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Motivation

Main question: which axioms give rise to analytic rules?

Correspondence theory can help in answering this question!

Formal connections between correspondence theory and
display calculi.

Primitive formulas [Kracht ’96] for classical modal logic K
generalised to primitive inequalities for general DLE-logics.
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Display Calculi

Natural generalization of sequent calculi.
Sequents X ` Y , where X ,Y are structures:
A , A ;B , ... X > Y , ...

structural symbols assemble and disassemble structures
operational symbols assemble formulas.

Main feature: display property

Y ` X > Z
X ;Y ` Z
Y ;X ` Z

X ` Y > Z

display property: adjunction at the structural level.
Canonical proof of cut elimination
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Canonical Cut elimination

Complexity of the cut formula

... π1

Z ` ◦A
Z ` �A

... π2

A ` Y
�A ` ◦Y CutZ ` ◦Y

⇓

... π1

Z ` ◦ADisplay
•Z ` A

... π2

A ` Y Cut
•Z ` YDisplay
Z ` ◦Y

Height of the cut

A   B
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Proper Display Calculi

Theorem (Canonical cut elimination)

If a calculus satisfies the properties below, then it enjoys cut
elimination.

C1: structures can disappear, formulas are forever;
tree-traceable formula-occurrences, via suitably defined
congruence:

C2: same shape, C3: non-proliferation, C4: same position;

C5: principal = displayed;

C6, C7: rules are closed under uniform substitution of
congruent parameters;

C8: reduction strategy exists when cut formulas are both
principal.
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DLE-languages and expansions

ϕ ::= p | ⊥ | > | ϕ ∧ ϕ | ϕ ∨ ϕ | f(ϕ) | g(ϕ)

where p ∈ PROP, f ∈ F , g ∈ G.

Str. I ; > H K
Op. > ⊥ ∧ ∨ (> ) (→) f g

Str. Hi Kh

Op. (f ]i ) (g[h)
for εf (i) =εg(h) = 1

Str. Hi Kh

Op. (f ]i ) (g[h)
for εf (i) =εg(h) = ∂
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Introduction rules for f ∈ F and g ∈ G

H(A1, . . . ,Anf ) ` X
fL

f(A1, . . . ,Anf ) ` X

X ` K(A1, . . . ,Ang) gR
X ` g(A1, . . . ,Ang)(

Xi ` Ai Aj ` Xj | εf (i) = 1 εf (j) = ∂
)

fR
H(X1, . . . ,Xnf ) ` f(A1, . . . ,Anf )(

Ai ` Xi Xj ` Aj | εg(i) = 1 εg(j) = ∂
)

gL
g(A1, . . . ,Ang) ` K(X1, . . . ,Xng)
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Display postulates for f ∈ F and g ∈ G

If εf (i) = εg(h) = 1

H (X1, . . . ,Xi , . . . ,Xnf ) ` Y

Xi ` Hi (X1, . . . ,Y , . . . ,Xnf )

Y ` K (X1 . . . ,Xh , . . .Xng)

Kh (X1, . . . ,Y , . . . ,Xng) ` Xh

If εf (i) = εg(h) = ∂

H (X1, . . . ,Xi , . . . ,Xnf ) ` Y

Hi (X1, . . . ,Y , . . . ,Xnf ) ` Xi

Y ` K (X1, . . . ,Xh , . . . ,Xng)

Xh ` Kh (X1, . . . ,Y , . . . ,Xng)
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Unified correspondence

DLE-logics
[CP12, CPS14] Mu-calculi

[CFPS14, CGP14]Substructural logics
[CP14]

Display calculi
[GMPTZ14]

Jónsson-style vs
Sambin-style canonicity

[PSZ14b]

Finite lattices and
monotone ML

[FPS14]

Regular DLE-logics
Kripke frames with
impossible worlds

[PSZ14a]

Canonicity via
pseudo-correspondence

[CPSZ14]
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Algorithmic correspondence for DLE

Ackermann Lemma Based Algorithm

engined by the Ackermann lemma.

Reduction rules leading to the Ackermann elimination step.

Residuation and approximation rules.
Soundness on perfect DLEs:

approximation: both
∨

-generated by the c. ∨-primes and∧
-generated by the c. ∧-primes;

residuation: all the operations are either right or left adjoints or
residuals.

Perfect DLEs: the natural semantic environment both for ALBA and
for display calculi for DLE.
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Primitive inequalities

Primitive formulas: [Kracht 1996]

Left-primitive ϕ := p | > | ∨ | ∧ | f(~ϕ/~p, ~ψ/~q)
Right-primitive ψ := p | ⊥ | ∧ | ∨ | g(~ψ/~p, ~ϕ/~q)

Primitive inequalities:

Left-primitive ϕ1 ≤ ϕ2 with ϕ1 scattered
Right-primitive ψ1 ≤ ψ2 with ψ2 scattered

Example:

3q → 2p ≤ 2(q → p)  
x ` 3q → 2p
x ` 2(q → p)

 
X ` ◦Z > ◦Y
X ` ◦(Z > Y)

.
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First Attempt

Crucial observation: same structural connectives for the basic and
for the expanded DLE.

Main strategy: transform non-primitive DLE inequalities into
(conjunctions of) primitive DLE inequalities in the expanded
language:

s(~p, ~q) ≤ s′(~p, ~q) &
{
ϕ∗i (~p, ~q) ≤ ϕ

′∗
i (~p, ~q) | i ∈ I

}
m ALBA m ALBA on primitives

&
{
ϕ∗i (
~i, ~m) ≤ ϕ′i

∗(~i, ~m) | i ∈ I
}

= &
{
ϕ∗i (
~i, ~m) ≤ ϕ′i

∗(~i, ~m) | i ∈ I
}
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Inductive but not analytic

∀[3p ≤ 32p]
iff ∀[(i ≤ 3p & 32p ≤ m)⇒ i ≤ m]
iff ∀[(i ≤ 3j & j ≤ p & 32p ≤ m)⇒ i ≤ m]
iff ∀[(i ≤ 3j & 32j ≤ m)⇒ i ≤ m]
iff ∀[i ≤ 3j ⇒ ∀m[32j ≤ m ⇒ i ≤ m]]
iff ∀[i ≤ 3j ⇒ i ≤ 32j]
iff ∀[3j ≤ 32j]
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Analytic inductive inequalities

+

Ske

+p γ

PIA

≤

−

Ske

+p γ′

PIA
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Type 2: allowing multiple occurrences of var’s in heads of
inequalities

Let G = ∅, F = {3, ·} where · binary and of order type (1, 1)

∀[33p ·3p ≤ 3p]
iff ∀[(j ≤ 33p ·3p & 3p ≤ m)⇒ j ≤ m]
iff ∀[(j ≤ 33i ·3p & i ≤ p & 3p ≤ m)⇒ j ≤ m]
iff ∀[(j ≤ 33i ·3h & i ≤ p & h ≤ p & 3p ≤ m)⇒ j ≤ m]
iff ∀[(j ≤ 33i ·3h & i ∨ h ≤ p & 3p ≤ m)⇒ j ≤ m]
iff ∀[(j ≤ 33i ·3h & 3(i ∨ h) ≤ m)⇒ j ≤ m]
iff ∀[j ≤ 33i ·3h ⇒ ∀m[3(i ∨ h) ≤ m ⇒ j ≤ m]]
iff ∀[j ≤ 33i ·3h ⇒ j ≤ 3(i ∨ h)]
iff ∀[33i ·3h ≤ 3(i ∨ h)]
iff ∀[33p1 ·3p2 ≤ 3p1 ∨3p2] (ALBA for primitive)

· · ·  
3p1 ` q 3p2 ` q
33p1 ·3p2 ` z

 
◦X ` Z ◦ Y ` Z
◦ ◦ X � ◦Y ` Z
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Type 3: allowing PIA-subterms

Frege axiom: a first reduction

∀[p ⇀ (q ⇀ r) ≤ (p ⇀ q)⇀ (p ⇀ r)]
iff ∀[(j ≤ p ⇀ (q ⇀ r) & (p ⇀ q)⇀ (p ⇀ r) ≤ m)⇒ j ≤ m]
iff ∀[(j ≤ p ⇀ (q ⇀ r) & (p ⇀ q)⇀ (p ⇀ n) ≤ m & r ≤ n)⇒ j ≤ m]
iff ∀[(j ≤ p ⇀ (q ⇀ n) & (p ⇀ q)⇀ (p ⇀ n) ≤ m)⇒ j ≤ m]
iff ∀[(j ≤ p ⇀ (q ⇀ n) & (p ⇀ q)⇀ (i ⇀ n) ≤ m & i ≤ p)⇒ j ≤ m]
iff ∀[(j ≤ i ⇀ (q ⇀ n) & (i ⇀ q)⇀ (i ⇀ n) ≤ m)⇒ j ≤ m]
iff ∀[(j ≤ i ⇀ (q ⇀ n) & h ⇀ (i ⇀ n) ≤ m & h ≤ i ⇀ q)⇒ j ≤ m]
iff ∀[(j ≤ i ⇀ (q ⇀ n) & h ⇀ (i ⇀ n) ≤ m & i • h ≤ q)⇒ j ≤ m]
iff ∀[(j ≤ i ⇀ ((i • h)⇀ n) & h ⇀ (i ⇀ n) ≤ m)⇒ j ≤ m]
iff ∀[j ≤ i ⇀ ((i • h)⇀ n)⇒ ∀m[h ⇀ (i ⇀ n) ≤ m ⇒ j ≤ m]]
iff ∀[j ≤ i ⇀ ((i • h)⇀ n)⇒ j ≤ h ⇀ (i ⇀ n)]
iff ∀[i ⇀ ((i • h)⇀ n) ≤ h ⇀ (i ⇀ n)]
iff ∀[p ⇀ ((p • q)⇀ r) ≤ q ⇀ (p ⇀ r)] (ALBA for primitive)
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...

iff ∀[i ⇀ ((i • h)⇀ n) ≤ h ⇀ (i ⇀ n)]
iff ∀[p ⇀ ((p • q)⇀ r) ≤ q ⇀ (p ⇀ r)] (ALBA for primitive)

by applying the usual procedure, we obtain the following rule:

· · ·  
s ` p ⇀ ((p • q)⇀ r)
s ` q ⇀ (p ⇀ r)

 
W ` X � ((X ©• Y) � Z)
W ` Y � (X � Z)
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Type 4

Frege axiom: a second reduction

∀[p ⇀ (q ⇀ r) ≤ (p ⇀ q)⇀ (p ⇀ r)]
iff ∀[(p ⇀ (q ⇀ r)) • (p ⇀ q) ≤ p ⇀ r]
iff ∀[((p ⇀ (q ⇀ r)) • (p ⇀ q)) • p ≤ r]
iff ∀[i ≤ ((p ⇀ (q ⇀ r)) • (p ⇀ q) • p & r ≤ m ⇒ i ≤ m]
iff ∀[i ≤ (h • k ) • j & h≤ p ⇀ (q ⇀ r) &

k≤ p ⇀ q & j ≤ p & r ≤ m ⇒ i ≤ m]
iff ∀[i ≤ (h • k ) • j & (h•p) • q ≤ r &

k•p ≤ q & j ≤ p & r ≤ m ⇒ i ≤ m]
iff ∀[i ≤ (h • k ) • j & (h•j) • q ≤ r & k • j ≤ q & r ≤ m ⇒ i ≤ m]
iff ∀[i ≤ (h • k ) • j & (h • j) • (k • j) ≤ r & r ≤ m ⇒ i ≤ m]
iff ∀[i ≤ (h • k ) • j & (h • j) • (k • j) ≤ m ⇒ i ≤ m]
iff ∀[(h • k ) • j ≤ (h • j) • (k • j)]
iff ∀[(r • q) • p ≤ (r • p) • (q • p)] (ALBA for primitive)
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...

iff ∀[(h • k ) • j ≤ (h ◦ j) • (k • j)]
iff ∀[(r • q) • p ≤ (r • p) • (q • p)] (ALBA for primitive)

by applying the usual procedure, we obtain the following rule:

· · ·  
(r • p) • (q • p) ` s

(r • q) • p ` s
 

(Z ©• X) ©• (Y ©• X) `W
(Z ©• Y) ©• X `W
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Overview of main results

Rules Inequalities

Analytic Analytic Inductive

Quasi-Special Quasi-Special Inductive

Special Primitive
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