The next section contains the main
definitions and fixes the terminology that we are going to use; it presents as
well some basic results on bilattices and trilattices that we shall need in the
subsequent sections. Section 3 contains some of the main results of this paper,
namely representation theorems stating that various kinds of trilattices can
be constructed as special products of two bilattices. At the end of the section
(3.5) we briefly compare our approach to a previous work by S. Odintsov
on the representation of a particular example of trilattice. In Section 4
we use the representation results of Section 3 to obtain characterizations
of the congruences of trilattices in terms of those of their bilattice factors.
These results are then used in Section 5 in order to identify the generators of
minimal varieties of trilattices (i.e., the distributive ones). Finally, Section 6
mentions some open problems and lines for future research.
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2. Definitions and basic results

In this section we introduce the main definitions, terminology and nota-
tion that we are going to use throughout the present work.

2.1. Bilattices

A pre-bilattice [8] is an algebra B = 〈B,∧,∨,u,t〉 such that 〈B,≤,∧,∨〉
and 〈B,v,u,t〉 are both lattices. For notational convenience, we shall some-
times indicate the pre-bilattice 〈B,∧,∨,u,t〉 just as 〈B,≤,v〉, but let us
stress that we always treat these structures as algebras (rather than as doubly
partially ordered sets).

In the literature on bilattices it is usually required that both lattices be
complete or at least bounded, but here none of these assumptions is made.
The minimum and maximum element of the lattice 〈B,∧,∨〉, in case they
exist, will be denoted, respectively, by f and t. Similarly, ⊥ and > will refer
to the minimum and maximum of 〈B,u,t〉, when they exist.

In logical contexts, where the underlying set of a pre-bilattice is under-
stood as a space of truth values, the two lattice orders are usually thought
of as representing the degree of truth (≤) and the degree of information (v)
associated with a given sentence; accordingly, they are called respectively the
truth order (or “logical order”) and the information order (or “knowledge or-
der”). This accounts for the use of f (for false) and t for (true) to denote the
least and greatest elements w.r.t. the truth order, while ⊥ should represent
a complete absence of information and > an excess of it (a contradiction).

We reserve the term bilattice [12] for what is sometimes called a “bi-
lattice with negation”, i.e., an algebra B = 〈B,∧,∨,u,t,¬〉 such that
〈B,∧,∨,u,t〉 is a pre-bilattice and the negation ¬ : B → B is an oper-
ation satisfying that, for all a, b ∈ B:

if a ≤ b, then ¬b ≤ ¬a

if a v b, then ¬a v ¬b

a = ¬¬a.

Negation is thus anti-monotonic with respect to the truth order and mono-
tonic with respect to the information order; it is not difficult to convince
oneself that these requirements constitute a plausible generalization of the
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Figure 1: Some examples of (pre-)bilattices

behavior of negation within classical logic. The following identities (that we
will call De Morgan laws) hold in any bilattice:

¬(a ∧ b) = ¬a ∨ ¬b ¬(a ∨ b) = ¬a ∧ ¬b
¬(a u b) = ¬a u ¬b ¬(a t b) = ¬a t ¬b.

Moreover, if the bilattice is bounded, then ¬> = >, ¬⊥ = ⊥, ¬t = f and
¬f = t. So, if a bilattice B = 〈B,∧,∨,u,t,¬〉 is distributive, or at least the
reduct 〈B,∧,∨〉 is distributive, then 〈B,∧,∨,¬〉 is a De Morgan lattice.

The most interesting algebraic results known on (pre-)bilattices, in par-
ticular the representation theorems that we are going to state below, do not
apply to all bilattices, but only to the subclass of the interlaced ones (most
of these results may be found in [5, 4], to which we refer for more details and
the proofs that we are going to omit).

A pre-bilattice is called interlaced [7] when all four lattice operations are
monotone w.r.t. to both lattice orders. It is called distributive [12] when
all possible distributive laws concerning the four lattice operations, i.e., any
identity of the following form, hold:

a ◦ (b • c) = (a ◦ b) • (a ◦ c) for every ◦, • ∈ {∧,∨,u,t}.

We say that a bilattice is interlaced (or distributive) when its pre-bilattice
reduct is.

Figure 1 shows the double Hasse diagram of some of the best-known (pre-)-
bilattices: the four- and nine-element ones are distributive, while the seven-
element one is not (in fact, it is not even interlaced). The diagrams should be
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read as follows: a ≤ b if there is a path from a to b which goes uniformly from
left to right, while a v b if there is a path from a to b which goes uniformly
from the bottom to the top. The four lattice operations are thus uniquely
determined by the diagram, while negation, if there is one, corresponds to
reflection along the vertical axis joining ⊥ and >. It is then clear that all
the pre-bilattices shown in Figure 1 can be endowed with a negation in a
unique way and turned in this way into bilattices. When no confusion is
likely to arise, we will use the same name to denote a particular pre-bilattice
and its associated bilattice. The names used in the diagrams are by now
more or less standard in the literature, except for the subscripts, that we use
to indicate that we are now considering structures endowed with two lattice
orders (whereas further below we shall consider three orders).

The smallest non-trivial bilattice, FOUR2, has a fundamental role among
bilattices, both from an algebraic and a logical point of view. FOUR2 is
distributive and, as a bilattice, it is a simple algebra. It is in fact, up to
isomorphism, the only subdirectly irreducible distributive bilattice (this was
proved for the bounded case in [13], then generalized in [5] to the unbounded
one).

A natural expansion of the bilattice language considered above is obtained
by adding a unary operator that behaves as a dual of the bilattice negation.
Such an operator has been introduced by Fitting [9] who called it “confla-
tion”. A bilattice with conflation is an algebra B = 〈B,∧,∨,u,t,¬,−〉 such
that 〈B,∧,∨,u,t,¬〉 is a bilattice and the conflation − : B → B is an
operation satisfying that, for all a, b ∈ B:

if a ≤ b, then − a ≤ − b

if a v b, then − b v − a

a = −− a.

More briefly, one could say that a bilattice with conflation is a structure B =
〈B,∧,∨,u,t,¬,−〉 such that both 〈B,∧,∨,u,t,¬〉 and 〈B,u,t,∧,∨,−〉
are bilattices, and we could call the two operations simply t-negation and
i-negation.

We say that B is commutative when negation and conflation commute,
i.e., when, for all a ∈ B,

¬−a = −¬ a.
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Notice that FOUR2 and NINE2 can be endowed with a conflation (that
in fact commutes with negation), which corresponds in Figure 1 to reflection
along the horizontal axis joining f and t.

All the classes of (pre-)bilattices introduced above are varieties, i.e., defin-
able by means of equations only. Pre-bilattices, for instance, are axiomatized
by the lattice identities for the two lattices, while for bilattices we have to
add the involutive identity x = ¬¬x plus the following (De Morgan laws):

¬(x ∧ y) = ¬x ∨ ¬y ¬(x ∨ y) = ¬x ∧ ¬y
¬(x u y) = ¬x u ¬y ¬(x t y) = ¬x t ¬y.

For bilattices with conflation we also have to add x = −−x, plus the follow-
ing:

−(x u y) = −x t −y −(x t y) = −x u −y
−(x ∧ y) = −x ∧ −y −(x ∨ y) = −x ∨ −y.

The classes of interlaced and distributive (pre-)bilattices (with or with-
out conflation) are also varieties. Moreover, the class of distributive (pre-)-
bilattices (with conflation) is a proper subvariety of the interlaced, which is
a proper subvariety of the class of all (pre-)bilattices (with conflation).

2.2. Product (pre-)bilattices

A fundamental result in bilattice theory is a representation theorem stat-
ing that any interlaced (pre-)bilattice is isomorphic to a special product of
two lattices. We describe the constructions involved as they will have a
key role in our approach to the representation of trilattices. The following
definitions were first introduced by Fitting [7, 9].

Let L1 = 〈L1,∧1,∨1〉 and L2 = 〈L2,∧2,∨2〉 be lattices with associated
orders ≤1 and ≤2. The product pre-bilattice L1 � L2 = 〈L1 × L2,∧,∨,u,t〉
is defined as follows. For all 〈a1, a2〉 , 〈b1, b2〉 ∈ L1 × L2,

〈a1, a2〉 ∧ 〈b1, b2〉 := 〈a1 ∧1 b1, a2 ∨2 b2〉
〈a1, a2〉 ∨ 〈b1, b2〉 := 〈a1 ∨1 b1, a2 ∧2 b2〉
〈a1, a2〉 u 〈b1, b2〉 := 〈a1 ∧1 b1, a2 ∧2 b2〉
〈a1, a2〉 t 〈b1, b2〉 := 〈a1 ∨1 b1, a2 ∨2 b2〉 .
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L1 � L2 is always an interlaced pre-bilattice, and it is distributive if and
only if both L1 and L2 are distributive lattices. From the definition it follows
immediately that

〈a1, a2〉 v 〈b1, b1〉 iff a1 ≤1 b1 and a2 ≤2 b2

〈a1, a2〉 ≤ 〈b1, b1〉 iff a1 ≤1 b1 and a2 ≥2 b2.

If L1 and L2 are isomorphic, then it is possible to define a negation in
L1 � L2, and we speak of product bilattice instead of product pre-bilattice.
If h : L1

∼= L2 is an isomorphism, then the negation is defined as

¬〈a1, a2〉 := 〈h−1(a2), h(a1)〉.

In particular, if L1 = L2, the definition gives ¬〈a1, a2〉 := 〈a2, a1〉.
The representation theorem for interlaced (pre-)bilattices states then that

any interlaced pre-bilattice B is isomorphic to a product L1�L2. Moreover,
if B is an interlaced bilattice, then L1

∼= L2.
This result was obtained in [12, 7] for bounded distributive (pre-)bilattices.

It was later on generalized in [2] to bounded interlaced (pre-)bilattices and
in [14, 5] to the unbounded case.

If B = 〈B,∧,∨,u,t, f, t,⊥,>〉 is a bounded interlaced (pre-)bilattice,
then L1 and L2 can be obtained as sublattices of B as follows: defining
L1 := {a ∨ ⊥ : a ∈ B} and L2 := {a ∧ ⊥ : a ∈ B}, we have that

B ∼= 〈L1,u,t〉 � 〈L2,u,t〉.

In the unbounded case L1 and L2 can instead be obtained as quotients of B
(see Section 3.1 for the details of the construction).

In order to construct a bilattice with conflation we need an involutive
lattice, i.e., an algebra L = 〈L,∧,∨,′ 〉 such that the reduct 〈L,∧,∨〉 is a
lattice and the operation ′ : A→ A satisfies that, for all a, b ∈ A:

if a ≤ b, then b′ ≤ a′

a = a′′.

Given an involutive lattice L = 〈L,∧,∨,′ 〉, we denote by L� L the bilattice
with conflation whose bilattice reduct is the product bilattice 〈L,∧,∨〉 �
〈L,∧,∨〉 defined as above and where the conflation is defined, for all a, b ∈ L,
as

−〈a, b〉 = 〈b′, a′〉.
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It can be easily checked that L�L is always an interlaced bilattice with con-
flation; in addition, it is commutative. Conversely, a representation theorem
analogous to the one mentioned above states that any commutative bilattice
with conflation can be represented as a product of this kind [18, 4].

2.3. Trilattices

The terminology used so far in the literature on trilattices is neither
uniform nor quite precise as far as the signature is concerned. The one we are
going to adopt here is meant to be precise enough for our algebraic approach
and as consistent as possible with the established notation on trilattices.

By a trilattice we mean an algebra

A = 〈A,∧t,∨t,∧f ,∨f ,∧i,∨i〉

such that the reducts 〈A,∧t,∨t〉, 〈A,∧f ,∨f〉 and 〈A,∧i,∨i〉 are lattices1.
For brevity, we sometimes indicate a trilattice just as 〈A,≤t,≤f ,≤i〉, but we
always view it as an algebra rather than a relational structure.

The lattice orders of a trilattice may be interpreted in various ways (see
for instance [20]). Let us just recall one of the interpretations that can be
seen as a generalization of the one introduced above for bilattices: we still
have one information order (≤i), but we also have two independent orders,
one for the degree of truth (≤t) and the other for the degree of falsity (≤f )
associated with a sentence. We are thus adopting a paraconsistent view, in
that we do not require that an increase in truth should necessarily imply a
decrease in falsity and vice versa.

We say that a trilattice A has a t-involution (respectively, an f-involution
or an i-involution) when there is a unary operation which is involutive, an-
timonotone w.r.t. ≤t (respectively, w.r.t. ≤f or ≤i) and monotone w.r.t. to
the other two lattice orders. That is (in the case of the t-involution), when
there is an operation −t : A→ A such that, for all a, b ∈ A:

if a ≤t b, then −t b ≤t −t a

if a ≤f b, then −t a ≤f −t b

1In order to be more general, one could simply define an n-lattice to be a set endowed
with n lattice orders: according to this definition pre-bilattices are just 2-lattices, while
trilattices correspond to 3-lattices [20, Definition 3.1].
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Figure 2: The trilattice SIXT EEN 3.

if a ≤i b, then −t a ≤i −t b

a = −t−t a.

Figure 2 shows the trilattice SIXT EEN 3, which has a fundamental role
among trilattices, analogous to the one played by FOUR2 among bilattices.
The diagram can be read like the ones introduced above to represent bilat-
tices, but notice that it is only possible to represent two orders at a time
in a perspicuous way (≤t and ≤i in our diagram), while the third one (≤f )
should be visualized as a third dimension in perspective. We have put names
just for the top and bottom elements of each of the three orders in order to
give a rough idea of the three dimensions of the trilattice.

In analogy with bilattices, we define a trilattice (possibly enriched with
involutions) to be interlaced when all six lattice operations are monotone
w.r.t. to all three lattice orders, and distributive when all possible distributive
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laws concerning all lattice operations hold.
An obvious fact, but important to our approach, is that any trilattice

〈A,∧t,∨t,∧f ,∨f ,∧i,∨i〉

has three pre-bilattice reducts, namely 〈A,∧t,∨t,∧f ,∨f〉, 〈A,∧t,∨t,∧i,∨i〉
and 〈A,∧f ,∨f ,∧i,∨i〉, all of which inherit the property of being interlaced
(distributive).

It follows from the results on bilattices mentioned above that distributiv-
ity implies the interlacing conditions, therefore distributive trilattices are a
subclass of the interlaced ones. Another result that can be straightforwardly
transferred from the theory of bilattices is that this inclusion is strict, i.e.,
that there are trilattices which are interlaced but non-distributive (this is
an easy consequence of a more general result that we are going to prove in
Proposition 2.2).

We say that two involution operations (for instance −t and −f ) commute
when, for all a ∈ A,

−t−f a = −f −t a.

It is easy to see that, as happens with (pre-)bilattices, all the conditions
involved in the various definitions of trilattices (with or without involutions)
can be expressed by equations, for instance through De Morgan laws of the
following form:

−t(x ∧t y) = −t x ∨t −t y −t(x ∨t y) = −t x ∧t −t y

−t(x ∧f y) = −t x ∧f −t y −t(x ∨f y) = −t x ∨f −t y.

Hence, all the classes of trilattices introduced above are varieties.

2.4. Product trilattices

We are now going to introduce constructions that allow to build trilattices
(with involutions) as special products of two (pre-)bilattices. Our ultimate
aim will be to show that all the trilattices satisfying certain conditions can
be represented as products of this kind.

We first consider the case of trilattices without involution operations. Let
B1 = 〈B1,≤1,v1〉 and B2 = 〈B2,≤2,v2〉 be pre-bilattices, and define the
product trilattice

B1 �B2 = 〈B1 ×B2,≤t,≤f ,≤i〉

as follows. For all 〈a1, a2〉, 〈b1, b2〉 ∈ B1 ×B2:
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〈a1, a2〉 ≤t 〈b1, b2〉 iff a1 ≤1 b1 and a2 ≤2 b2

〈a1, a2〉 ≤f 〈b1, b2〉 iff b1 v1 a1 and a2 v2 b2

〈a1, a2〉 ≤i 〈b1, b2〉 iff a1 v1 b1 and a2 v2 b2.

The six lattice operations of B1 �B2 are thus determined, and let us stress
that they behave as in a direct product, except for those relative to ≤f that
are given by

〈a1, a2〉 ∧f 〈b1, b2〉 = 〈a1 t1 b1, a2 u2 b2〉
〈a1, a2〉 ∨f 〈b1, b2〉 = 〈a1 u1 b1, a2 t2 b2〉.

It can be easily checked that B1 � B2 is indeed a trilattice. Let us also
observe that:

• The reduct 〈B1 × B2,∧t,∨t,∧i,∨i〉 of B1 � B2 is a pre-bilattice that
coincides with the usual direct product B1×B2, where ≤t corresponds
to ≤1 × ≤2 and ≤i to v1 × v2.

• The reduct 〈B1 × B2,∧t,∨t,∧f ,∨f〉 of B1 � B2 is also a pre-bilattice
that coincides with the usual direct product 〈B1,≤1,w1〉×〈B2,≤2,v2〉.
Note that in the first factor the v1 order of B1 is reversed.

• The algebra 〈B1 × B2,∨f ,∧f ,∧i,∨i〉, where the ≤f order of B1 � B2

is reversed, is a pre-bilattice that is isomorphic to the product pre-
bilattice 〈B1,v1〉 � 〈B2,v2〉.

The above facts will be used to simplify the proofs of the next statements,
starting from the following:

Proposition 2.1. The trilattice B1�B2 is interlaced if and only if both B1

and B2 are interlaced pre-bilattices.

Proof. Assume B1 �B2 is an interlaced trilattice. Then all its pre-bilattice
reducts are interlaced, in particular 〈B1 × B2,∧t,∨t,∧i,∨i〉 is. As observed
above, this reduct coincides with the direct product B1 × B2, therefore we
know that B1 and B2 are homomorphic images of 〈B1 × B2,∧t,∨t,∧i,∨i〉.
Since the class of interlaced pre-bilattices is a variety (so closed under ho-
momorphic images), we conclude that B1 and B2 are also interlaced pre-
bilattices.
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Conversely, assume the pre-bilattices B1 and B2 are interlaced. The class
of interlaced pre-bilattices is obviously also closed under direct products and
this implies that B1 × B2 is an interlaced pre-bilattice. In the light of the
above observations, this means that the t-lattice operations are monotonic
w.r.t. ≤i and the i-lattice operations are monotonic w.r.t. ≤t. Notice also
that the class of interlaced pre-bilattices is closed under dual algebras, in the
sense that if 〈B1,≤1,v1〉 is an interlaced pre-bilattice, then so is for example
〈B1,≤1,w1〉. It follows then that 〈B1,≤1,w1〉 × 〈B2,≤2,v2〉 is an inter-
laced pre-bilattice, therefore the t-lattice connectives are monotonic w.r.t.
≤f and, conversely, the f-lattice connectives are monotonic w.r.t. ≤t. Fi-
nally, as we have observed, the algebra 〈B1×B2,∨f ,∧f ,∧i,∨i〉 is isomorphic
to a product pre-bilattice, hence it is interlaced. It follows that the algebra
〈B1×B2,∧f ,∨f ,∧i,∨i〉 obtained by reversing the ≤f order is also interlaced,
and this allows us to conclude that the f-lattice connectives are monotonic
w.r.t. ≤i and the i-lattice operations are monotonic w.r.t. ≤f . Thus the tri-
lattice B1 � B2 is interlaced (and notice that for the last step of the proof
we do not even need to assume that B1 and B2 be interlaced).

By examining the proof of the previous proposition it is not difficult to
see that the same reasoning may be employed to prove the following:

Proposition 2.2. The trilattice B1 � B2 is distributive if and only if both
B1 and B2 are distributive pre-bilattices.

As anticipated, the latter results easily allow to build an example of non-
interlaced trilattice as well as an interlaced but non-distributive trilattice,
thus showing that the inclusions between the above-mentioned varieties of
algebras are all strict.

We are now going to see how to extend the product trilattice construction
introduced above in order to define involution operators. Due to the dualities
implicit in the definition of trilattices, it is obvious that there are only three
basic cases to consider, namely:

• trilattices with just one (say, the t-involution) operation

• trilattices with just two (say, t- and f-involution) operations

• trilattices with three (t-, f- and i-involution) operations.
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t-involution. Let B1 = 〈B1,≤1,v1,¬1〉 and B2 = 〈B2,≤2,v2,¬2〉 be
bilattices. We define the product trilattice with t-involution

B1 �B2 := 〈B1 ×B2,∧t,∨t,∧f ,∨f ,∧i,∨i,−t〉

as follows. The reduct 〈B1×B2,∧t,∨t,∧f ,∨f ,∧i,∨i〉 is defined as before and
the t-involution operation is given, for all 〈a, b〉 ∈ B1 ×B2, by

−t〈a, b〉 := 〈¬1a,¬2b〉.

It is easy to check that the operation −t satisfies the axioms for being a
t-involution, i.e., is involutive, antimonotone w.r.t. ≤t and monotone w.r.t.
≤f and ≤i. Notice also that, for any product trilattice with t-involution
B1 �B2, the reduct 〈B1 × B2,∧t,∨t,∧i,∨i,−t〉 is a bilattice that coincides
with the direct product B1 ×B2.

{t,f}-involutions. Let B1 = 〈B1,≤1,v1,¬1〉 and B2 = 〈B2,≤2,v2,¬2〉
be bilattices such that there is an isomorphism h : B1

∼= B2. Then we define
the product trilattice with t- and f-involutions

B1 �B2 := 〈B1 ×B2,∧t,∨t,∧f ,∨f ,∧i,∨i,−t,−f〉

as before, with the f-involution operation given, for all 〈a, b〉 ∈ B1 ×B2, by

−f〈a, b〉 := 〈h−1(b), h(a)〉.

In particular, if B1 = B2, we have

−f〈a, b〉 := 〈b, a〉.

It easy to check that the operation thus defined satisfies the conditions for
being an f-involution. Moreover, notice that the two involutions always com-
mute.

{t,f,i}-involutions. Let B1 = 〈B1,≤1,v1,¬1,−1〉 and B2 = 〈B2,≤2,
v2,¬2,−2〉 be bilattices with conflation such that there is an isomorphism h :
B1
∼= B2. Then we define the product trilattice with t-, f- and i-involutions

B1 �B2 := 〈B1 ×B2,∧t,∨t,∧f ,∨f ,∧i,∨i,−t,−f ,−i〉

as before, with the i-involution operation given, for all 〈a, b〉 ∈ B1 ×B2, by

−i〈a, b〉 := 〈−1 h
−1(b),−2 h(a)〉.
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In particular, if B1 = B2 = 〈B,≤,v,¬,−〉, we have

−i〈a, b〉 := 〈− b,− a〉.

It is easy to check that the above-defined operation is actually an i-involution,
and that the commutative laws

−t−f = −f −t and −f −i = −i−f

always hold, while −t and −i commute if and only if in B1 and B2 negation
and conflation commute.

Let us also observe that, for any interlaced trilattice B�B, where B =
〈B,∧,∨,u,t,¬,−〉, the algebra

〈B ×B,∨f ,∧f ,∧i,∨i,−f ,−i〉

where the ≤f order of B�B is reversed, is a commutative interlaced bilat-
tice with conflation that is isomorphic to the product bilattice 〈B,u,t,−〉�
〈B,u,t,−〉. In fact, the f-involution −f is an isomorphism between 〈B ×
B,∨f ,∧f ,∧i,∨i,−f ,−i〉 and 〈B × B,∧f ,∨f ,∧i,∨i,−f ,−i〉, so we may con-
clude that

〈B ×B,∧f ,∨f ,∧i,∨i,−f ,−i〉 ∼= 〈B,u,t,−〉 � 〈B,u,t,−〉.

3. Representation of interlaced trilattices

In this section we are going to prove representation theorems that es-
tablish which classes of trilattices can be represented through the product
constructions defined in the previous section. We start with the case of tri-
lattices without involutions.

3.1. Trilattices without involutions

Let A = 〈A,∧t,∨t,∧f , ∨f ,∧i,∨i〉 be an interlaced trilattice. Let us focus
on its pre-bilattice reduct

〈A,∧f ,∨f ,∧i,∨i〉

and consider the relations ∼1 and ∼2 defined as follows:

∼1 := {〈a, b〉 ∈ A× A : a ∧i b = a ∨f b}
∼2 := {〈a, b〉 ∈ A× A : a ∧i b = a ∧f b}.

14



It is easy to show that

∼1 = {〈a, b〉 ∈ A× A : a ∨i b = a ∧f b}
∼2 = {〈a, b〉 ∈ A× A : a ∨i b = a ∨f b}.

We will use the following result [5, Proposition 3.8]:

Proposition 3.1. The relations ∼1 and ∼2 defined above are factor congru-
ences of any interlaced pre-bilattice 〈A,∧f ,∨f ,∧i,∨i〉.

Let us remind the reader that two congruences θ1, θ2 of an algebra A are
called factor congruences of A when the following conditions are satisfied [6,
Definition II.7.4]:

(i) θ1 ∩ θ2 = IdA

(ii) θ1 ∨ θ2 = A× A

(iii) θ1 and θ2 permute.

This implies that A is isomorphic to the direct product A/θ1×A/θ2. In our
case we have then that 〈A,∧f ,∨f ,∧i,∨i〉 is isomorphic to the direct product

〈A,∧f ,∨f ,∧i,∨i〉/∼1 × 〈A,∧f ,∨f ,∧i,∨i〉/∼2.

This is also true for the trilattice as a whole:

Proposition 3.2. The relations ∼1 and ∼2 are factor congruences of any
interlaced trilattice A.

Proof. Examining the definition of factor congruence, one sees that the only
part that needs to be checked is that ∼1 and ∼2 are indeed congruences of
A, i.e., that they are compatible with {∧t,∨t}. To see this recall that, by [5,
Definition 3.7], a ∼1 b is equivalent to the condition that there be c, d ∈ A
such that a ≤f c ≤i b and b ≤f d ≤i a. Now consider an arbitrary element
e ∈ A. Applying the interlacing conditions to the above inequalities, we
obtain a ∧t e ≤f c ∧t e ≤i b ∧t e and b ∧t e ≤f d ∧t e ≤i a ∧t e, which means
(a∧t e) ∼1 (b∧t e). Since we are in a lattice, this is enough to conclude that
∼1 is compatible with ∧t. A similar reasoning may be applied to establish
the remaining cases.

The previous result immediately yields the following:

15



Theorem 3.3. For any interlaced trilattice A, it holds that A ∼= A/∼1 ×
A/∼2 .

Let us note that A/∼1 and A/∼2 are degenerated trilattices, in the sense
that in A/∼1 the ≤f order is the dual of ≤i, while in A/∼2 we have ≤f = ≤i.
It is then easy to check that the direct product A/∼1×A/∼2 coincides with
the product trilattice 〈A,≤t,≤i〉/ ∼1 � 〈A,≤t,≤i〉/∼2. Therefore we obtain
the following:

Theorem 3.4. Any interlaced trilattice A is isomorphic to a product trilat-
tice

A ∼= 〈A,≤t,≤i〉/ ∼1 � 〈A,≤t,≤i〉/∼2

where 〈A,≤t,≤i〉/ ∼1 and 〈A,≤t,≤i〉/∼2 are interlaced pre-bilattices.

3.2. Trilattices with t-involution

Let A = 〈A,≤t,≤f ,≤i,−t〉 be an interlaced trilattice with t-involution.
Using De Morgan laws, it is not difficult to prove the following:

Proposition 3.5. The relations ∼1 and ∼2 defined in the previous section
are congruences of any interlaced trilattice with t-involution.

Proof. Obviously we only need to check that ∼1 and ∼2 are compatible with
the t-involution, and this is easily proved. In fact a ∼1 b means a ∧i b =
a ∨f b and, using De Morgan laws, we have that the latter equality implies
−t a ∧i −t b = −t(a ∧i b) = −t(a ∨f b) = −t a ∨f −t b. So −t a ∼1 −t b, and
the same reasoning applies to ∼2.

The quotients 〈A,≤t,≤i,−t〉/ ∼1 and 〈A,≤t,≤i,−t〉/∼2 are thus bilat-
tices, and it is not difficult to obtain the following:

Theorem 3.6. Any interlaced trilattice with t-involution A is isomorphic to
the product trilattice:

A ∼= 〈A,≤t,≤i,−t〉/ ∼1 � 〈A,≤t,≤i,−t〉/∼2

where 〈A,≤t,≤i,−t〉/ ∼1 and 〈A,≤t,≤i,−t〉/ ∼2 are interlaced bilattices.

Proof. The isomorphism is defined as for trilattices without involutions, i.e.,
is given by the map

ι : a 7−→ 〈[a]1, [a]2〉
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that to any a ∈ A assigns the ordered pair formed by its equivalence class
[a]1 modulo ∼1 and its equivalence class [a]2 modulo ∼2. We have to show
that this map preserves the t-involution, and this is easy because we have

−t ι(a) = −t〈[a]1, [a]2〉 = 〈−t[a]1,−t[a]2〉 = 〈[−t a]1, [−t a]2〉 = ι(−t a).

Using the above representation, it is easy to see that the smallest non-
trivial trilattice with t-involution has four elements2 and can be represented
as a product B1 �B2 where B1 (or, equivalently, B2) is trivial and B2 (or
B1) is the four-element Belnap bilattice FOUR2. This implies that either
≤f=≤i or ≤f=≥i. Another easy consequence is then that the smallest non-
degenerated interlaced trilattice with t-involution (non-degenerated meaning
that, for any two orders of the trilattice ≤,≤′, neither ≤=≤′ nor ≤=≥′)
must have sixteen elements, being isomorphic to FOUR2 �FOUR2.

3.3. Trilattices with {t, f}-involutions

If A is an interlaced trilattice with t- and f-involutions, then the reduct

〈A,∧f ,∨f ,∧i,∨i,−f〉

is an interlaced bilattice. Thus, we know [5, Proposition 3.8] that

〈A,∧f ,∨f ,∧i,∨i,−f〉 ∼= 〈A,∧i,∨i〉/∼1 � 〈A,∧i,∨i〉/∼2.

Moreover, there is a lattice isomorphism

h : 〈A,∧i,∨i〉/∼1
∼= 〈A,∧i,∨i〉/∼2

defined, for all a ∈ A, as

h : [a]1 7−→ [−f a]2.

The following result shows that under an additional assumption this map is
also a bilattice isomorphism between the bilattices 〈A,∧t,∨t,∧i,∨i,−t〉/ ∼1

and 〈A,∧t,∨t,∧i,∨i,−t〉/ ∼2.

2Notice that any non-trivial trilattice with t-involution 〈A,≤t,≤f ,≤i,−t〉, indepen-
dently on whether it is interlaced or not, must have at least four elements, because for
instance the reduct 〈A,≤t,≤f ,−t〉 is a bilattice and we know that the smallest non-trivial
bilattice has four elements.
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Theorem 3.7. Let A be an interlaced trilattice with t- and f-involutions such
that the two involutions commute, i.e., −t−f = −f −t. Then:

(i) h : 〈A,≤t,≤i,−t〉/ ∼1
∼= 〈A,≤t,≤i,−t〉/ ∼2

(ii) A ∼= 〈A,≤t,≤i,−t〉/ ∼1�〈A,≤t,≤i,−t〉/∼1, where 〈A,≤t,≤i,−t〉/ ∼1

is an interlaced bilattice.

Proof. (i). It is easy to check that h is a homomorphism w.r.t. the operations
{∧t,∨t}, for using De Morgan laws we have

h([a]1 ∧t [b]1) = h([a ∧t b]1)
= [−f (a ∧t b)]2

= [−f a ∧t −f b]2

= [−f a]2 ∧t [−f b)]2

= h([a]1) ∧t h([b]1)

and similarly for the operation ∨t. Notice that this step does not depend on
the assumption that the two involutions commute. Adding such a require-
ment, we may show that h also preserves the t-involution, for we have

h([−t a]1) = [−f −t a]2 = [−t−f a]2 = −t[−f a]2 = −t h([a]1).

Therefore we conclude that h is an isomorphism between the bilattices

〈A,≤t,≤i,−t〉/ ∼1

and
〈A,≤t,≤i,−t〉/ ∼2.

(ii). Follows immediately from the previous item.

As in the previous section, we may use the result obtained above to
conclude that the smallest non-trivial trilattice with t- and f-involution op-
erations (notice that we do not need to assume that they commute) has six-
teen elements, as it is again isomorphic to the product trilattice FOUR2 �
FOUR2.
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3.4. Trilattices with {t, f, i}-involutions

Suppose A = 〈A,≤t,≤f ,≤i,−t,−f ,−i〉 is an interlaced trilattice with
t-, f- and i-involutions. Notice that neither −f nor −i is compatible with
∼1 (nor with ∼2), but it is easy to prove that the composition of the two
operation is.

Proposition 3.8. Let A be an interlaced trilattice with t-, f- and i-involutions
and a, b ∈ A. Then:

(i) a ∼1 b implies (−f −i a) ∼1 (−f −i b) and (−i−f a) ∼1 (−i−f b)

(ii) a ∼2 b implies (−f −i a) ∼2 (−f −i b) and (−i−f a) ∼2 (−i−f b).

Proof. (i). Assume a ∼1 b, that is a ∧i b = a ∨f b. Using De Morgan laws,
we have

−f −i a ∨i −f −i b = −f (−i a ∨i −i b)

= −f −i(a ∧i b)
= −f −i(a ∨f b)
= −f (−i a ∨f −i b)

= −f −i a ∧f −f −i b

which implies (−f −i a) ∼1 (−f −i b). The remaining cases can be proved by
the same reasoning.

Let us introduce the following abbreviations: −fi := −f −i and −if :=
−i−f . Taking into account the above proposition, one sees that it makes
sense to consider the quotients

〈A,≤t,≤i,−t−fi〉/ ∼1

and
〈A,≤t,≤i,−t,−if〉/ ∼1.

If the two involution operations commute, i.e., if −f −i = −i−f , then obvi-
ously

〈A,≤t,≤i,−t,−fi〉/ ∼1 = 〈A,≤t,≤i,−t,−if〉/ ∼1.

In such a case it is easy to check that 〈A,≤t,≤i,−t,−fi〉/ ∼1 is a bilattice
with conflation, thus obtaining the following:
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Figure 3: The trilattice SIXT EEN 3 represented as FOUR2 �FOUR2.

Theorem 3.9. Let A be an interlaced trilattice with t-, f- and i-involutions
such that −f −i = −i−f . Then

A ∼= 〈A,≤t,≤i,−t,−fi〉/ ∼1 � 〈A,≤t,≤i,−t,−fi〉/ ∼1

where 〈A,≤t,≤i,−t,−fi〉/ ∼1 is an interlaced bilattice with conflation.

Using the above result we may check that the smallest non-trivial trilattice
with t-, f- and i-involutions is exactly the canonical trilattice SIXT EEN 3,
which is isomorphic to the product trilattice of the bilattice with conflation
FOUR2 with itself. Figure 3 shows a diagram of this trilattice represented as
a product. Notice that, as happened in the case of the bilattice negation, the
t-involution corresponds in the diagram to reflection along the vertical axis,
but none of the other two involution operations has now a simple graphical
characterization.
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3.5. Odintsov’s construction

In this section we compare the representation results obtained above with
a construction introduced by S. Odintsov [16] that provides a representation
of the trilattice SIXT EEN 3 as a special kind of power of the two-element
Boolean algebra.

Let us denote by 2 = 〈{0, 1},∧,∨,′ 〉 the two-element Boolean algebra
and by ≤ its lattice order. According to Odintsov’s construction, an element
of SIXT EEN 3 is represented as a matrix of the form∣∣∣∣ n f

t b

∣∣∣∣
where n, f, t, b ∈ {0, 1}. The t- and f-orders on SIXT EEN 3 are then defined
as follows:∣∣∣∣ n1 f1

t1 b1

∣∣∣∣ ≤t

∣∣∣∣ n2 f2
t2 b2

∣∣∣∣ iff
n2 ≤ n1 f2 ≤ f1
t1 ≤ t2 b1 ≤ b2∣∣∣∣ n1 f1

t1 b1

∣∣∣∣ ≤f

∣∣∣∣ n2 f2
t2 b2

∣∣∣∣ iff
n1 ≤ n2 f2 ≤ f1
t1 ≤ t2 b2 ≤ b1

and the involution operations are given by:

−t

∣∣∣∣ n f
t b

∣∣∣∣ =

∣∣∣∣ t b
n f

∣∣∣∣ −f

∣∣∣∣ n f
t b

∣∣∣∣ =

∣∣∣∣ f n
b t

∣∣∣∣
It is easy to check that the i-order, although not considered in [16], is

given by:∣∣∣∣ n1 f1
t1 b1

∣∣∣∣ ≤i

∣∣∣∣ n2 f2
t2 b2

∣∣∣∣ iff
n1 ≤ n2 f1 ≤ f2
t1 ≤ t2 b1 ≤ b2

while the i-involution is given by

−i

∣∣∣∣ n f
t b

∣∣∣∣ =

∣∣∣∣ b′ t′

f ′ n′

∣∣∣∣
where b′, t′, f ′, n′ denote the Boolean complements of, respectively, b, t, f, n.
All the algebraic operations of SIXT EEN 3 are thus determined. Let us now
see how this trilattice can be represented through the construction introduced
in Section 2.4.

21



Recall that we may assume without loss of generality that any interlaced
(pre-)bilattice is of the form L1�L2, where L1 and L2 are lattices. Moreover,
we proved that any interlaced trilattice has the form B1�B2, where B1 and
B2 are interlaced (pre-)bilattices. Putting these results together we may
conclude that any interlaced trilattice A = 〈A,≤t,≤f ,≤i〉 can be seen as a
product

(L1 � L2)� (L3 � L4)

where each Ln = 〈Ln,≤n〉 with 1 ≤ n ≤ 4 is a lattice. In this way, any
element a ∈ A is represented as a 4-tuple 〈a1, a2, a3, a4〉 ∈ L1×L2×L3×L4.
Using this notation, it is easy to see that the three lattice orders on A are
given by:

〈a1, a2, a3, a4〉 ≤t 〈b1, b2, b3, b4〉 iff a1 ≤1 b1 b2 ≤2 a2

a3 ≤3 b3 b4 ≤4 a4

〈a1, a2, a3, a4〉 ≤f 〈b1, b2, b3, b4〉 iff b1 ≤1 a1 b2 ≤2 a2

a3 ≤3 b3 a4 ≤4 b4

〈a1, a2, a3, a4〉 ≤i 〈b1, b2, b3, b4〉 iff a1 ≤1 b1 a2 ≤2 b2

a3 ≤3 b3 a4 ≤4 b4.

As we have seen in the previous sections, if A has a t-involution, then
L1
∼= L2 and L3

∼= L4. Similarly, the existence of an f-involution entails that
L1
∼= L3 and L2

∼= L4. Finally, if all three involution operations exist, then
L1
∼= L2

∼= L3
∼= L4 and in addition each Ln has an involution operation,

which we denote by ′. The involution operations in A, in case they exist, are
defined by

−t〈a1, a2, a3, a4〉 = 〈a2, a1, a4, a3〉
−f〈a1, a2, a3, a4〉 = 〈a3, a4, a1, a2〉
−i〈a1, a2, a3, a4〉 = 〈a′4, a′3, a′2, a′1〉.

Notice that, in order to simplify the notation, we are assuming that Lm = Ln

whenever Lm
∼= Ln for 1 ≤ m,n ≤ 4.

It is then easy to see that, taking Ln = 2 for all 1 ≤ n ≤ 4, where 2 de-
notes the two-element Boolean algebra, we obtain the trilattice SIXT EEN 3
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as a special case of our construction. Using Odintsov’s matrix notation, our
4-tuple

〈a1, a2, a3, a4〉

would be rewritten as ∣∣∣∣ a4 a2
a3 a1

∣∣∣∣
and, conversely, the matrix ∣∣∣∣ n f

t b

∣∣∣∣
corresponds to the 4-tuple 〈b, f, t, n〉. It is easy to check that, using this
notation, our definitions of the trilattice operations coincide with Odintsov’s.

4. Congruences of interlaced trilattices

We now turn to the study of congruences of interlaced trilattices, with the
aim to obtain more information on these algebras from a universal algebraic
point of view.

4.1. Trilattices without involutions

Let us start with trilattices without any involution, and let us keep in
mind that, as observed above, all the classes of trilattices we deal with are
varieties.

We know from the theory of pre-bilattices [5, Proposition 3.8] that the
congruences of any interlaced pre-bilattice B = 〈B,∧,∨,u,t〉 coincide with
those of either one of its lattice reducts 〈B,∧,∨〉 and 〈B,u,t〉. This obser-
vation immediately implies the following:

Proposition 4.1. The congruences of any interlaced trilattice

A = 〈A,∧t,∨t,∧f ,∨f ,∧i,∨i〉

coincide with those of any of its lattice reducts, i.e.,

Con(A) = Con(〈A,∧t,∨t〉) = Con(〈A,∧f ,∨f〉) = Con(〈A,∧i,∨i〉).

It is then obvious that Con(A) also coincides with the congruences of any
of the pre-bilattice reducts of A. This observation can be used to prove the
following:
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Proposition 4.2. Let B1 �B2 be an interlaced trilattice without any invo-
lution, B1 and B2 being interlaced pre-bilattices. Then

Con(B1 �B2) ∼= Con(B1)× Con(B2).

Proof. We have observed that Con(B1�B2) coincides with the congruences
of any of its pre-bilattice reducts, for instance those of 〈B1×B2,∧t,∨t,∧i,∨i〉.
As noted in Section 2.4, we have 〈B1 × B2,∧t,∨t,∧i,∨i〉 = B1 ×B2. Since
we are in a congruence-distributive variety, we may invoke the Fraser-Horn-
Hu property [11, Corollary 1] to conclude that Con(B1 ×B2) ∼= Con(B1)×
Con(B2), which this completes our proof.

Recall that, by [5, Proposition 3.8], for any pre-bilattice B there are
lattices L1 and L2 such that B ∼= L1�L2 and Con(B) ∼= Con(L1)×Con(L2).
In the light of the previous proposition we may then observe that if A is an
interlaced trilattice, then there are lattices L1, . . . ,L4 such that

A ∼= (L1 � L2)� (L3 � L4)

and
Con(A) ∼= Con(L1)× Con(L2)× Con(L3)× Con(L4).

This means then that any question concerning the lattice of congruences of
trilattices can be reduced to a question concerning congruences of lattices,
which is of course a fairly well-known topic. We are going to see that, adding
sometimes a few restrictions, it will be possible to obtain an analogous re-
duction also in the case of trilattices with involution operations.

4.2. Trilattices with t-involution

In case A has just one involution we may reason as in the previous case
to obtain the following:

Proposition 4.3. Let A = 〈A,∧t,∨t,∧f ,∨f ,∧i,∨i,−t〉 be an interlaced tri-
lattice with t-involution. Then

Con(A) = Con(〈A,∧t,∨t,∧f ,∨f ,−t〉) = Con(〈A,∧t,∨t,−t〉).

The reduct 〈A,∧t,∨t,∧f ,∨f ,−t〉 is an interlaced bilattice, while the reduct
〈A,∧t,∨t,−t〉 is an involutive lattice. Thanks to this result we then have a
characterization of the congruences of interlaced trilattices with t-involution
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in terms of the congruences of either of these two classes of algebras. More-
over, we know [5, Proposition 3.13] that any interlaced bilattice B is isomor-
phic to a product L � L for some lattice L such that Con(B) ∼= Con(L).
Thus, letting 〈A,∧t,∨t,∧f ,∨f ,−t〉 = L� L, we may conclude that

Con(A) ∼= Con(L).

4.3. Trilattices with {t, f}-involutions

If A has two involution operations we may repeat the previous reasoning
to obtain the following:

Proposition 4.4. Let A = 〈A,∧t,∨t,∧f ,∨f ,∧i,∨i,−t,−f〉 be an interlaced
trilattice with t- and f-involutions. Then

Con(A) = Con(〈A,∧t,∨t,∧f ,∨f ,−t,−f〉)

where the reduct 〈A,∧t,∨t,∧f ,∨f ,−t,−f〉 is an interlaced bilattice with con-
flation.

In general we do not know of a nice characterization of the congruences of
interlaced bilattices with conflation, since the only known representation the-
orem for this class of algebras [4, Theorem 4.2] holds just for the commutative
case. However, if the two involutions commute, then the above-mentioned
reduct is a commutative bilattice with conflation, so it can be represented as
a product L � L, where L is an involutive lattice. In this case [4, Theorem
4.3] we have that

Con(L) ∼= Con(〈A,∧t,∨t,∧f ,∨f ,−t,−f〉) = Con(A).

Notice that this lattice L does not coincide with any of the Ln obtained from
the representation of trilattices through the construction described in Section
3.5.

4.4. Trilattices with {t, f, i}-involutions

The case where A has three involution operations, i.e.,

A = 〈A,∧t,∨t,∧f ,∨f ,∧i,∨i,−t,−f ,−i〉

is somewhat more involved. We will assume that in A all three involution
operations commute with each other. By the representation result proved
in Section 3.4, this implies that A has the form B � B for some interlaced
bilattice with conflation B = 〈B,∧,∨,u,t,¬,−〉. It is then our aim to prove
the following statement:
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Proposition 4.5. If A is an interlaced trilattice with t, f- and i-involutions
such that A ∼= B � B and all three involutions commute with each other,
then Con(A) ∼= Con(B).

Proof. Reasoning as in the previous cases, we start by noting that

Con(B�B) = Con(〈B ×B,∧f ,∨f ,∧i,∨i,−t,−f ,−i〉).

As observed at the end of Section 2.4, the reduct 〈B×B,∧f ,∨f ,∧i,∨i,−f ,−i〉
is a commutative interlaced bilattice with conflation and

〈B,u,t,−〉 � 〈B,u,t,−〉 ∼= 〈B ×B,∧f ,∨f ,∧i,∨i,−f ,−i〉.

By [4, Theorem 4.3], we then know that there is an isomorphism

H : Con(〈B,u,t,−〉) ∼= Con(〈B ×B,∧f ,∨f ,∧i,∨i,−f ,−i〉)

which can be defined, for all θ ∈ Con(〈B,u,t,−〉) and all a1, a2, b1, b2 ∈ B,
as follows:

〈〈a1, a2〉, 〈b1, b2〉〉 ∈ H(θ) iff 〈a1, b1〉, 〈a2, b2〉 ∈ θ.

The inverseH−1 may be defined, for all η ∈ Con(〈B×B,∧f ,∨f ,∧i,∨i,−f ,−i〉)
and all a, b ∈ B, as follows:

〈a, b〉 ∈ H−1(η) iff 〈〈a, a〉, 〈b, b〉〉 ∈ η.

Let us check that the maps H and H−1 are actually mutually inverse. Let
us introduce terms p(x, y) and q(x) defined as follows:

p(x, y) := (x ∧i (x ∧f y)) ∨i (y ∧i (x ∨f y))

q(x) := (x ∨f (x ∨i −f x)) ∧i −f (x ∨f (x ∨i −f x)).

Using the product representation it is easy to check that, for all 〈a1, a2〉 ∈ B×
B, it holds that 〈a1, a2〉 = p(〈a1, a1〉, 〈a2, a2〉) and 〈a1, a1〉 = q(〈a1, a2〉). This
clearly implies (Cf. [4, Proposition 3.3]) that, for all 〈a1, a2〉, 〈b1, b2〉 ∈ B×B
and for all η ∈ Con(〈B ×B,∧f ,∨f ,∧i,∨i,−f ,−i〉),

〈〈a1, a2〉, 〈b1, b2〉〉 ∈ η iff 〈〈a1, a1〉, 〈b1, b1〉〉, 〈〈a2, a2〉, 〈b2, b2〉〉 ∈ η.
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Now for all η ∈ Con(〈B × B,∧f ,∨f ,∧i,∨i,−f ,−i〉) we have that, by defini-
tion, 〈〈a1, a2〉, 〈b1, b2〉〉 ∈ H(H−1(η)) means that 〈a1, b1〉, 〈a2, b2〉 ∈ H−1(η).
This means that

〈〈a1, a1〉, 〈b1, b1〉〉, 〈〈a2, a2〉, 〈b2, b2〉〉 ∈ η

which is equivalent, as we have seen, to 〈〈a1, a2〉, 〈b1, b2〉〉 ∈ η. Hence,
H(H−1(η)) = η.
Conversely, for all θ ∈ Con(〈B,u,t,−〉), we have that 〈a, b〉 ∈ H−1(H(θ))
if and only if 〈〈a, a〉, 〈b, b〉〉 ∈ H(θ) if and only if 〈a, b〉 ∈ θ. Hence, θ =
H−1(H(θ)).
As observed above, we also know that

Con(〈B,u,t,−〉) = Con(〈B,∧,∨,u,t,−〉).

Therefore,

H : Con(〈B,∧,∨,u,t,−〉) ∼= Con(〈B ×B,∧f ,∨f ,∧i,∨i,−f ,−i〉).

In order to prove that H : Con(B) ∼= Con(B � B), it will then be suffi-
cient to show that any congruence θ ∈ Con(〈B,∧,∨,u,t,−〉) is compati-
ble with the operation ¬ (i.e., is indeed a congruence of B) if and only if
H(θ) is compatible with −t (i.e., is a congruence of B � B). Assume then
θ ∈ Con(B) and 〈〈a1, a2〉, 〈b1, b2〉〉 ∈ H(θ). By the definition of H, this
means 〈a1, b1〉, 〈a2, b2〉 ∈ θ. Since θ is a congruence of B, this implies that
〈¬a1,¬b1〉, 〈¬a2,¬b2〉 ∈ θ, which means that 〈〈¬a1,¬a2〉, 〈¬b1,¬b2〉〉 ∈ H(θ).
By definition −t〈a1, a2〉 = 〈¬a1,¬a2〉, so we are allowed to conclude that
〈−t〈a1, a2〉,−t〈b1, b2〉〉 ∈ H(θ). Conversely, suppose η ∈ Con(B � B) and
〈a, b〉 ∈ H−1(η). By the definition of H, this means that 〈〈a, a〉, 〈b, b〉〉 ∈ η.
Since η is a congruence of B � B, this implies that 〈−t〈a, a〉,−t〈b, b〉〉 ∈ η,
i.e., 〈〈¬a,¬a〉, 〈¬b,¬b〉〉 ∈ η and this means that 〈¬a,¬b〉 ∈ H−1(η).

An easy consequence of the above result is the following. Since we as-
sumed that −t and −i commute in B�B, we know that in B negation and
conflation commute. Hence we may apply the representation theorem for
commutative bilattices with conflation to conclude that

Con(B�B) ∼= Con(B) ∼= Con(L)

where L is an involutive lattice such that B ∼= L� L.
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5. Distributive trilattices

The characterization of congruences obtained in the previous section al-
lows one to transfer some results that are known for distributive (bi)lattices
to the context of distributive trilattices.

In the first place we are now able to individuate the subdirectly irre-
ducible distributive trilattices, i.e., the algebras that are generators of the
corresponding varieties.

We know, for instance, that any subdirectly irreducible distributive tri-
lattice without any involution A = 〈A,∧t,∨t,∧f ,∨f ,∧i,∨i〉 must have two
elements, and it is easy to check that there are only two non-isomorphic al-
gebras of this kind: one is such that ≤t=≤f=≤i and the other such that
≤t=≤f=≥i. Therefore the variety of distributive trilattices is generated by
its two two-element members.

Let us now consider distributive trilattices with involutions.

t-involution. For any subdirectly irreducible distributive trilattice with t-
involution

A = 〈A,∧t,∨t,∧f ,∨f ,∧i,∨i,−t〉,
the reducts 〈A,∧t,∨t,∧f ,∨f ,−t〉 and 〈A,∧t,∨t,∧i,∨i,−t〉 must be isomor-
phic to the bilattice FOUR2 (which is, as mentioned before, the only sub-
directly irreducible distributive bilattice). It is then easy to see that there
are only two algebras of this kind, namely the one in which ≤f=≤i and the
one in which ≤f=≥i. Therefore the variety of distributive trilattices with
t-involution is generated by its two four-element members.

{t,f}-involutions. Now suppose A = 〈A,∧t,∨t,∧f ,∨f ,∧i,∨i,−t,−f〉 is a
subdirectly irreducible distributive trilattice with t- and f-involutions such
that the two involutions commute. By the previous results we may assume
that A = L × L, where L is the universe of a subdirectly irreducible dis-
tributive involutive lattice L. In other words, L is a subdirectly irreducible
De Morgan lattice, which implies (see [10]) that L may only have either two,
three or four elements. As observed at the end of Section 3.3, the smallest
non-trivial trilattice with t- and f-involution operations has sixteen elements.
We may then conclude that |A| = 16. We then have that the variety of
distributive trilattices with commuting t- and f-involutions is generated by
its sixteen-element member. Moreover, by Theorem 3.7, we know that this
algebra A is such that

A ∼= FOUR2 �FOUR2.
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{t,f,i}-involutions. Finally, let A = 〈A,∧t,∨t,∧f ,∨f ,∧i,∨i,−t,−f ,−i〉 be
a subdirectly irreducible distributive trilattice (with t-, f- and i-involutions)
such that all involutions commute. By Theorem 3.9 we may assume that
A = B × B, where B is the universe of a commutative distributive bilattice
with conflation. Then we also know that B = L×L, where L is the universe
of a subdirectly irreducible De Morgan lattice. Reasoning as in the previous
case, we may conclude that 2 ≤ |L| ≤ 4, so |A| ∈ {24, 34, 44}. Therefore the
variety of distributive trilattices with commuting t-, f- and i-involutions is
generated by its three members A1,A2 and A3 such that |A1| = 24, |A2| = 34

and |A3| = 44.

6. Future work

As mentioned above, the present work is the first purely algebraic study
devoted to trilattices and the results presented here are to be considered but
preliminary. We mention some lines of research that, in our opinion, deserve
further investigation:

• the formulation of the representation results stated above in terms of
category theory, along the same lines of the work done in [4] for bilat-
tices, with the aim to obtain categorical equivalences between different
classes of trilattices and of lattices;

• the study of trilattices satisfying weaker interlacing conditions, for in-
stance monotonicity of the lattice operations of just one of the three
orders with respect to the other two (an analogous study has been
developed, for bilattices, by Pynko [17]);

• the study of bounded interlaced trilattices, in which one could hope to
obtain results similar to the ones proved by Avron [2] on bounded in-
terlaced bilattices (for instance, that bounded interlaced trilattices are
equivalent, up to algebraic signature, to bounded interlaced bilattices
with some extra constants satisfying certain properties);

• the generalization of the results obtained in the previous sections to
n-lattices, i.e., structures on which an arbitrary number n of lattice
orders is simultaneously defined;
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• the expansion of the trilattice language considered in the previous sec-
tions through the introduction of implication operations, with the pos-
sibility to extend the representation results to the new classes of alge-
bras thus obtained, along the line of the study developed in [18, 4] for
bilattices with implication;

• the application of algebraic techniques to the study of trilattice logics,
which appear to have strong similarities with the bilattice logics studied
from an algebraic logic point of view in [18, 5].
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