Chapter 1
Unified Correspondence

Willem Conradie, Silvio Ghilardi, Alessandra Palmigiano

Abstract The present paper is aimed at giving a conceptual exposition of the math-
ematical principles underlying Sahlqvist correspondence theory. These principles
are argued to be inherently algebraic and order-theoretic. They translate naturally
on relational structures thanks to Stone-type duality theory. The availability of this
analysis in the setting of the algebras dual to relational models leads naturally to
the definition of an expanded (object) language in which the well-known ‘minimal
valuation’ meta-arguments can be encoded, and of a calculus for correspondence of
a proof-theoretic style in the expanded language, mechanically computing the first-
order correspondent of given propositional formulas. The main advantage brought
about by this formal machinery is that correspondence theory can be ported in a
uniform way to families of nonclassical logics, ranging from substructural logics to
mu-calculi, and also to different semantics for the same logic, paving the way to a
uniform correspondence theory.

Keywords: Sahlqvist Correspondence theory, Duality, algorithmic correspondence,
intuitionistic modal logic, mu-calculus

Correspondence Theory may be applied to any
kind of semantic entity.

[J. van Benthem, Correspondence theory,
Handbook of Philosophical Logic, p. 381]
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1.1 Introduction

Correspondence theory has been a core interest of van Benthem’s since early in his
career, and is the field to which his most celebrated result in mathematical logic—the
van Benthem Characterization Theorem—belongs. Throughout his subsequent ca-
reer, he has been pointing out various correspondence phenomena embedded in his
many research interests, which he collected e.g. in [5], [6], and [7]. Most recently,
[8] ties in with his current interests in information flow. van Benthem has always
been eager to point out unexplored research directions, and these papers are no ex-
ception. The correspondence phenomena he identified are often fringe phenomena,
in the sense that they are clearly recognizable as instances of correspondence, but
are not embedded in a systematic theory, see especially [5]. We are now in a posi-
tion to bring the fringe to the core and build a unifying theory around these scattered
instances. Clearly, such an encompassing theory cannot be unfolded in the scope of
the present paper; our objectives are more modest, and are:

(a) to give a conceptual exposition of the mathematical principles underlying the
correspondence mechanism, and how these principles work uniformly across differ-
ent logics and also across different semantics for the same logic;

(b) to give pointers to the recent literature, and to mention the most important direc-
tions in which correspondence theory has been extended;

(c) to give a second reading to van Benthem’s fringe examples, to show how the
general principles identified in item (a) are still at work in these examples, and to
point at ways in which the general theory accounts for them.

1.2 Correspondence via Duality

Relational semantics for modal logic provides a very clear understanding of what
modal axioms mean in many different contexts of application, and is the essential
reason why modal logic has become the successful formalism it is. With the in-
troduction of Kripke semantics in the early 1960s, modal logic found itself in a
very special position among non-classical logic, thanks to the fact that relational
structures can be used both as semantics for modal logic and for classical first-
order logic. This common semantic ground immediately elicited a whole research
programme in the model theory of modal logic, focusing on its expressivity. A high
point of this programme was of course van Benthem’s theorem characterizing modal
logic as the bisimulation invariant fragment of first-order logic [4].

A host of simple but insightful connections started to pop up between modal ax-
ioms which have been previously and independently studied (e.g. in formal philoso-
phy), and basic properties of relational structures, such as reflexivity or transitivity.
These connections are established via the notion of local validity of a modal formula
in a relational structure, i.e., of that formula being satisfied at a given state for every
valuation. The style of argument used to establish each of these connections is fairly
uniform, so let us briefly review how this is done by way of one such example.
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Example 1. The following are equivalent for any relational structure ¥ = (W, R) and
anyw e W:

1. The modal formula Op — OOp is true in ¥ at w under all assignments V(p) C
W

2. F satisfies the first-order formula a(x) expressing the inclusion R[R[x]] C R[x]
whenever the free variable x is interpreted as w.!

Proof. For the interesting direction, i.e., assume 1 and prove 2, we need to assume
that there are states u and v s.t. wRu and uRv, and show that wRy. Consider the
assignment V*(p) := R[w]; this is the smallest assignment of p under which the
antecedent of Op — OOp is true. Hence, by modus ponens w must satisfy also the
conclusion OOp under the same assignment, which implies that u satisfies Op under
V*, which implies that v € V*(p) = R[w].

The Sahlqvist formulas, introduced by Hendrik Sahlqvist [45] and further developed
by van Benthem [4] and others, form the best known class of modal formulas whose
syntactic shape makes it possible for similar proof arguments to succeed.

New perspective. So what is special about the ‘Sahlqvist shape’, and how can we
systematically recognize and reproduce it in the syntax of other, non-modal logics?
The aim of the present paper is illustrating that the answers to these questions are
inherently algebraic and order-theoretic. Taking this perspective has the advantage
of endowing correspondence results with greater generality between logics and en-
hanced portability to different semantics. Such a claim of course requires elaborate
justification, and it is our hope that the reader will be convinced of this by the end
of the paper. For now, let us say the following: modal logic, like all propositional
logics, can be interpreted into algebras in a canonical way, in the same sense in
which first-order logic is interpreted into relational structures in a canonical way.
On the other hand, the interpretation of modal formulas into relational structures
seems to offer some degrees of choice; for instance, one could use either the for-
ward or backward direction of the relations to interpret the modal operators. The
relational models alone do not seem to provide enough justification to establish that
the usual interpretation of modal formulas into relational structures is canonical in
the informal sense. This looks like a fundamental asymmetry between the algebraic
and relational semantics of modal logic. Symmetry is restored, in a sense, if we allow
Stone duality (between complete atomic modal algebras and Kripke frames) to enter
the picture: indeed, the relational interpretation of modal formulas is uniquely iden-
tified as the dual characterization of its interpretation on algebras. Hence, its being
canonical can be derived as a consequence of this strong link, and of the canonicity
of the algebraic interpretation. This is pictured in Figure 1.1(b).

This discussion provides a general illustration of how, thanks to duality, the ad-
vantages of the algebraic perspective on modal logic can be transferred to Kripke
frames. But more specifically, the link between the relational and the algebraic in-
terpretation of modal logic directly invests correspondence theory: indeed, thanks

! For x € W we let R[x] = {v € W | Rxv}, and for X C W we let R[X] = U{R[x] | x € X}.
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Fig. 1.1: From a model-theoretic (a) to a duality-based (b) approach to correspon-
dence.

to it, we will be able to show that the Sahlqvist-style correspondence mechanism is
driven by properties which naturally live in the algebraic side of diagram (b).

Finally, having been able to recognize modal correspondence theory as part of
the logical fallout of the specific duality between the algebraic and the set-based
semantics of modal logic, it will also become clear that correspondence theory is by
no means unique to modal logic, and is uniformly available in great generality to all
(classes of) propositional logics for which such dualities are available. Before being
able to motivate these conclusions, let us take a step back, and resume the example
we started with.

Example, continued. The proof in Example 1 gives an illustration of the so-called
minimal valuation argument: assuming that a modal formula ¢ — y is locally valid
at a given state w, we instantiate with the minimal valuation which satisfies ¢ at w.
In fact, this argument is a special case of a more general reasoning pattern, which is
typically employed when proving the equivalence of the following statements:

(1) for every assignment V, if ¥, V,w I ¢ then F,V,w I ¢;

(2) for every assignment V* ranging in a given subclass K, if ¥, V", w I ¢ then
F, V5w .

The equivalence between (1) and (2), for a suitable choice of K, is the crucial re-
quirement on which the local correspondence mechanism is grounded. Indeed, (1)
is just a reformulation of ¢ — i being locally valid at a given state w. If K is a
class of assignments V* mapping each proposition variable to a subset of W which
admits a uniform description (for instance, in the case of our example above, K can
be taken as the set of all the assignments such that either V(p) = @ or V(p) = R[v]
for some v € W), and if further there are only finitely many members of K rele-
vant for any given state w, then (2) can be further manipulated® into an equivalent
condition in the language to which this uniform description belongs. This is done
by orderly substituting the predicate variables (ranging over arbitrary subsets) with

2 This aspect of the story deserves a separate account, which will be given in section 1.6.
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formal descriptions, in the target language, of definable subsets. So, for instance,
if these uniform descriptions are expressible in the first-order language of ¥ (as
is the case of the example above), then the equivalent condition will yield a local
first-order correspondent of ¢ — y; if the descriptions are expressible in the first-
order language of ¥ enriched with fixed points (as is the case of the Lob formula),
then we will have local correspondence with first-order logic with least fixed points.
Thus, in each context, this uniform descriptions for the assignments in K targets
the language we want to establish modal correspondence with, which explains why
we will refer to the class K which we choose in each particular context as the class
of domesticated assignments, as opposed to the arbitrary assignments, which roam
wildly and for which no such description is available.

Having indicated that the equivalence between (1) and (2) is the crux of the mat-
ter, let us take a closer look at it. It is immediate that (1) always implies (2). It is also
clear that the converse direction is false in its full generality, and our being able to
prove it depends on our being able to find, for a given arbitrary assignment V such
that w € [¢]ly (where [¢]ly denotes the extension of ¢ in F under the assignment
V), a domesticated assignment V* such that w € [[¢]ly- and [¥/Jly- € [¥]y. The
latter requirement is typically achieved by assuming that the extension function in-
duced by ¢ is monotone, and defining V* so that V*(p) C V(p) for all the relevant
proposition variables. Therefore, the two sufficient requirements on V* in order for
the equivalence between (1) and (2) to go through are:

we [[¢lly- and V*(p) C V(p). (1.1)

In all the different contexts in which (both the scattered instances of and the sys-
tematic) correspondence results hold, the general strategy to find this domesticated
assignment V* can be described as follows®: for each relevant variable p and every
w € [¢lly, the required domesticated V* is defined by stipulating V*(p) := [ally €
V(p) for some suitable (modal) formula «. It is often the case that @ does not belong
to the original language. To fix ideas, let us review what happens in the proof that
(2) implies (1) when ¢ — y is the formula Op — OOp in the Example 1: fix an
arbitrary V such that w € [Op]ly; then the following chain of equivalences holds:

w € [aplly iff {w} € OzV(p)
iff {w} € (R7'[V(p)])*
iff (W) NRV(p)¥l=0 (1.2)

iff RwWH N V(p) =02
iff R[w] C V(p).

The above chain of equivalences effectively rewrites our assumptions into a work-
able choice of domesticated valuation: indeed, it says that a valuation satisfies the
antecedent of our given formula at w iff it assigns p to a superset of R[w]. This im-
mediately implies that the set of valuations satisfying the antecedent of our given

3 It is certainly not the only way to describe the correspondence mechanism, but it is useful for our
purposes.
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formula at w (ordered pointwise) has a minimum, given by the valuation V* assign-
ing V*(p) := R[w] and @ to all the other variables. This valuation clearly satisfies
both requirements in clause (1.1), which as discussed, are sufficient condition for
the equivalence between (1) and (2) to be established.

But, more interestingly, for which a can we identify the set R[w] as [a]y? Or
more precisely, how should we expand our base language (and hence also our orig-
inal assignments V) so that we get V*(p) = [ally? This example shows that we
certainly need to expand our language with at least the following two types of syn-
tactic ingredients:

(a) ingredients which enable us to speak about singletons;
(b) ingredients which enable us to speak about direct R-images of subsets.

As to (b), it is well known that, for every subset X (which might be in particular a
singleton), the assignment X — R[X] provides the interpretation for the backward-
looking diamond &, which is interpreted by the semantic diamond associated with
R~!'. This is a well known situation in modal tense logic, where the backward-
looking modalities belong to the base language; for the modal languages in which
this is not the case, the backward-looking modalities will be added to the expanded
language.

As to (a), the most convenient way for us to speak about singletons is to introduce
a special sort of variables h,1i,j,K,... in the extended modal language, which are
to be interpreted as singletons; we call them nominals, after the analogous devices
adopted in hybrid logic. In sections 1.3 and 1.4, the expanded language will be dis-
cussed more formally and generally. For the moment, we only remark that nominals,
interpreted as singletons, make it possible to encode local satisfaction of modal for-
mulas as global satisfaction of certain inequalities, as follows:

F.Vowike it F, Vi k(<L 9), (1.3)

where Vj._,, is the extended j-variant of V sending j to {w}, and for every valuation
V and formulas ¢ and y we write ¥,V I < y to indicate that [[y/]ly € [x1v.

Given both types of syntactic ingredients, we can stipulate in the example above
V*(p) := [e]ly for o = #j. Notice that the introduction of this language expansion
is harmless w.r.t. our target language: the standard translation of formulas in the lan-
guage expanded with both nominals and backward-looking modalities falls within
the basic first-order frame language. But more interestingly, which advantages does
this expanded language bring to us?

Firstly, we have gained a better calculus: for instance, the equivalence between
the beginning and the end of the (rather clumsy) chain of set-theoretic equivalences
(1.2) above can be justified in one line as the following instance of the well known
tense axiomatics:

j<op iff ej<p. 1.4)

Secondly and more importantly, we have defined a formal setting in which the com-
putation of the minimal valuation is internalized at the level of a suitable object
language. Indeed, the left-to-right direction of (1.4) provides us with the minimal
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valuation V*(p) which is expressed in the extended language as #j. This enables us
to proceed to a full mechanization of the minimal valuation argument. Indeed, after
computing the needed minimal valuation as above, the actual instantiation with this
valuation is facilitated and justified by the following version of Ackermann’s lemma

[2]:

Lemma 1. Let «, B(p), y(p) be formulas of a (modal) language L+ over the set of
variables PROP; let p € PROP such that p does not occur free in a, 3 is negative
in p and 7y is positive in p, then the following are equivalent for every L*-Kripke
frame F:

@ F (@ <p=Bp <yp)
(b) F i Bla/p) < y(a/p).

Proof. For every formula ¢ and valuation V, let [¢[p]]ly be the unary operation on
P(W) sending X € P(W) to [¢]ly» where V' is the p-variant of V sending p to X.
As to the direction from (a) to (b): assume contrapositively that [B(a/p)]ly &
[y(a/p)]ly for some valuation V. Let V* be the p-variant of V such that V*(p) :=
[ally. Then, because the variable p does not occur in @, we have [a]ly- = [ally =
V*(p), which proves that ¥, V* I+ @ < p. However, for every formula &, the fol-
lowing chain of equalities holds: [&(p)lly- = [&[plllv-(V*(p)) = [£lply-([ally) =
[[£(a/p)]ly. This and the contrapositive assumption prove that 7, V* ¥ B(p) < y(p).
Conversely, assume that 7 I+ B(a/p) < y(a/p), and let V be such that [a]ly € V(p).
Then, since B and vy are respectively negative and positive in p, we have: [B(p)]ly C
[B/p)llv € [ly(a/p)llv € [y(p)lly, which proves that .,V I B(p) < y(p).

The proof of the direction (a) = (b) in the lemma above encodes the minimal valu-
ation argument in a very general way. This provides us with a crucial step towards
mechanizing the correspondence process via the elimination of variables, as we can
now simply appeal to the lemma instead of making an ad hoc minimal valuation
argument. Notice also that the lemma does not depend on the particular choice of
language £*.* Besides the assumptions of monotonicity/antitonicity of the interpre-
tation of formulas, the only requirement encoded in the proof is that the minimal
valuation be defined in terms of the resources of L*.

Towards a calculus for correspondence. Using the resources of the expanded
language, and the stipulations made in clauses (1.3) and (1.4), it is not difficult to
check the soundness on Kripke frames of the following chain of equivalences:

Vplop < oop] iff VpVj[j < op = j < oop]
iff VpVjlej < p=j<oop]
iff Vj[j < ooej] (lemma 1.1)
iff Vj[o®j < @]l

4 In fact, it works also when ¥ is an ordered algebra where the operations interpret the £*-
connectives.
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indeed, thanks to the above stipulations on the interpretation of nominals, the con-
dition ¥ I Op < OOp can be equivalently rewritten as ¥ I Yj[j < Op = j < OOp];
by the stipulations on the additional modal operators, this clause can equivalently be
rewritten as ¥ I Vj[®j < p = j < OOp]. Hence, by Ackermann’s lemma applied
to a := &j, B(p) :=j, y(p) := OOp, we get that ¥ I Vj[j < OOej], which can be
rewritten as F I+ Vj[¢®j < ®j].

To sum up, what we are heading towards is introducing a formal (object) lan-
guage and a syntactic machinery in which the semantic ‘minimal valuation’ meta-
argument given in Example 1 can be encoded. This small copernican revolution can
be traced back to [37]. As to the benefits it brings: once we are dealing with syntax,
we are free to interpret these strings of symbols and transformation rules in all sorts
of models which happen to soundly interpret them; for instance, atomistic® tense
Boolean algebras, and more specifically, the complex algebras, i.e. the modal alge-
bras dually associated with relational structures, are obvious sound models. In the
latter, nominals would then be interpreted as atoms of the algebra, and it is easy to
see that the first equivalence is sound precisely because of atomicity. In fact, thanks
to duality, the soundness of the chain of equivalences above w.r.t. complex alge-
bras is the equivalent counterpart of the soundness proof on frames. Interpreting
Vj[®®j < &j] on complex algebras, where j ranges over the singletons, we readily
obtain the well known first-order condition

YX(R[R[x]] € R[x]),

which standardly abbreviates the usual transitivity condition.

But there is more. In fact, we can do just as well with much more general alge-
bras than the complex algebras of Kripke frames. All we need of an algebraic model
for this (very simple) proof to be sound is its being a poset endowed with a pair of
adjoint operations 4 4 O, and its being join-generated by some designated subset
J (which will provide the interpretation for nominals). Of course, for the sake of
finding a suitable environment for classes of logics, we need to assume more: in
particular, we want to assume the existence of a rich enough algebraic environment,
able to provide interpretation to logical connectives; certain complete (distributive)
lattice expansions which we will introduce below are adequate for most purposes.
This enables us to explore the full domain of applicability of correspondence argu-
ments, which turns out to be much wider than classical modal logic.

This concludes the informal presentation of the view on correspondence theory
pursued in the present paper. In the following section, we will expand on some of
the technical details supporting this perspective.

3 A lattice is atomistic if every element is the supremum of a set of atoms.
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1.3 A calculus for correspondence

Let us start by formally introducing the expanded syntax we mentioned in the previ-
ous section: it will include the backward-looking box corresponding to the diamond
taken as a primitive operator, as well as a denumerably infinite set of sorted vari-
ables NOM called nominals, the elements of which will be denoted with i, j, possibly
indexed.

The formulas of L* are given by the following recursive definition:

pu=L|plileVi|-g|Op|mp,

where p € PROP and j € NOM. The derived connectives A, O, —, —,... are de-
fined in the standard way. In order to formalize the correspondence arguments,
we will have to expand £* to accommodate inequalities and quasi-inequalities.
To be precise, if ¢, 01,...,¢0, 0, ¥1,...,8, € L" then ¢ < ¢ is an inequal-
ityand ¢; < Y1 & &, < Yy = ¢ < Y is a quasi-inequality. Disjunctions
¢ <Y B y < & between inequalities will be sometimes considered.

Formulas, inequalities and quasi-inequalities not containing any propositional
variables (but possibly containing nominals) will be called pure. As we will see next,
these can be readily translated into the first-order frame correspondence language;
hence we aim to introduce rules for a calculus of syntactic transformations of quasi-
inequalities, by means of which quasi-inequalities in £ can be transformed into
pure ones, so as to preserve logical equivalence. In order to motivate this calculus,
let us introduce the intended interpretation of the expanded language.

A valuation for L* on a Kripke frame # = (W, R) is any map V from the set
PROP U NOM of propositional variables and nominals into the powerset P(W),
such that each i € NOM is assigned to the singleton subset {x} for some x € W.
A model for L7 is a tuple M = (¥, V) such that F is a Kripke frame and V is a
valuation for £*. For any such model, the satisfaction relation for formulas in £* is
recursively defined as follows (here we report only the new connectives):

Mwiri iff V@) = {w},
M,wirmp iff  forevery v, if vRw then M,v Ik ¢.

The local satisfaction relation extends to inequalities and quasi-inequalities as fol-
lows:

Mwikre<y iff if Mwir¢ then M,w I+,
Mwir (&L pi<y) =<y iff if Miwkg <y; forl<i<n
then M,w - ¢ < .

From the clauses above, the global satisfaction relation for inequalities and quasi-
inequalities is defined in the usual way, by universally quantifying over w; namely,

Miro<y iff foranyw,if M,wi ¢ then M,w I,
M- (&L i <) > o<y iff  foranyw,if M,wi g <¢; forl<i<n
then M,w - ¢ < .
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For every model M = (F,V) and every ¢ € L*, the symbol [¢]| 5, denotes as
usual the set of states of M at which ¢ is satisfied. When there could be no confusion
about 7, the symbol [[¢], will alternatively be used.

As mentioned in section 1.2, local satisfaction of formulas can be encoded as a
special case of the global satisfaction of inequalities, as reported in the following
proposition:

Proposition 1 For any Kripke frame ¥, any valuation V for L and any ¢ € L,
F.Viwike iff F,VEj<@andV'(j) ={w},
with V' ~; V and j a nominal not occurring in ¢.
The Ackermann lemma (lemma 1.2) implies that the following rules are sound

and invertible w.r.t. the standard Kripke semantics:

Vpl(a < p & &iziaai(p) < 6:p)) = @(p) < ¥(P)] LA Vple(p) < ¥(p)]
&<icn(yialp) < 5i(a/p) = ¢la/p) < W(a/p) o(L/p) <y(L/p)

(ED)

subject to the restrictions that « is p-free, and that ¢ and the §; are negative in
p, while ¢ and the y; are positive in p. Notice that the rule (L) can be regarded
as the special case of (LA) in which @ := L. Likewise, a mirror-image version
of lemma 1.2 implies that the following rules are sound and invertible w.r.t. the
standard Kripke semantics:

Vpl(p < @ & &iciaayi(p) < () = lp) < Y(p)] ®RA)YPlE) < U(p)

—_—(T)
(& 1<icn(yila/p) < 6i(a/p) = ¢(a/p) < ¥(a/p)] o(T/p) <¥(T/p)

subject to the restrictions that @ is p-free, and that ¢ and the ¢; are positive in p,
while ¢ and the y; are negative in p. In addition to this, the following proposition is
an immediate consequence of the stipulations above:

Proposition 2 For every model M = (F,V) for L*, every j € NOM, and all
e x € L7,

1.7, Vire <y iff F,VEVjj< e =j< Yl for any nominal j not
occurring in ¢ <.

F.ViroVy<y iff F.Vire<y and F,VIFy <.

F.Vire<xyVvy iff F.Vike—x <y, wherep—x :=@A-y =-(-¢pVy).
FVESCe <y if F,VIFp<my.

FViEj<oy if F,VET[j<<i&i <yl for any nominal i not
occurring in j < Oy,

6. F.Viry <-p iff F,VIFre< -y

7. F . Vik—p <y iff F,VIFE-yY<Lo

Lk

The proposition above essentially says that the following rules are sound and invert-
ible w.r.t. the standard Kripke semantics:
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p<y pVY <Y p<xVy
FA —— 2=7  (v-4) =2 _T (VRR
Vili<e=j<yl ) oY x=<y (v-4) p-xX<Y (VRR)
Cp <y i<oy I . 4 g <Y
o<y (OLA) HG<oi&i<h) (jCIP) < (-RGA) e (-LGA)

*where the introduced nominal j does not occur in derivation so far.

Twhere the introduced nominal i does not occur in derivation so far.

It is easy to show that the calculus admits derived invertible rules such as the fol-
lowing:

SXA Ay <
PXNY (Ad) pAXSY (ALR)
0<x @<y p<x—Y
<Oy D¢ < —j . ;
ooy ORY S iR e < (ICMP)

The calculus introduced above can be used to derive first-order correspondents of
formulas, inequalities, and quasi-inequalities; formal derivations in this calculus can
be semantically interpreted as ‘minimal valuation’ meta-arguments, which justifies
the statement that this calculus indeed mechanizes these meta-arguments. Several
algorithms have been introduced in the literature (see, e.g., [18], [30], [22]) which
specify how these derivations should proceed; these algorithms are also shown to be
successful for classes of formulas which significantly extend the class of Sahlqvist
formulas. Reporting in detail on these algorithms and their properties is certainly be-
yond the aims of this paper; however we conclude the present section by discussing
examples, since we believe that this, rather than the extensive theory, will give the
reader a better idea on how to proceed in practice.

Example 2. In [39] Goranko and Vakarelov show that the formula p A O(Cp —
Og) — <0O0q, which falls in their class of Inductive formulas, has a first-order
frame correspondent which does not correspond to any Sahlqvist formula in the
basic modal language. For the sake of a smoother application of the rules introduced
above, we rewrite this formula as an inequality and proceed as follows:

VpYq(p AO(COp — Og) < O0O0q)

iff YpVgVj(j < p ADO(Op — Og) = j < <0O0q) (FA)
iff VpVgVj < p & j < O@p — Og) = j < <0O0q) (ARA)
iff YgVj(j < 0(0j — 0Og) = j < ©00q) (LA)
iff VgVj(e(®j A Of) < g = j < oO0g) (oRA), (ALR), (ORA)
iff Yj(j < oooe(ej A O))). (LA)

Note that the last application of (LA) yields an empty & in the antecedent. Now
the last quasi-inequality is pure, and translates, after some slight simplification, into
the expected first-order local frame condition Iy(Rxy A Yz(R*yz — Ju(Ruz A Rux A
Rxu))).
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1.4 Algebraic soundness of the calculus for correspondence

Discrete Stone duality for Kripke frames guarantees that the interpretation of the
expanded language on Kripke frames systematically translates to complete atomic
modal algebras.

L*-valuations on Kripke frames translate as assignments on the dual algebras,
under which, nominals are interpreted as atoms. Inequalities and quasi-inequalities
are interpreted in algebras using their natural lattice order, and satisfaction and va-
lidity naturally carry over to algebras as well. In particular, it is not difficult to show
that both lemma 1 and proposition 2 hold if Kripke frames are replaced by complete
atomic modal algebras, which again means that the calculus for correspondence de-
fined in the previous section is sound w.r.t. the algebraic duals of Kripke frames.
However, this is neither surprising nor does it give us anything more than we had
before.

The algebraic perspective starts to become interesting when noticing that, as we
had mentioned in section 1.2, almost all the rules of the calculus for correspondence
are sound w.r.t. a significantly larger class of algebras than complete atomic modal
algebras:

Definition 1. A perfect distributive lattice (cf. [27, Def. 2.9]) is a complete lattice
C such that the set J*(C) of the completely join-prime elements® is join-dense in
C (meaning that a = \/{j € J*(C) | j < a} for every a € C) and the set M*(C) of
the completely meet-prime elements is meet-dense in C (meaning that a = A{m €
M>(C) | a < m} for every a € C).

Analogously to the duality between complete atomic Boolean algebras and sets, a
Stone-type duality holds between perfect distributive lattices and posets, as a conse-
quence of which, perfect distributive lattices can be equivalently characterized (cf.
[33, Def. 2.14]) as those lattices each of which is isomorphic to the lattice PT(X) of
the upward-closed subsets of some poset X. In particular, the role atoms had in the
Boolean algebra setting is taken over, in this generalized duality, by the completely
join-prime elements.

Definition 2 (Perfect distributive lattice with operators). (cf. [32]) A distributive
lattice with operators (DLO) A is perfect if its lattice reduct is a perfect distributive
lattice and every additional operation is, in each coordinate, either completely join-
or meet-preserving or completely join- or meet-reversing.

So for instance, the unary additional operations in a DLO need to satisfy at least one
property in the following array: for every S C A,

OV S) =V{oslseS} O(AS)=ANos|seS}

S(VS) = Afs|seS) <(AS)=\{as|seS). (1.1

6 An element ¢ of a complete lattice is completely join-prime if ¢ # L and, for every subset S of
the lattice, ¢ < \/ S iff ¢ < s for some s € S, and is completely meet-prime if ¢ # T and, for every
subset S of the lattice, c > A S iff ¢ > s forsome s € §.
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It is not difficult to show that both lemma 1 and all items of proposition 2, with
the exception of item 7, hold if F is replaced by a suitable perfect DLO (suitable
in the sense that it has the appropriate array of operations and in particular, in it,
the connective — is interpreted e.g. as intuitionistic negation), and £*-valuations on
frames are replaced with £*-assignments on perfect DLOs which map nominals to
completely join-prime elements.

For instance, item 1 of proposition 2 is sound because, by definition, in a perfect
DLO every element is the join of the set of completely join-prime elements below
it; item 5 is sound because the following equivalence holds in every perfect DLO
(A, ©): for every j € J(A) and every a € A,

j<Oa
=o(\V{ieJ¥A)|i<a)) (definition of perfect DLO)
= \V{0ieJ®A)|i<a} (¢ is completely \/-preserving)

iff j<<Oiforsomeie J®(A)s.t.i<a. (jiscompletely join-prime)

By general order-theoretic facts (see e.g. [31]), all the operations of a perfect DLO
admit right or left residuals in each coordinate, or are adjoints’; this immediately
proves items 2, 3, 4 and 6. This means that all the rules of the calculus given in
the previous section, with the exception of (-LGA), are sound and invertible w.r.t.
perfect DLOs. In fact, soundness and invertibility w.r.t. perfect DLOs can be shown
for a few more rules: for instance, thanks to the fact that in a perfect DLO every
element is not only the join of the set of completely join-prime elements below it, but
is also the meet of the set of completely meet-prime elements above it, the language
L* can be further expanded by adding a new sort of variables L, m,n... € CONOM,
referred to as co-nominals, ranging over the completely meet-prime elements, and
it can be easily shown that the following facts hold in every perfect DLO A, which
can be added to (the DLO-version of) the list of proposition 2: for all a,b € A,

8. a<b iff foreveryme M (A),if b <mthena<m;
9.a<b iff forevery je J®(A)andevery m € M*(A),if j <aand b < m
then j < m;

these equivalences imply that the following rules are sound and invertible w.r.t. per-
fect DLOs:
Py psy

Vm[y <m = ¢ <m] UA) Vivm[(j <o & ¢y <m) = j <m] (ULA)

It can also be shown that the derived rules (ARA), (ALR), (ORA), and (=jCMP)
introduced in the previous section are sound and invertible w.r.t. DLOs, except that
they cannot be soundly derived anymore, but need to be added to the calculus as

7 Notice for instance that the defining clause of the least upper bound, i.e. a vV b < ciffa < ¢ and
b < cforall a,b,c € A can be equivalently restated by saying that vV : A X A — A is left adjoint
to the diagonal map 4 : A — A X A defined by the assignment a — (a,a). Likewise, A is the
right adjoint of 4. This is why we refer to the corresponding rules as 4-rules. More on adjoints and
residuals can be found in the appendix.
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primitive rules, and their soundness and invertibility should be proved from first
principles. Indeed, they can be shown to be sound and invertible for O taken as a
primitive connective, the implication — and subtraction — respectively interpreted
by means of the Heyting and the dual Heyting implications, and —i in (=jCMP)
replaced by m € CONOM. In which case, the following rules can also be shown to
be sound and invertible on perfect DLOs, using the fact that the Heyting implication
is completely join-reversing in its first coordinate and completely meet-preserving
in its second one, and the dual Heyting implication is completely join-preserving in
its first coordinate and completely meet-reversing in its second one:

p—ox<m isx-y
—— - (—=Appr) — — (=Appr)
djIn[j<p&y<n&j—-n<m] Jdidmli<y&y<mé&j<i-m]

By now, the reader may have realized that the way rules are introduced easily and
uniformly generalizes to any additional operation in a DLO, and applies also to the
algebraic interpretation of logical languages outside the scope of modal logic, such
as for instance the substructural logics, many-valued logics, and so on. For instance,
the following rules for the substructural fusion o and its two right residuals /, and
\o, and for fission x and its two left residuals 4 and \, can be shown to be sound
and invertible on DLOs:

pox=y psx*Y
(°R) (*R)
e < Ulx Chx ¢
X <@\t P\ < x
j<xo *xy<m
__ JEXeV (oappn s (*App)
Jdidh[i<y&h<y &j<ioh] Indly <n&¢p<l&nx1<m]j
@y <m Ploxy <m
- - - (/oAppr) = - (\oAppr)
Indjle<n&j<y&n/j<m] JdjInj<eo&y<n&j\.n<mj
J<xky J S\«
= ————— (LAppr) - — — (\+Appr)
Jdidm[i <y &y <m&j<ijm] Imdijy <m&i<y &j<m)\,i]

Duality, relational structures and target correspondence language. Just in the
same way in which the duality between complete atomic Boolean algebras and sets
can be expanded to a duality between complete atomic modal algebras and relational
structures consisting of sets endowed with arrays of relations, the duality between
perfect distributive lattices and posets can be expanded to a duality between perfect
DLOs and relational structures ¥ = (W, <,...), consisting of posets endowed with
arrays of relations. Each relation in the array induces (and up to isomorphism is
induced by) one additional operation in the usual way, i.e., n-ary operations corre-
spond to n + 1-ary relations. Examples of such structures can be found in section
1.11, where more details and references are provided. The only important detail for
the sake of the present discussion is that the complex algebras F* for these frames
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can be defined as in the classical setting, with the notable difference that they are
based on the (perfect distributive) lattice PI (W) of the upward-closed subsets of
(W, <). This is unsurprising, and perfectly fits with the well-known fact that the val-
uations for e.g. intuitionistic logic are to be persistent. As in the case of classical
modal logic, these relational structures are both models for the extended propo-
sitional (modal) language, and for the first-order language(s) which are naturally
interpreted on them, and which will be our target correspondence languages. The
only remaining open issue is then to establish a standard translation of pure for-
mulas and quasi-inequalities of the extended propositional language £* into these
first-order correspondence languages. How? Because of space constraints we will
not give full details, which are straightforward and can be found in [22]; instead, we
restrict our attention to the interpretation of the variables in NOM and CONOM in
the dual relational structures, and justify why this interpretation gives rise to first-
order definable conditions on any structure ¥ = (W, <,...). Duality is crucial to
establish this interpretation. Indeed, there is only one solution which takes all the
following facts into account:

(a) on perfect distributive lattices, nominals and co-nominals are respectively
interpreted as completely join- and meet-prime elements;
(b) the complex algebra of ¥ = (W, <,...) is based on the perfect distributive
lattice PT(W);
(c) the collections of all completely join- and meet-prime elements of PT(W) are
respectively®
{(xT|xeW} and {(W\x||xe W}

(d) the unique homomorphic extension V of each £*-valuation on ¥ is to be an
L*-valuation on F;
(e) it should be that case that, for all models (¥, V) and all ¢, € L,

FVike<y iff FHLVEe<y.

The only way to define the interpretation of j € NOM and m € CONOM which takes
all these facts into account is to stipulate that £*-valuations V on F assign variables
j € NOM to elements in {xT | x € W} and variables m € CONOM to elements in
{W\x| | x € W}. As was the case in the classical setting, the interpretations of nom-
inals and co-nominals are clearly definable in the most restricted correspondence
language which the structures ¥ are models of.

Stepping back from this discussion, we note two points: duality was crucial in
establishing the connection of clearest practical value to our current agenda, namely
being able to translate the pure fragment of the extended language £ into the target
first-order correspondence language. However, the reasoning used in establishing
this connection illustrates a methodological point about dualities, namely, that they
can be used not only as a proof tool, but also as a defining tool. For instance, in more

8 As usual, xT denotes the subset {y|y e Wand x <y}, and x| denotes the subset {y | y € W and
y < x}
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general settings than the ones presented so far, like lattice based logics, the algebraic
semantics is clear but one might be in the dark as to what an appropriate relational
semantics might be, both as regards an appropriate class of relational structures and
as to the appropriate interpretation of the propositional language in such a class.
This is where duality can be used as a defining tool: firstly, relational structures can
be extracted, as it were, from perfect lattices [27]; secondly, the interpretation of
the propositional formulas in algebras transfers via the duality to these extracted
structures. To mention a related but different example, in [44, 43] duality is used to
semantically identify the intuitionistic counterparts of public announcement logic
and of the logic of epistemic actions and knowledge.

1.5 Four conclusions and a question

Conclusion I: thanks to the algebraic insights facilitated by duality, correspondence
theory can be developed uniformly for more than modal-like logics; as we have il-
lustrated, also substructural logics, intuitionistic logic and its fragments, MV-logics,
as well as distributive and intuitionistic modal logic, and more in general, all the log-
ics the algebraic semantics of which is given by DLOs can be encompassed. Also,
u-calculus (see subsection 1.8.3), monotone modal logic [29] and their lattice-based
extensions are examples of logics which can be uniformly treated by this theory.

Conclusion 2: the algebraic and algorithmic developments for correspondence can
and have been merged. This now allows for algebraic canonicity to be treated either
independently from correspondence in the style of [36], or via correspondence as in
[22]. And there is more: as discussed at the end of the previous subsection, even in
vastly more general settings, concrete relational structures can be extracted from the
algebras. Therefore, even in these rarified algebraic settings, speaking of correspon-
dence theory does not amount to merely establishing an elaborate social convention,
or a manner of speaking, by means of which we can pretend that relational models
which are not really there virtually manifest themselves by means of their algebraic
ghosts. On the contrary, the obtained correspondence theory makes sense, on the
extracted relational structures, in the traditional way.

Conclusion 3: for the sake of the present paper, we have distilled the main features
of the algebraic-algorithmic approach into a more informal presentation of a cal-
culus for correspondence, the set of rules of which can be modified, expanded or
reduced, so that the calculus can be adapted to different logical languages, and so
that it can be proven sound w.r.t. different semantics; however, the underlying math-
ematical principles which drive this calculus (as well as the algorithms, and more
in general, all the Sahlqvist-style correspondence arguments) remain stable across
the different settings, and are: the Ackermann lemma in any of its many forms, the
residuation/adjunction properties of the operations interpreting the logical connec-
tives, and the approximation properties of the ‘states’ (or co-states) of the relational
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semantics, which generate (and co-generate) their dual complex algebras.

Conclusion 4: The computation process of first-order correspondents can be neatly
divided in two stages: a first stage, in which quasi-inequalities are transformed into
pure ones, and a second stage, where pure quasi-inequalities are interpreted in the
given classes of relational structures. Different relational semantics might then yield
different interpretations of the same pure quasi inequality, and some instances of
this will be discussed in section 1.9. The definition of this syntactic calculus and the
possibility of soundly interpreting it in a generalized algebraic environment (which
can then be translated, in a second stage, into several concrete relational semantics)
gives some mathematical flesh to van Benthem’s insight that “Correspondence The-
ory may be applied to any kind of semantic entity”.

Question: How powerful is this algebraic-algorithmic procedure? In the case of clas-
sical modal logic it is state of the art, and covers syntactically characterized classes
of formulas which significantly extend the Sahqyvist class (viz. Inductive, Recursive,
see [39]). But can we claim that, in all the other (e.g. lattice-based) cases, the al-
gorithmic procedure is just as powerful? The answer to this question requires being
able to recognize Sahlqvist, Inductive, Recursive classes for each logical language
to which the algorithmic correspondence applies. In section 1.7 we suggest a way
in which this can be done.

1.6 The van Benthem formulas

One aspect of the discussion in section 1.2 still needs to be justified, which concerns
how to extract the correspondent of a given modal formula, provided the equivalence
between clauses (1) and (2) holds (which are reported below); before moving on to
what we have promised to do at the end of the previous section, in the present section
we discuss this aspect briefly. As mentioned early on in section 1.2, suppose that,
for a certain subclass of valuations K, the following are equivalent:

W F,V,wi e(pi,...,py) for every assignment V;

Q) F,V*,wi e(pi,...,Pp,) for every assignment V* € K.

Suppose moreover that each member V* € K and 1 < i < n, the subset V*(p;) can
be defined (possibly parametrically) by a formula @;(w, V) in some extension L’ of
the frame correspondence language Ly. Here we typically think of L’ as L itself or
some language in between Ly and L, such as first-order logic with least fixed points,
or perhaps a first-order logic with branching quantifiers such as information friendly
logic.

Let 2 be the set of all L’-formulas ST, (¢)(a;(w, V), ..., @,(w,V)) obtained by sub-
stituting in ST, (¢) the predicate symbols Py, ... P, with the L'-formulas o (w, V), . . .,
a,(w, V) corresponding to the valuations in K. Clearly, VI_JSTx(qv) E 2[x = w],
where P is the vector of all predicate symbols occurring in ST (¢). But also, because
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of the equivalence between (1) and (2) assumed above, X' = VT)STX(go)[x = wl. If
2 is finite, then A X is clearly an L’ local frame correspondent for ¢.

Even if 2 is infinite, we can still find an L’ equivalent, provided L’ is compact:
Since 2 E VFSTx(ga)[x := w] we have 2 = ST,(p)[x := w], and we may then
appeal to the compactness of L’ to find some finite subset 2’ C X such that 2’
STup)lx := w]. _

We claim that 2" | VPST,(p)[x := w]. Indeed, let M be any L;-model
such that M [ X’[x := w]. Since the predicate symbols in P do not occur in
2, every P-variant of M also models 2, and hence also ST,(p). It follows that
ME \/ﬁSTX(go)[x := w]. Thus we may take A 2" as a local first-order frame corre-
spondent for ¢.

The case in which L’ = Ly and K is the class of all parametrically L,-definable
valuations was studied by van Benthem in [4]. Under these assumptions, the class
of formulas for which the equivalence between (1) and (2) holds was named the van
Benthem formulas in [17]. All the well known syntactically characterized classes of
first-order definable modal formulas (Sahlqvist, Inductive, etc.) are encompassed by
the van Benthem formulas. However, in its full generality, the class of van Benthem
formulas is of little practical use. Indeed, for infinite sets 2, the above argument,
relying on compactness as it does, does not enable us to explicitly calculate a cor-
respondent for a given formula ¢, or devise an algorithm which produces frame
correspondents for each member of a given class of modal formulas. One therefore
typically concentrates on cases in which the class K can be described by L’-formulas
of uniform shape and hence of bounded complexity. In [23] an account of classical
correspondence is given in terms of a hierarchy of such classes K.

1.7 Characterizing the Sahlqvist formulas across different logics

As discussed at the end of subsection 1.5, being able to measure the effectiveness
of the algebraic-algorithmic approach across different logics requires being able
to recognize Sahlqvist, Inductive, Recursive classes for each logical language to
which the algorithmic correspondence applies. In the following subsection, we give
a very portable definition of Sahlqvist formulas, or rather inequalities, that is general
enough to be applied unchanged across a wide variety of logics. In subsection 1.7.2,
we contrast this briefly with other definitions in the literature.

1.7.1 The Sahlqvist inequalities: a general purpose definition

Given a logic with DLOs as algebraic semantics, what should ‘morally’ be the class
of Sahlqvist formulas for this logic? As glimpsed above, the reduction strategy for
Sahlqvist formulas is based on the order-theoretic properties of adjunction and resid-
uation possessed by the operations interpreting the connectives. More specifically, it
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is the order of alternation of connectives with these properties over certain variable
occurrences which is of crucial importance, since it enables the input clause to be
transformed into an equivalent one satisfying the restrictions under which (LA) or
(RA) can be applied. Our answer will accordingly be couched in these terms.

To fix ideas, let us consider a logical signature containing classical negation (like
that of basic modal logic) but otherwise undefined. (Negated) Sahlqvist formulas in
such a signature can be described in terms of their generation trees, as illustrated
in figure 1.2. Namely, the nodes in the upper part are labelled with connectives
interpreted by means of left residuals or 4-adjoints. The lower parts of branches
ending in positive variables are labelled with connectives interpreted by means of
right adjoints. This is the basic Sahlqvist shape that we are going to reproduce across
signatures.

P +p -p

Fig. 1.2: The basic Sahlqvist shape

To port this shape to signatures without classical negation, we will have to in-
troduce some bookkeeping machinery and the following auxiliary definitions and
notation: we work with the usual notion of a generation tree of a formula. A signed
generation tree (see e.g., [33]) associates with each node in a generation tree a sign,
+ or —, in such a way that children of nodes labelled with connectives which are
order preserving (order reversing) in the appropriate coordinate have the same (op-
posite) sign as their parent. The positive (negative) generation tree of ¢, denoted +¢
(—¢), is thus obtained by signing the root in the generation tree of ¢ with + (—) and
propagating the signs.

Definition 3 (Order types and critical branches). An order type over n € N is an
n-tuple € € {1,0}". For any formula ¢(py, ... p,), any order type € over n, and any
1 < i < n, an e-critical node in a signed generation tree of ¢ is a (leaf) node +p;
with ¢ = 1 or —p; with € = 0. An e-critical branch in the tree is a branch from an
e-critical node.
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We are now ready to reproduce the Sahlqvist shape in non-classical settings. For def-
initeness’ sake we work in the distributive setting, and consider a signature which
provides a representative sample of connectives commonly encountered in the lit-
erature, taken from intuitionistic logic, Distributive Modal logic (cf. [33, 22]), and
substructural logic.

A-adjoints Syntactically Right Adjoints (SRA)
+ VA + AOD>
- AV - V<O

Syntactically Left Residuals (SLR)|Syntactically Right Residuals (SRR)

+ O Qo + V x —

- o> *x — - A o

Table 1.1: Classification of nodes

Definition 4. Nodes in generation trees are classified according to table 1.1. A
branch in a signed generation tree *s, * € {+,—}, is excellent if it is the concate-
nation of two paths P; and P,, one of which may possibly be of length 0, such that
P is a path from the leaf consisting (apart from variable nodes) only of SRA-nodes,
and P, consists (apart from variable nodes) only of 4-adjoint and SLR-nodes.

Definition 5. For any order type €, the signed generation tree of a formula ¢ is e-
Sahlqgvist if every e-critical branch is excellent. An inequality ¢ < V¥ is e-Sahlqgvist
if the trees +¢ and —y are both e-Sahlqvist. An inequality is Sahlgvist if it is e-
Sahlqvist for some €.

Notice that, according to definition 5, the generation trees of the two sides of
an e-Sahlqvist inequality reproduce the pattern illustrated in figure 1.2, modulo the
order type €.

We wish to stress the methodology that definition 5 aims at exemplifying. This
definition is intended to serve as a template applicable to any signature via a classi-
fication of connectives such as the one of table 1.1. The place of any given logical
connective in this classification is not inherent to the connective; rather, it entirely
depends on the order-theoretic properties of the interpretation of the given connec-
tives, relative to a specific semantics, and is hence bound to change when switching
to a different interpretation. For instance, the classification of table 1.1 is relative to
the usual interpretation of logical connectives in the setting of distributive lattices.
When interpreted in general lattices, +V and —A do not fall into the SRR category
anymore, because their standard interpretations in general lattices are not residuated.

In essence, Definition 5 gives us a winning strategy which guarantees the suc-
cess of our calculus, as well as of algorithms like ALBA, SQEMA and indeed
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the Sahlqvist-van Benthem algorithm. Success consists in eliminating all occur-
ring variables by means of applications of the Ackermann rules (LA) or (RA). The
Sahlqvist shape guarantees that, for every variable, input inequalities can be trans-
formed into a shape to which an Ackermann rule is applicable. The order type €
tells us which occurrences of a given variable p we need to ‘display’, i.e., get to
occur in inequalities of the form p < @ or @ < p as prescribed by (LA) or (RA).
The Sahlqvist shape guarantees that this is always possible. Indeed, going down a
critical branch, we can surface the subtree containing the SRA part of the critical
branch, by applying approximation rules® to the SLR-nodes and 4-rules (see foot-
note 7 on page 13) to the 4-adjoint nodes. Then the SRA-nodes on the remainder
of this branch can be stripped off by means of the residuation/adjunction rules, thus
surfacing the variable occurrence and simultaneously calculating the minimal valu-
ation for it. Finally, notice that the remaining occurrences of p are of the opposite
order type: this guarantees that they have the right polarity to receive the calculated
minimal valuations, as prescribed by (LA) or (RA).

Example 3. The Dunn axioms for positive modal logic op A &g < &(p A g) and
O(p V q) < OpV Oq, as well their intuitionistic counterparts G(p — g) < Op — Oq
and Op — Og < O(p — ¢q) are all Sahlqvist inequalities. Specifically, the first
inequality is e-Sahlqvist with €(p) = 1 and e(g) = 1, the second is e-Sahlqvist with
€(p) = 0 and €(q) = 0, and neither is e-Sahlqvist for any other order type. The third
and fourth inequalities are both e-Sahlqvist with e(p) = 1 and e(g) = 0, and again
neither is e-Sahlqvist for any other order type.

The Lob inequality O(Op — p) < Op is not e-Sahlqvist for any order type,
because in the positive generation tree of the left hand side both positive and neg-
ative occurrences of p have the properly SRR-node + — as ancestor, making their
corresponding branches non-excellent.

In similar way, the Frege inequality p —» (¢ = r) < (p = q¢) — (p — r)is not
e-Sahlqvist for any order type, because both positive and negative occurrences of ¢
have properly SRR-nodes + — as ancestors, making their corresponding branches
non-excellent.

1.7.2 Other approaches to syntactic characterization

Definitions of Sahlqgvist-like classes generally come in two flavours: positive, or
constructive, definitions that tell one how the formulas in the class can be built
up, and negative definitions which define a class by banning certain alternations of
connectives. While not being explicitly constructive, the definition offered in the
previous subsection is clearly positive. We would like to contrast it with the nega-
tive definition used in [33]. This definition classifies the connectives of Distributive

° The approximation rules are those which introduce new nominals or co-nominals. All the other
rules introduced so far, except (LA), (RA), (T), and (L), are collectively referred to as residua-
tion/adjunction rules.
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Modal Logic (DML) as Choice and Universal, according to the Table 1.2. A signed
generation tree is then declared to be e-Sahlqvist if on no e-critical branch there is a
choice node with a universal node as ancestor.'? The notion of a Sahlqvist inequality
is then further defined exactly as in definition 5, above. Comparing Tables 1.1 and
1.2 will also make it clear that, in terms of adjunction and residuation, Choice and
Universal have the following meaning:

Choice = Not a right adjoint
Universal = Neither a left residual nor a 4-adjoint.

Choice Universal

+ VO Q|+ [y

- AOD>| — o«

Table 1.2: Universal and choice nodes.

Thus, when restricted to the signature of DML, this definition and definition 5
are equivalent. However, generalizing the Choice-Universal style definition does
become problematic once binary connectives like the intuitionistic implication —
is involved. Indeed, the Heyting implication is not a right adjoint, and is neither
a left residual nor a 4-adjoint, and hence + — is both Choice and Universal. Now,
applying the Choice-Universal style definition, inequalities such as p — Op < <Op,
which cannot be solved, would be classified as e-Sahlqvist with e(p) = 1. One
way to remedy this is to declare the ancestor relation to be reflexive, rendering an
occurrence of a choice-and-universal node a violation of the rule prohibiting choice
nodes in the scope of universal ones. A more elegant solution, we maintain and hope
the reader would agree, would be to adopt a definition in the style of the previous
subsection.

1.8 Three moves towards a unified correspondence theory

The present section is aimed at discussing how three recent directions in corre-
spondence theory can be encompassed in the algebraic-algorithmic approach, based
on the recognition that all these directions are predicated on the same basic order-
theoretic principles we have discussed in the previous sections. The first general-
ization, presented in subsection 1.8.1, concerns correspondence settings in which
the target language is first-order logic with least (or more in general extremal)
fixed points (FO+LFP). In subsection 1.8.2, various syntactic generalizations of the
Sahlqvist class will be discussed, which are obtained by relaxing the requirements

10 This has been slightly paraphrased in order to exploit the terminology already introduced above.



1 Unified Correspondence 23

of definition 5. Finally, subsection 1.8.3 focuses on a recent research line in which
van Benthem has been active, which extends algorithmic correspondence theory to
propositional logics expanded with fixed points, such as the modal mu-calculus.

1.8.1 Expanding the target language with fixed points

When trying to reduce an inequality with the calculus of correspondence, one rea-
son of failure is that it is not possible to obtain a form to which (LA) or (RA) is
applicable, and particularly because any obtainable « (as in the formulation of these
rules) is not p-free. Consider for example the Lob inequality o(op — p) < Op. Let
us apply the calculus to it:

Vplo@p — p) < op]
iff VpVivm[i < O@®@p —» p) & Op <m) =i <m]
iff YpVivm[(e¢i<Op —» p& Op <m)=i<m]
iff VpVivm[(®iAOp < p&Op<m)=1i<m]

We would have been able to apply (LA), had it not been for the p occurring on the
left hand side of i A Op < p. So this is how far we can get and no further, and
with good reason: the Lob inequality has no first-order frame correspondent, as is
well known. However, the Ackermann lemma can be strengthened to the following
version:

Lemma 2. Let a(p), B(p), and y(p) be formulas of a language L interpreted on
perfect DLOs, with a(p) and (p) positive in p and y(p) negative in p. Then the
following are equivalent for every perfect DLO C and variable assignment v:

1. C,v E B(up-a(p)/p) < y(up-a(p))/p);
2. there exists some V' ~, v such that C,v' | a(p) < p, and C,v' E B(p) < v(p),

where up.a(p) is the least fixed point of a(p).

Proof. We begin by noting that, since we are working in a complete lattice, least
fixed points of monotone (term) functions exist by the Knaster-Tarski theorem. As
regards ‘1 = 2’, let v(p) := v(up.a(p)). As regards 2 = 1’, C,v'  a(p) < p im-
plies that v/(p) is a pre-fixed point of a(-),!" and hence up.a(p) < v'(p). Therefore,
Blup.a(p)/p) < B0/ (p)) < y(v'(p)) < y(up-a(p)/p).

Lemma 2 justifies the following rule:
Vpl(a(p) < p & &icica Bilp) < yi(p)) = ¢ < Y]
& icico Bilup-a(p)/p) < Yilup.a(p)/p) = ¢ < ¥

where a, §5;, and 7y; are as in the lemma, and ¢ and ¢ are negative and positive in p,
respectively. Back to the Lob inequality, we can now apply RLA to eliminate p:

(RLA)

' Here a(-) is obtained from the term function @ by leaving p free and fixing all other variables to
the values prescribed by v.
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iff Vivm[O(up.(#i AOp)) <m = i <m]
iff Vili < O(up.(#i A Op))]
iff Vi[ei < up.(®i A Op)].

Under duality with Kripke frames, the condition above translates as Yw[R[w] C
uX.(RIw] N (R™'[X]))], which gives the expected condition of transitivity and con-
verse well foundedness.
As another example, consider the van Benthem inequality 00T < Oo(0(Oop —
p)—p)
Yp[OooT <o@@p — p) — p)l

iff VpYivm[(i < 00T & O@(@p — p) — p) <m) = i< m]

iff VpVivmVn[(i <o0T &n<m & 0(@p — p) > p<n)=i<m]

iff VpVivjVmyn[(i <o0T &n<m&j<o@mp—-p)&j— p<n)=i<m]

iff VpVivjVymvn[i<oOT & On<m& &j<Op—-p&j—-p<n)=i<m]

iff VpVivjVmyn[(i < OoO0T & n<m& ®jAOp<p&j—p<n) =i<m]

() iff ViVjVmVn[(i < 00T & n<m & j — up.(®jAOp) <n)=1i<m]

iff VivjVn[i<o0T & j— up.(¢jAOp) <n)= Vm[On <m = i <m]]

iff Vivj¥n[(i < 00T & j — up.(®j AOp) <n) = 4i<n]

iff Vivj[i < O0T = Vn[j — up.(¢j AOp) <n = &i<n]]

iff ViVj[i 00T = @i <j— pp.(ej AOp)]

iff Vivjli < ooT = i<0( — up.(ej AOp))]

iff Vj[ooT <0 — up.(ej AOp))l.
In the equivalence marked with (x), the Right Ackermann lemma has been applied
with a(p) := @j A Op and B(p) := j — p being positive in p, and y(p) := n being
negative in p.

Correspondence with FO+LFP has been studied in [7], [20], [8], [11] and other

papers. It is not possible here to do justice to this work, but that is not the aim of the
current paper.

1.8.2 Syntactic generalizations of the Sahlqvist class

The class of Sahlqvist formulas is, quite rightly, considered to be the paradigmatic
syntactically definable class of modal formulas admitting first-order correspondents.
This pre-eminent status can, however, blind one to the fact that there is much inter-
esting and systematic correspondence theory that can be done with formulas that
lie strictly outside this class. There is indeed life beyond the Sahlqvist formulas.
Some of this work is orthogonal to the Sahlqvist theme, in the sense that the ar-
guments bear no obvious resemblance to the minimal valuation strategy: here we
are thinking, for example, of the modal reduction principles interpreted over transi-
tive frames, which all have first-order correspondents [3]. In the present section we
will, however, be looking at classes of formulas that represent the natural general-
ization of the Sahlqvist formulas, in the sense that they are obtained by taking the
order-theoretic insights underlying the Sahlqvist ‘winning strategy’ (see discussion
following definition 5) to their natural boundaries of applicability.
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A very noticeable feature of definition 5 is the fact that nodes lower down on
critical branches need to be syntactically right adjoint, not, e.g., syntactically right
residual. For unary connectives, residuation and adjunction are equivalent notions
(see appendix), so this imposes no restriction, but for connectives of higher arity it
does. For example, the Lob inequality O(Op — p) < Op, considered in subsection
1.8.1, is not Sahlqvist, for in the generation tree +O0(00p — p) both the leaves +p
and —p have the properly SRR node + — as ancestor, and hence for no choice of
order type € will the e-critical paths be excellent. The Lob formula belongs to the
class of so-called Recursive or Regular formulas, introduced in [38], which all have
frame correspondents in FO+LFP (see also [20]). We will not burden the reader with
precise definitions here, but the intuition is that one firstly relaxes the definition of
an excellent branch (definition 4) to that of a good branch by also allowing the
occurrence of SRR nodes (and not just of SRA nodes) in the lower part of critical
branches. Merely substituting the “good” for “excellent” in the definition of the
Sahlqvist inequalities (definition 5) would be too liberal, however, for that would
allow inequalities like &(Op x p) < ©p, on which the calculus of correspondence
fails entirely, since we cannot bring them into a shape to which even the recursive
Ackermann lemma is applicable. To ensure that the calculus works, it is enough to
add the further requirement that at most one e-critical branch may pass through any
given properly SRR-node; this yields precisely the e-Recursive inequalities.

But here the reader may very well protest that we have promised extensions of the
Sahlqvist class for which first-order correspondence holds, while the Recursive for-
mulas are only guaranteed to have correspondents in FO+LFP. Indeed, the Recursive
inequalities as a generalization of the Sahlqvist class is still too liberal. In order to
guarantee first-order correspondence, the ordinary non-recursive Ackermann lemma
will have to be applicable for each variable elimination. In order to ensure this, one
needs to impose upon the variables in Recursive inequalities a partial ordering, and
demand not only that at most one e-critical branch pass through any given properly
SRR-node, but also that if an e-critical branch passes through a properly SRR-node,
all variables occurring on other branches passing through it have to be strictly less
(according to the ordering) than the variable on the critical branch. This gives rise
to the classes of Inductive formulas and inequalities, for formal definitions of which
the reader is referred to [38], [22], and [21]. As an example, the Frege inequality
p—(@—r)<(p—q — (p— r)from the implicative fragment of intuitionistic
logic is Inductive; however, it is not Sahlqvist, as shown in example 3. For an ALBA
reduction of this inequality see [22, example 7.5].

1.8.3 Correspondence for propositional logics with fixed points

In the generalized setting of subsection 1.8.1, fixed points have been added to the
target language so as to be able to extend the correspondence methodology up to
classes of formulas, pre-eminently exemplified by the Lob’s formula, for which
minimal valuations exist but are not elementarily definable. However, once fixed
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points are brought into the correspondence picture on the target side, it is natu-
ral to extend the correspondence program to settings in which fixed points belong
also to the source language, like the modal mu-calculus; the extra expressivity of
the source language will be safely accommodated by the expanded target language.
In this vein, in [8], van Benthem and his collaborators syntactically characterized
a certain class of formulas in the language of modal mu-calculus as the counter-
part of the Sahlqvist class (hence named the class of Sahlgvist mu-formulas), on the
basis of the minimal valuation methodology, via an extension of the classical model-
theoretic proof. In [15], a correspondence result theoretically independent from [8]
has been given for logics with fixed points on a weaker than classical base (thus
applicable e.g. also to intuitionistic modal mu-calculus, or to certain substructural
logics expanded with fixed points). In [15], the results in [8] are encompassed into
the algebraic-algorithmic unified correspondence theory, and Sahlqvist mu-formulas
are recognized in essence as Recursive formulas (see subsection 1.8.2) on the ba-
sis of the approach outlined in subsections 1.7.1 and 1.8.2. The paper [15] is rather
technical; however, thanks to the insights developed so far in the present exposition,
and particularly on the existing tight connection between the minimal valuation ar-
gument and (the recursive and non-recursive versions of) the Ackermann lemma,
we are now in a position to give an informal account of these results, as well as of
their relationship with results in [8].

Concretely, embedding the Sahlqvist-type theorem of [8] into the algebraic-
algorithmic correspondence theory requires:

(a) extending (the distributive/intuitionistic/non-distributive versions of) the cal-
culus for correspondence with dedicated approximation and adjunction/residuation
rules (see footnote 9, page 21) capable of transforming systems of mu-inequalities
into equivalent systems of mu-inequalities in Ackermann shape; '2

(b) giving a (distributive/intuitionistic/non-distributive) counterpart of the class
of Sahlqvist mu-formulas as defined in [8] in the style of definition 5;

(c) motivating the definitions in (b) by giving surjective projections from the non-
classical languages involved to the classical, which preserve and reflect Sahlqvist
status. An analogous projection has been given in [22] between DML and classical
modal logic.

Due to space constrains we will only address (a) and (b). As to (a), notice pre-
liminarily that the calculus for correspondence introduced in section 1.3 is already
enough to perform the elimination of predicate variables on a restricted class of
mu-formulas/ inequalities'?, as in the following example (cf. [8, example 5.3]):

12 Notice that, thanks to the very general way in which the various versions of Ackemann’s lemma
have been stated, the corresponding Ackermann rules apply without changes to logical languages
with fixed points.

13 Namely, the one formed by those inequalities such that, for some order type €, all e-critical
branches are excellent (cf. definition 4) or good (cf. subsection 1.8.2) according to the letter of
these notions, and hence no fixed point binders occur in e-critical branches.
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VYplvX.0(p A X) < p]
iff VpVYivm[(i < vX.o(p A X) & p < m) = i <m] (ULA)
(x) iff ViVm[{i < vX.0m A X) = i < m] (LA)
iff Ym[vX.0om A X) < m]. (FA inverse)

Indeed, the application of the rule (LA) is sound because the term function y(p) =
vX.0(p A X) is monotone in p. However, this calculus is certainly not powerful
enough to be successful over the whole class of (intuitionistic counterparts of)
Sahlqvist mu-formulas in [8]. In [15], an enhancement of the calculus has been
defined by firstly adding approximation rules, of which the following are special
instances (cf. [15] for the complete account):

i<uXoeX,y/'x,7) . vX.p(X,¥/!x,7) <m
ET T (H*-A) = (v*-A)
jli < uXo(X,j/\x,27) & j< ] In[vX.e(X,n/!x,2) <m & ¢ < nj
- i< uXoeX, lp/!_x,Z) A ' VX.Lp().(, w/ix, 7) < m. (v-A)
nfi < uX.p(X,n/1x,7) &y < n] AjvXe(X,j/1x,2) <m & j< y]

where, in (u*-A) (resp., (u-A)) the associated term function of ¢(X, x,7) is com-
pletely \/-preserving in (X, x) € C x C (resp., in (X, x) € C X %), and in (v*-A)
(resp., (v_-A)) the associated term function of ¢(X, x,z) is completely A -preserving
in (X, x) € CxC (resp., in (X, x) € CxC?), for any perfect DLO C of the appropriate
signature. Moreover, in each rule the variable x is assumed not to occur in . The
notation ¢(!x) means that the variable x has a unique occurrence in ¢.

Some motivating intuitions and examples illustrating the functioning and appli-
cability of these rules, as well as of the adjunction-rules below, are given in the
ensuing discussion.

Secondly, adjunction rules for fixed point binders have been added, of which the
following are special instances (cf. [15] for the complete account):

HX(AX)V B(p)) < x X S vX(EX) A D(p))

-Adj -Adj
< vXEX A Dy Y Txam v B <p OY

where, in each rule,

A =\/ 60, B(p)=\/5\(p). EX) =\ BiX) and D(p) = /\ B)(p)
iel jeJ i€l jeJ
with I and J finite sets of indexes, each ¢; and 6} interpreted as a unary left adjoint
(typically, §; and 6} are concatenations of diamonds over a variable), and each 3; and
,8;. interpreted as a unary right adjoint (typically, 3; and B;. are boxed atoms). Finally,
0; 13 and 6;. 4 ,B;. for each i and j.

Notice that, unlike the rules for propositional connectives, the rules above are
contextual, i.e., dependent on assumptions on the formulas in the scope of the fixed
point binder. This reflects the fact that the semantic interpretations of fixed point
binders do not have intrinsic order-theoretic properties, but at most preserve those
of the term functions associated with the formulas in their scope.



28 Willem Conradie, Silvio Ghilardi, Alessandra Palmigiano

In [15], rules generalizing the ones above are proven to be sound w.r.t. the natural
algebraic/relational semantics of (intuitionistic) modal mu-calculus. Thanks to these
rules, inequalities we could previously not treat, such as p < vX[O(X A (g = 1)) V
(Op A Oq)] (cf. [8, example 5.4]) can be reduced as follows:

Yp¥q[p < vX[OX A (g — 1)V (Op A Oq)l]

iff VpVgVivm[(i < p & vX[OX A (g — L)V (Op AOg)] <m) = i<m] (ULA)
iff VgVivm[vX[O(X A (g = 1))V (OiA Og)l <m = i <m] (RA)
iff VgVivmYj[(j < ¢ & vX[OX A (j — 1) V(G A Og)l <m) = i <m] (v _-A)
iff VivmVj[vX[O(X A (j — 1) V(OiA Of)] <m =i < m] (RA)
iff ViVj[li < vX[OX A — L))V (Oi A O] (UA inverse)

In the application of (v™-A) above, ¢(X, !x,z) isOX A (x = 1)) V z, and ¢ is q.
Moreover, the following alternative reduction is now possible for the inequality
vX.O(p A X) < p, treated as the first example of the present subsection:

Vp[lvX.0O(p A OX) < p]
iff VpVYivm[(i < vX.o(p A0X) & p < m) = i <m] (ULA)
iff VpVivm[uX. ¢(¢X Vi) < p & p <m) = i <m] (v-Adj)
iff Vivm[uX. ¢(¢X Vi) <m = i< m] (RA)
iff Vi[i < uX. ¢(¢X Vvi)]. (UA inverse)

The application of (v-Adj) is performed modulo distributing modal connectives.
Notice that, by unfolding the least fixed point uX.¢(eX V i), the clause Vi[i <
1X.¢(®X Vi) can be rewritten as Vi[i < \/,.; #“i], which immediately translates
on Kripke frames into the well known condition expressing the reflexivity of the
transitive closure of the relation interpreting 0.

As to (b), the class of e-Recursive inequalities, in the intuitionistic modal mu-
language, has been syntactically defined in [15] closely following the approach of
definition 5; this class is the intuitionistic counterpart of the class of Sahlqvist mu-
formulas defined in [8]. Analogously to definition 5, the definition of e-Recursive
inequalities is grounded on a classification of the nodes in the signed generation
trees of formulas similar to the specification given in table 1.3. However, as was
mentioned early on, the fixed point binders escape to some extent the order-theoretic
classification, since their interpretation does not enjoy inherent order-theoretic prop-
erties, but rather preserves, in some cases, those of the term function in its scope. To
take this fact into account, we firstly group nodes according to categories (we use
the names skeleton and PIA for these categories, also appearing in [8], to explicitly
establish a connection with the model-theoretic analysis conducted there), and sec-
ondly, we group nodes within each category according to their contextually relevant
order-theoretic properties.

The shape of the e-Recursive inequalities is in essence the Sahlqvist / Inductive
/ Recursive shape introduced and discussed in subsection 1.7.1; as to the similari-
ties, the outer skeleton is exactly the same as the outer part of a Sahlqvist formula;
moreover the PIA part is defined in such a way that, when restricted to the binder-
free fragment, it gives the inner part of the e-Recursive formulas (cf. subsection
1.8.2). The complete definition of the PIA part incorporates extra conditions reg-
ulating the relative positions of free fixed point variables and variables which we
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Outer Skeleton | Inner Skeleton PIA
A-adjoints Binders Binders
+ VA + + v
- AV - v - u
SLR SLA SRA
+ <O<o + o<V | + o> A
- o> *x—>| — o> A - o Qv
SLR SRR
+ A + V x —
- V x — - A o

Table 1.3: Skeleton and PIA nodes.

want to solve for; these conditions ensure that formulas in the scope of binders
have the appropriate order-theoretic properties guaranteeing the applicability of the
u- and v-adjunction rules. The inner skeleton essentially arises by the introduction
of fixed point binders into the outer part of a Sahlqvist formula. As to the differ-
ences, this introduction blocks the application of 4-rules (and more generally also
the possibility of applying rules to single connectives), leaving us with only u- and
v-approximation rules. Hence all the nodes are reclassified according to the proper-
ties which they enjoy and which are now relevant. Similar to the PIA formulas, inner
skeletons incorporate extra conditions regulating the relative positions of free fixed
point variables and variables which we want to solve for; these conditions ensure
that formulas in the scope of binders have the appropriate order-theoretic properties
guaranteeing the applicability of the u- and v-approximation rules. The shape of the
inequalities in this class provides a winning strategy analogous to the one described
for the Sahlqvist inequalities in subsection 1.7.1. Again, the order type € tells us
which occurrences of a given variable we need to ‘display’. The e-Recursive shape
guarantees that this is always possible. Indeed, going down a critical branch, we
can surface the subtree containing the PIA part of the critical branch by applying
approximation rules to the Skeleton nodes. Then adjunction/residuation rules such
as (u-Adj) and (v-Adj) are applied to display the critical occurrences of variables in
the subtrees containing the PIA parts, and to simultaneously calculate the minimal
valuation for them. Finally, notice that the remaining occurrences of variables are of
the opposite order type: this guarantees that they have the right polarity to receive
the calculated minimal valuations, as prescribed by (LA), (RA) or their recursive
counterparts.

The analysis of PIA-formulas conducted in [8] can be summarized in the slo-
gan “PIA formulas provide minimal valuations”. In this respect, the crucial model-
theoretic property possessed by PIA-formulas is the intersection property, isolated
by van Benthem in [6]. The order-theoretic import of this property is clear: if a
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formula has the intersection property then the term function associated with it is
completely meet preserving. In the complete lattice setting in which we find our-
selves, this is equivalent to it being a right adjoint; this is exactly the order-theoretic
property guaranteeing the soundness of adjunction/residuation rules like (u-Adj)
and (v-Adj).'*

1.9 Correspondence across different semantics

In section 1.7 we saw that it is possible to uniformly implement the ‘correspon-
dence calculus’ for different logics, and how, accordingly, the definitions of syn-
tactic classes like the Sahlqvist class could be ported to these logics. In the current
section we shift our focus to consider the related question of what happens when we
keep the logical language and the order-theoretic properties of the connectives fixed,
while varying the relational semantics. In terms of figure 1.1(b) this means that we
maintain the algebraic interpretation of the logic while imposing different dualities.
The key point we wish to illustrate is that the calculus of correspondence is sound in
the setting of perfect distributive lattice expansions, and hence that the elimination
of propositional variables can proceed largely independently of any considerations
on the dual relational structures; the outcome of the reduction/elimination process
can be then further translated so as to fit different relational environments.

We take as our running example Pierce’s law ((p — ¢) — p) — p, which was
considered in [5, Section 3.2] where correspondence is studied for this and other
formulas belonging to the implicative fragment of intuitionistic logic. The calculus
of section 1.3 gives us the following reduction, which is sound on perfect Heyting
algebras (i.e., perfect distributive lattices expanded with the right residual — of A):

YpYql(p — q) = p < p]
iff Vpl(p —» L) = p < pl
ifVpVjivm[(j<(p > L) > p&p<m) = j<m)] (1.1)
iff Vjym[j<(m —» 1) > m = j <m]
iff Ym{(m - 1) »> m < m].

Thus, the propositional variables have been eliminated, and we can interpret the
result on intuitionistic frames (i.e. posets), via the well known duality between per-
fect Heyting algebras and intuitionistic frames. Recall that, in intuitionistic frames,
variables (and consequently all formulas) are evaluated to upward-closed subsets
(up-sets), and that in particular [p — ¢ = (T¢] U [¥I)L)* = ([ell N [WI)L,
where S¢ and S | denote the set theoretic complement and downward closure of the
subset S, respectively. All this fits with the duality between perfect Heyting alge-
bras and intuitionistic frames, according to which the algebra elements correspond
to up-sets of frames, and in particular the meet prime elements correspond to the

14 We must warn the reader that this account, and in particular the formulation of the additional
rules, is slightly oversimplified. Complete details can be found in [15].
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complements of principal down-sets, which we denote by w|°. So, translating the
outcome obtained above via this duality yields:

Ym[(m — 1) — m < m] HE YW[((WIC N @)L N wl) L C wic]
iff Ywlwl € (Wl N @) Nwl)l] iff Ywlw] € (W)L nwl)l]
iff Ywlw € (W)L Nnw)l] iff Ywau[w <u & ue wl)L Nwl)l
ifYwaulw <u&u<w&uewl9)]iff Ywlw € wl9)]]
iff Yw[w ¢ (wl9)]] it VwVYv[yv g wl = w£v]
iff YwWvlv€w = w £ v] iff YwVvlw <v = v<wl].

Thus, as discussed in [5, Example 78], we see that Pierce’s law takes us to classi-
cal propositional logic, by constraining the ordering on intuitionistic frames to be
discrete.

Pierce’s law (as well as any other axiom in the implicative fragment of intuition-
istic logic) can be alternatively interpreted on ternary frames, as they are defined
e.g. in [42], where a Kripkean semantics is employed for the non-associative Lam-
bek calculus, and a restricted Sahlqvist theorem is proven. A ternary frame (cf. [42,
Definition 1]) is a structure (W, R) such that W is a nonempty set and R is a ternary
relationon W. For all X,Y C W, let R[Y,X] = {z | IxIy[x € Y & y € X & R(xy2)]}.
Implication can be interpreted on ternary frames as follows: for all X, Y € W,

X = Y = {z| VaVy[(ROyxz) & x € X) = y € Y]} = R[Y*, X].

Valuations send proposition letters to arbitrary subsets of the universe of ternary
frames. Thus, the complex algebra of the ternary frame (W, R) can be defined as the
perfect algebra (P(W),U,N, W, @, =), and this assignment can be extended to a
fully fledged discrete Stone-type duality for BAOs, in the style of e.g. [47]. In par-
ticular, = as defined above is order-reversing (in fact, completely join-reversing) in
its first coordinate and order-preserving (in fact, completely meet-preserving) in its
second coordinate!® (see section 1.11 and references therein for more details). Thus,
the very same reduction performed in (1.1) is sound also w.r.t. the complex algebras
of ternary frames defined above, or equivalently, w.r.t. ternary frame semantics. Re-
lying on this duality, the final clause of (1.1) can be interpreted on ternary frames as
follows (we abuse notation and write w* for {w}¢ = W\ {w}):

Ym[(m - 1) > m < m] iff YW[R[w*e, R[@¢, w°]]¢ C w¥]
iff Yw[w € R[{w}, R[W, w]]] iff Ywaxdy[R(xyw) & y € R[W,w]* & x = w]
iff YwaAy[Rwyw) & y € R[W, w]] iff YwAy[R(wyw) & YxVz[R(xzy) = z = w]].

Notice that, in the more familiar case in which the operation e, uniquely identifying
=, coincides with meet, the ternary relation which dually represents the binary
map given by (U,V) » UNVisR = {(x,x,x) | x € W}; in this case, X = Y
reduces to the classical X U Y, and the first-order clause above is always true.

15 In fact, = can be uniquely identified as the right residual of e (fusion), given by Y e Z := {x |
Ay Y &z€Z & R(x,y,2)]}.
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intuitionistic language, is reduced by the calculus as follows:

A second example. The inequality (p Aq) = r < (p = 1)V (g — r), in the

VpVgiri(p Ag) > r<(p > 1r)V(g— )]

YivmVpVgVr(i<(pAgq) = r& (p—=r)V(g—r)<m)=1i<m]

YivmVpVgVr(i<(pAg) - r& (p—>r<m&(g—r)<m)=i<m]

VivjVkVmVpVgVr(i<(pAg) = r& (j—orn<m&j<p&(k—->r)<m&k<g)=>i<m]

ViViVKYmYr{i< AK) > r& (=) <m& (K > r) <m) = i< m]

ViviVRYmVYr[iA GAK) <r& (o r<m& (k > r)<m) = i< m]

VivjYkVYm((j — GAjAK) <m & (k> (iAjAK) <m)=i<m]

ViVjVkVm[G - GAjAK)V(k = (iAjAK) <m=i<m]

ViViVk[i< > GAJAK) V(K - (A jAK)]

ViViVKi< (> (AjAK) ® i< (k> (iAjAK)]

ViVjYk[iAj<k ® ink <j].
For reasons analogous to those discussed in the previous example, this reduction
is sound w.r.t. several classes of algebras based on perfect distributive lattices (and
hence w.r.t. the classes of set-based structures dual to each of these), which include,
but are not limited to, perfect (i.e. complete and atomic) Boolean algebras (hence
sets), perfect Heyting algebras (hence posets) and the perfect BAO of the previous
example (hence ternary frames as in the previous example). When interpreted ac-
cording to the first or third option, or equivalently on sets or ternary frames, the last
line in the reduction above becomes:

YwYwWul{w} N {v} C{u} ® {w}n{u} C {}],

which always holds, as was expected, since the inequality treated above is classically
(but not intuitionistically) valid. When interpreted in perfect Heyting algebras, or
equivalently on posets, the last line in the reduction above can be further translated
into

YwVwWulwlT N vt Cul ® wlNnul Cv1l,

which is equivalent to the condition that every principal up-set be linearly ordered.
Indeed, it is clear that, if in a poset there are states w, v, u such thatw < vandw < u
but u £ v and v £ u, then neither inclusion in the condition above holds for these
states; conversely, reasoning by cases should convince the reader that if in a poset
every principal up-set is linearly ordered, then the displayed condition holds. For
instance, if u £ vand v £ u, and wT N v # @ # wl N uf, let us assume that
wl N vl ¢ uf, i.e. that there exists some x € wT N vT such that u £ x, and let
yewlNufl. Theny £ x, but since x,y € wT, the assumption implies that x < y, and
hence y € vT, as desired.

Intuitionistic correspondence via Godel translation. So far in the present sec-
tion, we have seen that the purely syntactic encoding of correspondence arguments
is particularly advantageous in those situations (common to many nonclassical log-
ics) in which a given logical language is interpreted on more than one type of set-
based structures; indeed, the soundness of a given algorithmic reduction depends
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exclusively on the order-theoretic properties of the interpretation of the logical con-
nectives, and, provided these properties are satisfied in each interpretation, the same
reduction will yield first-order correspondents in relational structures of different
types. Sometimes, as in the case of intuitionistic modal logic, the availability of dif-
ferent relational semantics for a given logic reflects itself in the fact that the category
of perfect algebras naturally associated with the logic in question is dually equiv-
alent to each category of relational structures supporting the interpretation of that
logic. However, in some cases, the roles of algebras and relational structures might
be reversed, in the sense that more than one category of algebras might be dually
associated with one and the same category of relational structures. This is the case
in e.g. the category of posets and p-morphisms, which is dually equivalent to both
the category of perfect Heyting algebras and complete homomorphisms via Birkhoff
duality, and to a suitable full subcategory of perfect modal algebras and complete
homomorphisms via the Jonsson-Tarski duality. Notice that, for every poset (W, <),
the inclusion map PT(W) < (P(W),[<]) satisfies the clauses of the Godel assign-
ment, i.e. U —» U = [<]U and (U —» V) » (U —» V) = [](U° U V) for every
U,V € PY(W), which implies the well known fact that an intuitionistic formula is
valid on a given poset (W, <) if its Godel translation is. On the syntactic side, the
Sahlqvist/Inductive shape of formulas in the language of intuitionistic logic is pre-
served under the Godel translation. In the light of these observations it is natural to
ask to what extent intuitionistic correspondence arguments can be subsumed by clas-
sical correspondence arguments via the Godel translation. This question, formulated
as vaguely as we have, can be reformulated more concretely in ways which—more
importantly for our purposes here—lend themselves to be investigated with the tools
of the unified correspondence theory outlined in the present paper.

One such reformulation is: can the reduction steps for the intuitionistic language
which are sound on perfect Heyting algebras be simulated by suitable reduction
steps for the target modal language of the Godel translation and which are sound
on perfect BAOs? And is the Godel translation itself, as it were, such a simulation?
This would be the case, in a sense, if the minimal valuations calculated in perform-
ing the reduction steps on an intuitionistic inequality and on its Godel translation
were always semantically identical. In general, one cannot expect this to hold, as
the minimal valuation provided by the calculus in the classical setting need not be
persistent, as required by the intuitionistic notion of validity. However, running the
calculus on the Godel translation of the inequality in the example above proves in-
structive; below, O stands for [<] and ¢ for (>).

VpV¥qV¥r[o((@p A Og) — Or) < 0(@dp — Or) VO(Og — Or)]
YivmVpVgVr((i < O(Op ADg) — Or) & O(@p —» Or) VO(Og — Or) <m) = i <m]
YivmVpYgVr((i < o((@p AOg) » Or) & O0@p - Or) <m & O0(0Og — Or) <m) = i < m]
VivjvkVmVpVgVr[i < O((@p AOq) » Or) & OF —» r) <m
&j<op&ok—r)<m&k<Og =i<m]
VivjvkVmVpVgVr[i < O((@p AOg) » Or) & OF —» r) <m
&ej<p&iok—-r)<m&ek<g)=i<m]
VivjVkVmVr[i < O(0ejAOek) 0N &O(j—-or<m& Ok - r)<m)=1i<m]
YivjVkVmVYr[¢ (@i A (O®jADOOK) <r& O —>r)<m& Ok - r)<m)=i<m]
YivjVkVm[(O( — &(ei A Dej AOek)) <m & Ok — ¢(#i ADej ADek)) <m)=i<m]
YivjVkVm[(O(j — &(e¢i A 0ej A0ek)) VOk — ¢(¢i A06j ADek)) <m)=i<m]
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VivjVk[i < O — &(ei A D0ej A Oek)) vOk — ¢(eiADejADSk))]
ViVjVk[i <O —» e(¢iADej ADek)) ®i<Ok — &(¢i AD6j A DTek))]
ViVjVK[®i A j < o(®i AD@j ADOOK) 2 ¢i Ak < ¢(®i AT®j A DOK)].

The minimal valuation computed above assigns p to ¢j = (=){w} = wT; analo-
gously, g is mapped by the same valuation to #k = uT, and r to ¢(®iA(CejADEK)).
The assignment for r can be rewritten as follows:

*(ein(DejADek)) = (WTN(OTIDN(@TID)T = WTvTNuDT = wTnvTNuT.

So, in this case, the minimal valuation provided by the reduction of the Godel trans-
lation in the boolean setting is exactly the same as that provided by the reduction
of the original inequality in the intuitionistic setting. This example is of course not
enough to justify any general claims, but it does suggest a line for further inves-
tigation, namely the identification of classes of intuitionistic formulas for which
the correspondence arguments are subsumed by the correspondence arguments of
their Godel translations in the strongest sense, as discussed above. As an initial ob-
servation in this direction we note that whenever the algorithm solves for positive
occurrences of variables (cf. discussion on signed generation trees before definition
5), as in the example above, these variable occurrences will surface, if at all, on the
right-hand side of inequalities; this, together with the fact that the Godel translation
prefixes all variables with a O, implies that the minimal valuations provided by the
algorithm will be (the extensions of) finite disjunctions of ®-terms. The latter are
always upward closed, as required by the intuitionistic semantics.

Things do not work out so nicely for all intuitionistic Sahlqvist formulas, as
revisiting our first example in the current section, the Pierce inequality, will show.
This inequality is e-Sahlqvist for e(p) = d and €(g) = 1 and for no other order type
€. Running the correspondence algorithm on its Godel translation yields:

Yp¥q[o(@(@Op — Og) — Op) < Op]

VplOo(@(@p — ol) —» Op) < Opl

YivmVYp[(i < o@(@p —» 0l) » Op) & Op <m) = i < m]
VivmVnYp[(i<o(@@op - 0l) »Op)&On<m& p <n) = i<m]
VivmVYn[(i < o(@(@On - 0l) > 0On) & 0On <m) = i < m]

Vivn[i < o(@(@On —» 0l) - On) = Ym[On <m = i < m]]

Vivn[i < o(@(On —» 0l1) - 0On) = i < On]

Yn[Oo(O(on — Ol1) — On) < On].

The minimal valuation provided by the above reduction assigns p to a co-atom,
i.e. to a set of type W \ {w}, which need not be upward-closed. There are probably
other, less naive ways in which the intuitionistic correspondence argument for the
Pierce axiom can be simulated classically via its Godel translation, but we leave this
question open.

Finally, notice that the preservation of the intuitionistic Sahlqvist or Inductive
classes under the Godel translation is a very restricted phenomenon. This preserva-
tion occurs thanks mainly to the lack of order-theoretic variety in the intuitionistic
signature. Namely, the interpretation of each binary connective in the intuitionistic
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signature is either a right residual or a right adjoint; in other words, the intuition-
istic signature does not include any ‘pure diamond-type’ connective. As soon as
pure diamond-type connectives are added, this transfer breaks down: for instance,
Sahlqvist inequalities in the language of intuitionistic modal logic are not preserved
under the Godel translation. Indeed, the Godel-translation of the Sahlqvist inequal-
ity OOp < Op yields OO[<]p < O[<L]p, which is not Sahlqvist, and actually—by
van Benthem’s classification of the modal reduction principles [3]—it does not even
have a first-order frame correspondent.

1.10 Conclusions

Unified correspondence. As van Benthem has aptly remarked, our “algebraic anal-
ysis is a combinatorial formalization of essentials of correspondence reasoning.” In-
deed, classical correspondence arguments have been mechanized, and transformed
into chains of equivalent rewritings of quasi-inequalities in the extended language
L*. The language £ can be captured by the monadic second-order frame language.
The chains of equivalent rewritings aim at transforming quasi-inequalities in £*
into equivalent quasi-inequalities in a fragment of L which can be captured by
the first-order frame language. In this process, minimal valuation arguments, which
are pivotal for local correspondence, are encoded as applications of the Ackermann
rule. To support the claim that these rewritings encode correspondence arguments
as desired, the soundness of the rewriting rules needs to be verified. This has been
done, via duality theory, in an algebraic setting. This move to algebras, per se, is not
indispensable as long as the classical setting is concerned. However, the algebraic
setting brings about a crucial advantage: it makes it possible to identify the prop-
erties really underlying the correspondence mechanism. And it turns out that no
property exclusive to the classical setting is needed. This observation paves the way
for rolling out correspondence theory, in great uniformity, to a wide variety of log-
ics, including e.g. classical and intuitionistic modal mu-calculus (see [15]), polyadic
and hybrid modal logics (see [19] and [24]), monotone modal logic [29], modal log-
ics with propositional quantifiers [13] or graded modalities [28], and substructural
logics (see also below). This is what we understand as unified correspondence. In
this setting, it is possible, e.g., to give a general purpose definition of Sahlqvist for-
mulas (cf. section 1.7) simultaneously applicable to several languages, and purely
based on the order-theoretic behaviour of the interpretations of logical connectives.

Dropping distributivity. We wish to stress that the soundness of the approxima-
tion rules introduced in section 4 depends on the perfect lattices being completely
join-generated by the set of their completely join prime elements, which implies
that the perfect lattices in which these rules are sound are necessarily distributive.
However, more general approximation rules can be introduced, which are sound
on (non-distributive) perfect lattices. Hence, correspondence theory in the style il-
lustrated in the present paper covers also logics with algebraic semantics based on
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general lattices, for instance substructural logics (cf. [21] for complete details).

Complexity. While we hope that the reader is convinced that the calculus of corre-
spondence facilitates simple, perspicuous and uniform derivations, we do not claim
that it improves upon the computational complexity of other methods like the tra-
ditional Sahlqvist-van Benthem algorithm. Still, a few remarks on complexity are
perhaps in order. When restricted to the class of Sahlqvist formulas, or to any other
class of formulas on which it is guaranteed to succeed, the calculus of correspon-
dence yields an algorithm for computing the first-order correspondents of the mem-
bers of this class. It is not difficult to see that this algorithm’s runtime complexity is
polynomial in the size of the input formula. More sophisticated versions of the cal-
culus could involve more costly computations like testing for monotonicity of terms
(as opposed to mere syntactic positivity), and can take us to the full complexity of
the underlying logic or beyond (see e.g., [16]). When applied to arbitrary formu-
las, the calculus of correspondence is only a semi-algorithm, as is to be expected,
since the question whether a formulas has a first-order frame correspondent is un-
decidable [14]. Some considerations relevant to implementation and computational
optimization are treated in [34] and chapter 13 of [30].

Constructive canonicity. Perhaps the most important classical applications of cor-
respondence is its connection to canonicity. Indeed, it has been appropriately argued
[46] that the correspondence machinery can be extended and made applicable also
in the context of descriptive frames, where it leads to canonicity results. Such re-
sults are often stated as persistence results (validity can be moved from a descriptive
frame to its underlying Kripke frame); however, when seen from the dual, algebraic
side, they can be stated as fransfer results, namely that validity transfers from an
algebra to its canonical extension. Formulated in this way, canonicity requires a rich
metatheory for which the ultrafilter theorem (depending on the axiom of choice)
must be available. However, there is a method for building canonical extensions
‘without ultrafilters’ in a constructive way. The idea [36] is to exploit a Galois con-
nections induced by an abstract ‘containment’ relation between filters and ideals,
and to define the canonical extension as the resulting algebra of Galois-stable sub-
sets. Indeed, in the presence of the axiom of choice, this construction is isomorphic
to the canonical extension defined via duality. However, the canonical extension de-
fined in [36] has an autonomous life also in a constructive (topos-theoretically valid)
metatheory, and moreover, it has a rich enough internal structure that the transfer re-
sults for Sahlqvist-type equations can be proved in two steps, without relying on any
correspondence result. Thus, canonicity (the alter ego of correspondence) is mean-
ingful also in a purely constructive context.

Inverse correspondence. We focused on the question of finding first-order (or
FO+LFP) correspondents for modal formulas. In this way we ‘cover’ only a frag-
ment of the first-order (or FO+LFP) correspondence language, so it is natural
to reverse direction and ask which first-order (or FO+LFP) frame conditions are
modally definable. The more specific question of characterizing the first-order for-
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mulas which are frame correspondents of Sahlqvist formulas was answered by Mar-
cus Kracht [41] and more generally for the inductive formulas by Stanislav Kikot
[40]. Analogous questions for intuitionist modal logic or when correspondence with
FO+LFP is sought are still open.

Step-by-step construction of finitely generated free algebras, and correspon-
dence methods. The step-by-step construction of finitely generated free algebras
is gaining more and more attention, viz. [1, 35, 12, 25]. The case of equations of
rank 1 has been thoroughly investigated in connection with research issues rele-
vant to coalgebraic logic; interestingly, preliminary results show that, in order to
extend these results beyond rank 1, the correspondence machinery is needed in the
setting of the so-called step frames [10], two-sorted Kripke frames modelling par-
tially defined modalities. Possible developments of this line of investigation invest
proof-theoretic questions related to the subformula property [9].

1.11 Appendix

1.11.1 Distributive complex algebras and frames

An element ¢ # L of a complete lattice C is completely join-irreducible iff c = \/ S
implies ¢ € S for every S € C; moreover, c is completely join-prime if ¢ # L and,
for every subset S of the lattice, ¢ < \/ S iff ¢ < s for some s € S. An element
¢ # L of a complete lattice is an atom if there is no element y in the lattice such that
1 <y < c. Anelement ¢ # T of a complete lattice is completely meet-irreducible
iff c = A S implies ¢ € S for every S C C; moreover, ¢ is completely meet-prime
if ¢ # T and, for every subset S of the lattice, c > A S iff ¢ > s for some s € §.
An element ¢ # T of a complete lattice is a co-atom if there is no element y in the
lattice such thatc <y < T.

If ¢ is an atom (resp. a co-atom), then c¢ is completely join-prime (resp. meet-
prime), and if ¢ is completely join-prime (resp. meet-prime), then c is completely
join-irreducible (resp. meet-irreducible). If C is frame distributive (i.e. finite meets
distribute over arbitrary joins) then the completely join-irreducible elements are
completely join-prime, and if C is a complete Boolean lattice, then the completely
join-prime elements are atoms. The collections of all completely join- and meet-
irreducible elements of C are respectively denoted by J*(C) and M*(C).

Definition 6. A perfect lattice is a complete lattice C such that J*(C) join-generates
C (i.e. every element of C is the join of elements in J*(C)) and M*(C) meet-
generates C (i.e. every element of C is the meet of elements in M*(C)). A perfect
distributive lattice is a perfect lattice such that J*(C) coincides with the set of all
completely join-prime elements of C and M*(C) coincides with the set of all com-
pletely meet-prime elements of C; a perfect Boolean lattice is a perfect lattice such
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that J*(C) coincides with the set of all the atoms of C (or M*(C) coincides with the
set of all the co-atoms of C).

Complete atomic modal algebras are those modal algebras A the lattice reducts
of which is a perfect Boolean lattice and moreover, their ¢ operation preserves
arbitrary joins, i.e. O(V S) = Ve Os for every S C A. Discrete Stone dual-
ity between complete atomic modal algebras and their complete homomorphisms
and Kripke frames and their bounded morphisms is defined on objects by mapping
any Kripke frame ¥ = (W, R) to its complex algebra ¥+ = (P(W),(R)), where
(RYX = R7'[X] = {w € W : Ix(x € X & wRx)} for every X € P(W), and every
complete atomic modal algebra A = (B, ¢) to its atom structure A, = (J(B), R),
where xRy iff x < Oy for all atoms x,y € J(B). As a consequence of this duality,
the Stone representation theorem holds for complete atomic modal algebras, which
states that these can be equivalently characterized as the modal algebras each of
which is isomorphic to the complex algebra of some Kripke frame.

Likewise, a Stone-type duality (extending the finite Birkhoff duality) holds be-
tween perfect distributive lattices and their complete homomorphisms and posets
and monotone maps, which is defined on objects as follows: every poset X is asso-
ciated with the lattice PT(X) of the upward-closed subsets of X, and every perfect
lattice C is associated with (J*(C), >) where > is the reverse lattice order in C,
restricted to J*(C). As a consequence of this duality, perfect distributive lattices
can be equivalently characterized (see e.g. [32]) as those lattices each of which is
isomorphic to the lattice P'(X) of the upward-closed subsets of some poset X.

As was mentioned early on, just in the same way in which the duality between
complete atomic Boolean algebras and sets can be expanded to a duality between
complete atomic modal algebras and Kripke frames, the duality between perfect
distributive lattices and posets can be expanded to a duality between perfect DLOs
and posets endowed with arrays of relations, each of which dualizes one additional
operation in the usual way, i.e., n-ary operations give rise to n + l-ary relations,
and the assignments between operations and relations are defined as in the classi-
cal setting. We are not going to report on this duality in full detail (we refer e.g.
to [47, 33, 22]), but we limit ourselves to mention that, for instance, the DLOs
endowed with four unary operators as in (1.1) are dual to the relational structures
F = (W,<,Re, Ra, R, R,) such that (W, <) is a nonempty poset, R, Rn, R, R are
binary relations on W and the following inclusions hold:

ZORQOZQRQ SORDOZQRD
<oRpo< C Ry >oR,0< C R..
The complex algebra of any such relational structure ¥ (cf. [33, Sec. 2.3]) is

F+ = (PN (W), U,N, 2, W,(Ro), [Ral, (Ra], [R.)),

where, for every X C W,
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[RolX :={w e W|Rg[w] € X} = (RZ'[X°)F
(Ro)X :={we W|Ro[wlNX # 2} =R[X]
[Ro)X :={we W]|R.[w] C X} = (R'[X])

(R41X = {w e W |Riw] N X # @} = RJ'[X].

Here (-)¢ denotes the complement relative to W, while R[x] = {w | w € W and xRw}
and R7'[x] = {w | w € W and wRx}. Moreover, R[X] = |J{R[x] | x € X} and
R'[X] = UR"[x] | x € X}.

1.11.2 Adjunction and residuation

Let P and Q be partial orders. The maps f : P - Qand g : QO — P form an
adjoint pair (notation: f 4 g) iff forevery x e Pandy € Q, f(x) <y iff x < g(y).
Whenever f 4 g, f is the left adjoint of g and g is the right adjoint of f. Adjoint
maps are order-preserving. If a map admits a left (resp. right) adjoint, the adjoint is
unique and can be computed pointwise from the map itself and the order.

Proposition 3 1. Right adjoints (resp. left adjoints) between complete lattices are
exactly the completely meet-preserving (resp. join-preserving) maps;

2. right (resp. left) adjoints on powerset algebras P(W) are exactly the maps defined
by assignments of type X — [R1X = (R™'[X])¢ (resp. X — (R)X = R™'[X]) for
some binary relation R on W.

3. For any binary relation R on W, the left adjoint of [R] is the map (R™"), defined
by the assignment X — R[X].

Proof. 1. See [26, Proposition 7.34].
2. For a left adjoint f : P(W) — P(W), define R as follows: for every x,z € W,
xRz iff x € f({z}). For a right adjoint g : P(W) — P(W), define R as follows: for
every x,z € W, xRz iff x ¢ g(W \ {z}).

The notion of adjunction can be made parametric and generalized to n-ary maps in
a component-wise fashion: an n-ary map f : P" — P on a poset P is residuated if
there exists a collection of maps {g; : P" —» P |1 <i<n}st foreveryl <i<n
and for all xq,...,x,,y € P,

SO, x) <y i X< gilxn, L XL Y Xivds -y X))

The map g; is the i-th residual of f. Residuated maps are order preserving in each
coordinate, and for each 1 < i < n, the residual g; is order-preserving in its ith coor-
dinate and order-reversing in all other coordinates. The facts stated in the following
example and proposition are well known in the literature in their binary instance (cf.
[31, Subsection 3.1.3]):

Example 4. For every (n + 1)-ary relation S on W and every (X,...,X,) € P(W)",
let
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SIXi,.... %]l ={yeW|Ix; - I, [AL, x; € Xi A S(x1,..., 20, 0]

The n-ary operation on (W) defined by the assignment (X1, ..., X,) — S[Xi,...,X,]
is residuated and its i-th residual is the map g; : P(W)" — P(W) which maps every
n-tuple (Xi,....X;_1, Y, Xjs1..... X,) to the set {w € W | as(w)}, where a/g(w) is the
following first-order formula:

Voar - Vy VX [(Aen, Xk € Xx & S(X1,...,w, ..., x5, )) > yEY],
and moreovern; = {1,...,n}\ {i}.

Proposition4 If f : P* — P is residuated and {g; : P" — P |1 < i < n} is the
collection of its residuals, then:

1. if P is a complete lattice, then f preserves arbitrary joins in each coordinate;
2. if P is a powerset algebra, f coincides with the map defined by the assignment
S[Xy,...,X,] as in example 4, for some (n + 1)-ary relation S on W.

References

1. S. ABramsky, A Cook’s tour of the finitary non-well-founded sets, in We will show them:
Essays in honour of Dov Gabbay, 2005, pp. 1 — 18.

2. W. AckerMANN, Untersuchung iiber das Eliminationsproblem der mathematischen Logic,
Mathematische Annalen, 110 (1935), pp. 390 — 413.

3. J.F. A. K. van BentHEM, Modal reduction principles, Journal of Symbolic Logic, 41(2) (1976),
pp- 301-312.

4. ———, Modal Logic and Classical Logic, Bibliopolis, 1983.

5. , Correspondence theory, in Handbook of Philosophical Logic, D. M. Gabbay and
F. Guenthner, eds., vol. 3, Kluwer Academic Publishers, 2001, pp. 325 — 408.

6. ———, Minimal predicates, fixed-points, and definability, Journal of Symbolic Logic, 70:3
(2005), pp. 696-712.

, Modal frame correspondence and fixed-points, Studia Logica, 83 (2006), pp. 133 -

7.

155.

8. J. F. A. K. van BentHEM, N. BEzHaNisHvILI, AND 1. HODKINSON, Sahlqvist correspondence for
modal mu-calculus, Studia Logica, 100 (2012), pp. 31-60.

9. N. BezHaNisHVILI AND S. GHILARDL, Bounded proofs and step frames, Logic Group Preprint
Series, n.306, Utrecht University, (2013).

10. N. BezaanisaviLi, S. GHILARDI, AND M. JIBLADZE, Free modal algebras revisited: the step-by-
step method, vol. Leo Esakia on duality in modal and intuitionistic logics, 2013. To appear.

11. N. BezaanisnvILI AND 1. HoDKINSON, Sahlgvist theorem for modal fixed point logic. To appear
in Theoretical Computer Science.

12. N. BezuanisuviLt anp K. Kurz, Free modal algebras: A coalgebraic perspective, vol. Proc.
CALCO 2007, 2007, pp. 143 — 157.

13. R. A. BuLL, On modal logic with propositional quantifiers, Journal of Symbolic Logic, 34
(1969), pp. 257-263.

14. A. CHaGrov AND L. A. CHAGROVA, The truth about algorithmic problems in correspondence
theory, in Advances in Modal Logic, G. Governatori, I. Hodkinson, and Y. Venema, eds.,
vol. 6, College Publications, 2006, pp. 121 — 138.

15. W. CoNrADIE, Y. Fomarati, A. PALMIGIANO, AND S. SOURABH, Sahlqvist correspondence for intu-
itionistic modal mu-calculus, to appear in Theoretical Computer Science, (2014).



1 Unified Correspondence 41

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

W. ConNrADIE AND V. GORANKO, Algorithmic correspondence and completeness in modal logic
1II: Semantic extensions of the algorithm SQEMA, Journal of Applied Non-Classical Logics,
18 (2008), pp. 175-211.

W. ConrADIE, V. GORANKO, AND D. VAKARELOV, Elementary canonical formulae: a survey on
syntactic, algorithmic, and model-theoretic aspects, in Advances in Modal Logic, R. Schmidt,
1. Pratt-Hartmann, M. Reynolds, and H. Wansing, eds., vol. 5, Kings College, 2005, pp. 17-51.
, Algorithmic correspondence and completeness in modal logic I: The core algorithm
SQEMA, Logical Methods in Computer Science, 2(1:5) (2006).

W. ConraDIE, V. GOrRANKO, AND D. VakARELOV, Algorithmic Correspondence and Complete-
ness in Modal Logic. I1. Polyadic and Hybrid Extensions of the Algorithm SQEMA, Journal of
Logic and Computation, 16 (2006), pp. 579-612.

W. ConraDIE, V. GORANKO, AND D. VakaRreLov, Algorithmic correspondence and complete-
ness in modal logic. V. Recursive extensions of SQEMA, Journal of Applied Logic, 8 (2010),
pp. 319-333.

W. ConNrADIE AND A. PaLmiGianNo, Algorithmic correspondence and canonicity for non-
distributive logics. Submitted.

, Algorithmic correspondence and canonicity for distributive modal logic, Annals of
Pure and Applied Logic, 163 (2012), pp. 338 — 376.

W. CoNRADIE, A. PALMIGIANO, AND S. SOURABH, Algebraic modal correspondence: Sahlqvist and
beyond, Submitted.

W. ConrADIE AND C. RoBINSON, An extended Sahlqvist theorem for Hybrid Logic, In prepara-
tion.

D. Coumans anp S. van GooL, On generalizing free algebras for a functor, Journal of Logic
and Computation.

B. A. Davey anp H. A. PrIESTLEY, Lattices and Order, Cambridge Univerity Press, 2002.

J. M. Dunn, M. GEHRKE, AND A. PaLmiGiaNo, Canonical extensions and relational completeness
of some substructural logics, Journal of Symbolic Logic, 70(3) (2005), pp. 713 — 740.

K. FiNg, In so Many Possible Worlds, Notre Dame Journal of Formal Logic, 13 (1972),
pp- 516-520.

S. FrRITTELLA, A. PALMIGIANO, AND L. SaNTOCANALE, Characterizing uniform upper bounds on
the length of d-chains in finite lattices via correspondence theory for monotone modal logic,
(2014). In preparation.

D. M. GaBBay, R. A. ScamIpT, AND A. SzAtas, Second-Order Quantifier Elimination: Foun-
dations, Computational Aspects and Applications, vol. 12 of Studies in Logic: Mathematical
Logic and Foundations, College Publications, 2008.

N. Gataros, P. Jipsen, T. KowaLskr, aNp H. ONo, Residuated lattices: an algebraic glimpse at
substructural logics, Elsevier, 2007.

M. GEHRKE AND B. JOnssoN, Bounded distributive lattices with operators, Math. Japon., 40
(1994).

M. GeHrKE AND Y. NaGganasHI, H. VENEMA, A Sahlqvist theorem for distributive modal logic,
Annals of Pure and Applied Logic, 131 (2005), pp. 65 — 102.

D. GeoraiEv, An implementation of the algorithm SQEMA for computing first-order corre-
spondences of modal formulas, master’s thesis, Sofia University, Faculty of mathematics and
computer science, 2006.

S. GHILARDL, An algebraic theory of normal forms, Annals of Pure and Applied Logic, 71
(1995), pp. 189-245.

S. GHiLARDI AND G. MELoNI, Constructive canonicity in non-classical logics, Annals of Pure
and Applied Logic, 86 (1997), pp. 1 —32.

V. Goranko AND D. Vakarerov, Sahlqvist formulas in hybrid polyadic modal logics, Journal
of Logic and Computation, 11 (2001), pp. 737-754.

, Sahlqvist formulas unleashed in polyadic modal languages, in Advances in Modal
Logic, F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyaschev, eds., vol. 3, Singapore,
2002, World Scientific, pp. 221 — 240.

, Elementary canonical formulae: Extending Sahlqvist theorem, Annals of Pure and
Applied Logic, 141(1-2) (2006), pp. 180 —217.




4

40

41.

42.

43.

44.

45.

46.

47.

Willem Conradie, Silvio Ghilardi, Alessandra Palmigiano

. S. Kikor, An extension of Kracht’s theorem to generalized Sahlgvist formulas, Journal of Ap-
plied Non-Classical Logics, 19 (2009), pp. 227-251.

M. Kracur, How completeness and correspondence theory got married, in Diamonds and
Defaults, M. de Rijke, ed., Kluwer Academic Publishers, 1993, pp. 175 —214.

N. KurtoniNa, Categorical Inference and Modal Logic, Journal of Logic, Language, and In-
formation, 7 (1998), pp. 399 — 411.

A. Kurz anNDp A. Pamiciano, Epistemic updates on algebras, Logical Methods in Computer
Science, 9(4) (2013).

M. Ma, A. PALMIGIANO, AND M. SADRZADEH, Algebraic semantics and model completeness for
intuitionistic public announcement logic, Annals of Pure and Applied Logic, 165 (2014),
pp. 963 —995.

H. SanLqvist, Correspondence and completeness in the first and second-order semantics
for modal logic, in Proceedings of the 3rd Scandinavian Logic Symposium, Uppsala 1973,
S. Kanger, ed., Amsterdam, 1975, Springer-Verlag, pp. 110 — 143.

G. SaMBIN AND V. Vaccaro, A new proof of Sahlqvist’s theorem on modal definability and
completeness, Journal of Symbolic Logic, 54 (1989), pp. 992-999.

V. SoFRONIE-STOKKERMANS, Duality and canonical extensions of bounded distributive lattices
with operators, and applications to the semantics of non-classical logics I, Studia Logica,
64(1) (2000), pp. 93 — 132.



