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Substructural logics
• for reasoning, e.g., about natural language, vagueness,
resources, algebraic varieties ...

• include intuitionistic logic, linear logic, fuzzy logics, ...
• defined by adding Hilbert axioms to Full Lambek calculus
FL or equations to residuated lattices
Example: Gödel logic is obtained by adding
◦ the Hilbert axiom (α → β) ∨ (β → α) to intuitionistic
logic (FL + exchange, weakening and contraction), or

◦ prelinearity 1 ≤ (x → y) ∨ (y → x) to Heyting algebras
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Why proof theory?
• The applicability/usefulness of these logics, however,
strongly depends on the availability of analytic calculi.
Analytic calculi are
◦ useful for establishing various properties of logics
◦ key for developing automated reasoning methods.

• Gentzen sequent calculus has always been the favourite
framework.
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Sequent Calculus

Sequents
A1, . . . , An ⇒ B1, . . . , Bm

Axioms
E.g., A ⇒ A

Rules
• Logical (left and right)
• Structural
E.g.

Γ, A,A ⇒ Π
Γ, A ⇒ Π

(c, l)

• Cut
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Sequent Calculus: the rule Cut

Γ ⇒ A A,∆ ⇒ Π
Γ,∆ ⇒ Π Cut

• key to prove completeness w.r.t. Hilbert system

modus ponens
A A → B

B

• bad for proof search

Cut-elimination theorem

Each proof using Cut can be transformed into a proof without Cut.
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The system FLe

FLe = commutative Lambek calculus (= intuitionistic Linear
Logic without exponentials
Algebraic semantics:
A (bounded pointed) commutative residuated lattice is

P = ⟨P,∧,∨,⊗,→,⊤,0,1,⊥⟩

1. ⟨P,∧,∨⟩ is a lattice with ⊤ greatest and ⊥ least
2. ⟨P,⊗,1⟩ is a commutative monoid.
3. For any x, y, z ∈ P , x⊗ y ≤ z ⇐⇒ y ≤ x → z

4. 0 ∈ P .
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The system FLe

A,B,Γ ⇒ Π
A⊗ B,Γ ⇒ Π

⊗l
Γ ⇒ A ∆ ⇒ B
Γ,∆ ⇒ A⊗ B

⊗r

Γ ⇒ A B,∆ ⇒ Π
Γ, A → B,∆ ⇒ Π → l

A,Γ ⇒ B

Γ ⇒ A → B
→ r

A,Γ ⇒ Π B,Γ ⇒ Π
A ∨ B,Γ ⇒ Π ∨l

Γ ⇒ Ai

Γ ⇒ A1 ∨ A2
∨r

0 ⇒ 0l

Ai,Γ ⇒ Π
A1 ∧ A2,Γ ⇒ Π ∧l

Γ ⇒ A Γ ⇒ B
Γ ⇒ A ∧ B

∧r
Γ ⇒ ⊤ ⊤r

Γ ⇒
Γ ⇒ 0

0r ⇒ 1
1r ⊥,Γ ⇒ Π ⊥l

Γ ⇒ Π
1,Γ ⇒ Π 1l
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Beyond sequent calculus
• Many useful and interesting logics seem do not fit
comfortably into the sequent framework, however.

• A large range of variants and extensions have been indeed
introduced.
E.g.

Hypersequent Calculi,
Display calculi,
Labelled Deductive Systems,
Nested Calculi,
Bunched Calculi,
Calculus of Structures
. . .
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State of the art

The definition of analytic calculi is logic-tailored.

(Step i) choose (or define) a framework
(Step ii) find the “right” inference rule(s)
(Step iii) prove (soundness, completeness and) cut-elimination
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This talk

(1) Define analytic calculi for large classes of substructural
logics in a systematic and algorithmic way

(2) Characterize the expressive power of sequent and
hypersequent structural rules

(3) Applications: use the introduced calculi for
◦ uniform proofs of closure under order theoretic
completions

◦ uniform (and automated) proofs of standard
completeness
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Order Theoretic Completions
• A completion of an algebra A is a complete algebra B (i.e.
it has arbitrary

∨
and

∧
) such that A ⊆ B.

• Completions are not unique: filter/ideal extensions,
canonical extensions, Dedekind-MacNeille completions, ...
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Dedekind MacNeille Completion

Dedekind Completion of Rationals
• For any X ⊆ Q,

X◃ = {y ∈ Q : ∀x ∈ X.x ≤ y}

X▹ = {y ∈ Q : ∀x ∈ X.y ≤ x}

• X is closed if X = X◃▹

• (Q,+, ·) can be embedded into (C(Q),+, ·) with

C(Q) = {X ⊆ Q : X is closed}

Dedekind completion extends to various ordered algebras

(MacNeille).
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Algebraic Proof Theory: motivating facts

Algebra The variety of Heyting algebras satisfying prelinearity
1 ≤ (x → y) ∨ (y → x) is not closed under
Dedekind-MacNeille completions DM (cf. Bezhanishvill&
Harding ’04), but it is closed under DM when applied to s.i.
algebras.

Proof Th. IL + prelinearity (= Gödel logic) does not admit a cut-free
sequent calculus extending FLe but it does admit a cut-free
hypersequent calculus.

Algebra The variety of MV algebras is not closed under any
completion (cf. Kowalski & Litak ’08).

Proof Th. Lukasiewicz logic does not admit any cut-free sequent or
hypersequent calculus extending FLe.
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Axioms vs Rules for Substructural Logics

(Commutative) Substructural Logics= FLe + axioms
E.g.
Contraction: α → α⊗ α or Weakening: α → 1.

Cut-elimination is not preserved when axioms are added
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Axioms vs Rules

Example

• Contraction: α → α⊗ α
A,A,Γ ⇒ Π
A,Γ ⇒ Π

(c)

• Weakening l: α → 1
Γ ⇒ Π

Γ, A ⇒ Π
(w, l)

• Weakening r: 0 → α
Γ ⇒

Γ ⇒ A
(w, r)

They are equivalent, i.e.

⊢FLe+(axiom) = ⊢FLe+(rule)
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From axioms to rules: the idea
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From axioms to rules: the ingredients

Starting point: a suitable classification of the properties

• Use of the invertible rules of the base calculus
• Use of the Ackermann Lemma
An algebraic equation t ≤ u is equivalent to a
quasiequation u ≤ x =⇒ t ≤ x, and also to
x ≤ t =⇒ x ≤ u, where x is a fresh variable not occurring
in t, u.
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Classification

P3 N3

P2 N2

P1 N1

P0 N0
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""✒ ✻

❅
❅❅■

✻

"
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❅
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The sets Pn,Nn of formulas (equations) defined by:

P0, N0 := Atomic formulas

Pn+1 := Nn | Pn+1 ⊗ Pn+1 | Pn+1 ∨ Pn+1 | 1 | ⊥

Nn+1 := Pn | Pn+1 → Nn+1 | Nn+1 ∧Nn+1 | 0 | ⊤

P and N

• Positive connectives 1,⊥,⊗,∨ have invertible
left rules:

• Negative connectives⊤,0,∧,→ have invertible
right rules:
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Examples

Class Axiom Name
N2 α → 1, ⊥ → α weakening

α → α⊗ α contraction
α⊗ α → α expansion
⊗αn → ⊗αm knotted axioms (n,m ≥ 0)
¬(α ∧ ¬α) weak contraction

P2 α ∨ ¬α excluded middle
(α → β) ∨ (β → α) prelinearity

P3 ¬α ∨ ¬¬α weak excluded middle
¬(α⊗ β) ∨ (α ∧ β → α⊗ β) (wnm)

N3 ((α → β) → β) → ((β → α) → α) Lukasiewicz axiom
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Our preliminary results
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Algorithm to transform:
• axioms up to the class N2 into "good"
structural rules in sequent calculus

• equations up to N2 into "good" quasiequations

Moreover
• analytic calculi iff DM completion
• in presence of weakening/integrality all ax-
ioms/equations up to N2 are tamed

(-, N. Galatos and K. Terui). LICS 2008 and APAL
2012
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Bad N2 axioms/equations

in absence of weakening/integrality, e.g.,

Γ, B ⇒ A A,∆ ⇒ B
Γ,∆ ⇒

A concrete example

The subvariety of FL defined by

x\x ≤ x/x

does not admit any completion
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Expressive power of structural sequent rules

Consider e.g.
(α → β) ∨ (β → α) ∈ P3

• Can we find equivalent good structural sequent rules?

NO! Theorem
Each good (i.e. analytic) structural sequent rule is equivalent to
an equation which is preserved by Dedekind MacNeille
completions in presence of integrality.

(-, N. Galatos and K. Terui. APAL 2012)

(Algebraic) Proof Theory for Substructural Logics and Applications – p.22/36



Hypersequent calculus

It is obtained embedding sequents into hypersequents

Γ1 ⇒ Π1 | . . . |Γn ⇒ Πn

where for all i = 1, . . . n, Γi ⇒ Πi is a sequent.

G|Γ ⇒ A G|A,∆ ⇒ Π

G|Γ,∆ ⇒ Π
Cut

G|A ⇒ A
Identity

G|Γ ⇒ A G|B,∆ ⇒ Π

G|Γ, A → B,∆ ⇒ Π
→ l

G|A,Γ ⇒ B

G|Γ ⇒ A → B
→ r

and adding suitable rules to manipulate the additional layer of
structure.

G
G |Γ ⇒ A

(ew)
G |Γ ⇒ A |Γ ⇒ A

G |Γ ⇒ A
(ec)

(Algebraic) Proof Theory for Substructural Logics and Applications – p.23/36



Structural rules: an example

G |Γ,Σ′ ⇒ ∆′ G |Γ′,Σ ⇒ ∆

G |Γ,Σ ⇒ ∆ |Γ′,Σ′ ⇒ ∆′
(com)

(Avron, Annals of Math and art. Intell. 1991)
Gödel logic = IL + (α → β) ∨ (β → α)

β ⇒ β α ⇒ α
(com)

α ⇒ β | β ⇒ α
(→,r)

α ⇒ β | ⇒ β → α
(→,r)

⇒ α → β | ⇒ β → α
(∨i,r)

⇒ α → β | ⇒ (α → β) ∨ (β → α)
(∨i,r)

⇒ (α → β) ∨ (β → α) | ⇒ (α → β) ∨ (β → α)
(EC)

⇒ (α → β) ∨ (β → α)
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Climbing up the hierarchy
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Algorithm to transform:
• axioms up to the class P ′

3 into "good"
structural rules in hypersequent calculus

• equations up to P ′

3 into "good" analytic clauses

Moreover
• equations up to P ′

3 preserved by DM
completions when applied to s.i. algebras

• analytic calculi iff HyperDM completion
• axioms/equations up to P3 are tamed in pres-
ence of integrality

(-, N. Galatos and K. Terui). Algebra Universalis,
2011, and Submitted 2014.
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Expressive power of hypersequent rules
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Sequent structural rules: only equations
• closed under DM completion, with integrality
• that hold in Heyting algebras (IL)

Hypersequent structural rules: only equations
• closed under HyperDM completions, with
integrality

• that hold in Heyting algebras generated by the
3-element algebras or derive 1 ≤ x ∨ ¬xn in
FLew

(-, N. Galatos and K. Terui. Submitted 2014)
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From axioms to good analytic clauses

(α → β) ∨ (β → α)

is equivalent to

G |Γ,Σ′ ⇒ ∆′ G |Γ′,Σ ⇒ ∆

G |Γ,Σ ⇒ ∆ |Γ′,Σ′ ⇒ ∆′
(com)

whose algebraic reformulation is:

1 ≤ (x → y) ∨ (y → x)

is equivalent to

z ≤ x and w ≤ y =⇒ w ≤ x or z ≤ y
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To sum up
• systematic generation of good (hyper)sequent rules
equivalent to axioms up to P ′

3 (P3 in presence of
weakening)

• identification/introduction of appropriate completions that
work for equations up to the level P ′

3 (P3 in presence of
weakening)

http://www.logic.at/staff/lara/tinc/webaxiomcalc/
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An application

Completeness of axiomatic systems with respect to algebras
whose lattice reduct is the real unit interval [0, 1].

(Hajek 1998) Formalizations of Fuzzy Logic
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Some standard complete logics

T-norm based logics
• conjunction interpreted as a t-norm, i.e. a function

∗ : [0, 1]2 → [0, 1] satisfying, ∀x, y, z ∈ [0, 1]: x ∗ y = y ∗ x
(Commutativity), (x ∗ y) ∗ z = x ∗ (y ∗ z) (Associativity),
x ≤ y implies x ∗ z ≤ y ∗ z (Monotonicity), 1 ∗ x = x
(Identity).

• implication interpreted as its residuum, i.e. a function
⇒∗: [0, 1]2 → [0, 1] where x ⇒∗ y = max{z | x ∗ z ≤ y}.

Example: Gödel logic

v : Propositions→ [0, 1]

v(A ∧B) = min{v(A), v(B)} v(⊥) = 0

v(A ∨B) = max{v(A), v(B)}

v(A → B) = 1 if v(A) ≤ v(B),and v(B) otherwise
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Some standard complete logics

T-norm based logics
• conjunction interpreted as a t-norm, i.e. a function

∗ : [0, 1]2 → [0, 1] satisfying, ∀x, y, z ∈ [0, 1]: x ∗ y = y ∗ x
(Commutativity), (x ∗ y) ∗ z = x ∗ (y ∗ z) (Associativity),
x ≤ y implies x ∗ z ≤ y ∗ z (Monotonicity), 1 ∗ x = x
(Identity).

• implication interpreted as its residuum, i.e. a function
⇒∗: [0, 1]2 → [0, 1] where x ⇒∗ y = max{z | x ∗ z ≤ y}.

Monoidal T-norm based logic MTL (FLew + (α → β) ∨ (β → α))
(Godo, Esteva, FSS 2001)
v(A⊗B) = v(A) ∗ v(B), ∗ left continous t-norm
v(A ∨B) = max{v(A), v(B)}

v(A → B) = v(A) ⇒∗ v(B)

v(⊥) = 0
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Standard Completeness?

Question Given a logic L obtained by extending MTL with
• A ∨ ¬A (excluded middle)?
• An−1 → An (n-contraction)?
• ¬(A⊗B) ∨ (A ∧B → A⊗B) (weak nilpotent minimum)?
• ....

Is L standard complete? (is it a formalization of Fuzzy Logic?)

case-by-case answer
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Standard Completeness: usual approach

Given a logic L:
1. Identify the algebraic semantics of L (L-algebras)
2. Show completeness of L w.r.t. linear, countable L-algebras
3. Find an embedding of countable L-algebras into dense

countable L-algebras
4. Dedekind-MacNeille style completion (embedding into

L-algebras with lattice reduct [0, 1])

• Step 3 (rational completeness): problematic (only ad hoc
solutions)
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Standard Completeness via proof theory

(Metcalfe, Montagna JSL 2007) L + (density) is rational
complete:

(Φ → p) ∨ (p → Ψ) ∨ Ξ

(Φ → Ψ) ∨ Ξ
(density)

where p ̸∈ Φ,Ψ,Ξ

(Step 1) Define a suitable calculus for L + (density)

(Step 2) Show that density produces no new theorems (Rational
completeness)

(Step 3) Dedekind-MacNeille style completion
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Density vs Cut in hypersequent calculi

(Φ → p) ∨ (p → Ψ) ∨ Ξ

(Φ → Ψ) ∨ Ξ
(density)

•

G |Γ ⇒ p | p ⇒ ∆

G |Γ ⇒ ∆
(density)

where p is does not occur in the conclusion.
•

G |Γ ⇒ A G |A ⇒ ∆

G |Γ ⇒ ∆
(cut)
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Density elimination
• Similar to cut-elimination
• Proof by induction on the length of derivations

(-, Metcalfe TCS 2008) Given a density-free derivation, ending in

··· d
′

G |Γ ⇒ ∆ |Γ ⇒ ∆
(EC)

G |Γ ⇒ ∆

• Asymmetric substitution: p is replaced
◦ With ∆ when occuring on the right
◦ With Γ when occuring on the left
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Density elimination: problem with (com)

p ⇒ p

···
Π ⇒ Ψ

(com)
Π ⇒ p | p ⇒ Ψ

·····
d

G |Γ ⇒ p | p ⇒ ∆
(D)

G |Γ ⇒ ∆

Γ ⇒ ∆

···
Π ⇒ Ψ

(com)
Π ⇒ ∆ |Γ ⇒ Ψ

·····
d∗

G |Γ ⇒ ∆ |Γ ⇒ ∆
(EC)

G |Γ ⇒ ∆

• p ⇒ p axiom
• Γ ⇒ ∆ not an axiom
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Solution (with weakening)

(AC, Metcalfe 2008)

p ⇒ p

···
Π ⇒ Ψ

(com)
Π ⇒ p | p ⇒ Ψ

·····
d

G |Γ ⇒ p | p ⇒ ∆
(D)

G |Γ ⇒ ∆

···
G |Γ ⇒ p | p ⇒ ∆

···
Π ⇒ Ψ

(cut)
Π ⇒ ∆ |Γ ⇒ Ψ

·····
d∗

G |Γ ⇒ ∆ |Γ ⇒ ∆
(EC)

G |Γ ⇒ ∆
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Step 2: general conditions for density elimination

in presence of weakening
Theorem (AC, Baldi TCS to appear)
The hypersequent calculus forMTL + convergent rules
admits density elimination

i.e. rules equivalent to axioms within the class P3 and whose
premises do not mix "too much" the conclusion

Example :

G |Γ2,Γ1,∆1 ⇒ Π1

G |Γ1,Γ1,∆1 ⇒ Π1

G |Γ1,Γ3,∆1 ⇒ Π1

G |Γ2,Γ3,∆1 ⇒ Π1

G |Γ2,Γ3 ⇒ |Γ1,∆1 ⇒ Π1
(wnm)

Axiom: ¬(α⊗ β) ∨ (α ∧ β → α⊗ β)
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Step 2: general conditions for density elimination

in absence of weakening
Theorem (AC, Baldi ISMVL 2015)
The hypersequent calculus for UL + nonlinear axioms
(and/or mingle) admits density elimination

Nonl i near  N2 
axioms

N2 axioms
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Recall: Standard Completeness via proof theory

(Metcalfe, Montagna JSL 2007) Given a logic L:

(Step 1) Define a suitable calculus for L + (density)

(Step 2) Show that density produces no new theorems

(Step 3) Dedekind-MacNeille style completion
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Example

Known Logics
• MTL + ¬(α · β) ∨ ((α ∧ β) → (α · β))

• MTL + ¬α ∨ ¬¬α

• MTL + αn−1 → αn

• UL + αn−1 → αn

• ...
New Fuzzy Logics

• MTL + ¬(α · β)n ∨ ((α ∧ β)n−1 → (α · β)n), for all n > 1

• UL + ¬α ∨ ¬¬α

• UL + αm → αn

• ...
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Open problems I
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Uniform treatment of axioms in N3 and
behond

Remark on N3: it contains (a) all (axiomati-
zable) intermediate logics (via canonical for-
mulas), (b) equations that are not preserved
under completions.

Partial answers:
• generation of logical rules
• adopting formalisms more complex than
the (hyper)sequent calculus
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Open problems II
• First-order, modal logics, ...
• ”Applications”:
E.g.
◦ new semantic foundations (e.g. non-deterministic
matrices)

◦ automated deduction procedures
◦ decidability proofs
◦ admissibility of rules (e.g. standard completeness)
◦ ...

"Non-classical Proofs: Theory, Applications and Tools", research

project 2012-2017
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