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Overview

I iteration-free coalgebraic PDL
I brief overview
I completeness

I Datalog±

I Intro: ontology-based data access & Datalog±

I the problem with negative information
I normal Datalog±

I Coalgebra & Data

C. Kupke Coalgebra & Data



Part 0: Basics of Coalgebraic Logics in 4 slides
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Coalgebraic Modal Logic & PDL

I Observation: Kripke models are P-coalgebras, ie, pairs
(X, �) with

� : X �! PX

I in this context X is usually a set

I Idea: Develop modal logic for T-coalgebras, where T is an
endofunctor. Development should be parametric in T.
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Coalgebraic Logic: Syntax

Given a modal similarity type ⇤ (ie., a collection of modal
operators) and a set Var of propositional variables.

Definition

The set F(⇤) of formulas over ⇤ is defined a follows:

F(⇤) 3 ' ::= p 2 Var |?| ¬' | ' ^ ' | ~',~ 2 ⇤

Note

In this talk the (basic) similarity type will consist of one unary
modality only!
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Coalgebraic Logic: Semantics
In order to be able to interpret modal formulas we need

I a set functor T

I for every modal operator ~ 2 ⇤ a natural transformation

~ : P �! PT,

where P denotes the contravariant power set functor.

Formulas are then interpreted over T-models (X, �, V)
consisting of

� : X �! TX and V : Var �! P(X).

[[p]] = V(p) for p 2 Var
...

[[~']] = P�(~([[']])) = ��1(~([[']]))

C. Kupke Coalgebra & Data



Equivalently

~ : P �! PT is in one-to-one correspondence to

I b~ : T �! P
op

P (T-coalgebras to neighbourhood frames)

x |= ~' i↵ [[']] 2 (b~ � �)(x).

I ~̆ : T2 �! 2 (“allowed 0-1 patterns”)

X
�[[']] //

�

✏✏

2

T(X)
T(�[[']]) // T(2)

~̆ // 2

(X, �, V), x |= ~' i↵ ~̆(T(�[[']])(c(x)) = 1.
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Examples

I T = P, ~ = 2:

~(U) = {V ✓ X | U ✓ V},
b~(V) = {U ✓ X | U ✓ V} and

~̆(V ✓ P2) = 1 i↵ 0 62 V

I T = M, ~ = 2:

~(U) = {N 2MX | U 2 N}
b~(N) = N

~̆(N 2M2) = 1 i↵ 1 2 N

...
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Part I: Coalgebraic PDL
(joint work H.H. Hansen, R.Leal)
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Propositional Dynamic Logic (PDL)

Fischer & Ladner, 1977. Reason about program correctness.

[↵]' “after all successful executions of program ↵, ' holds”

I Syntax:
formulas ' ::= p 2 P

0

| ¬' | ' _ ' | [↵]'
programs ↵ 2 A ::= a 2 A

0

| ↵;↵ | ↵ [ ↵ | ↵⇤ | '?
composition (;), choice ([), iteration (⇤), tests ('?)

I Multi-modal Kripke semantics: M = (X, {R↵ | ↵ 2 A}, V)
where X is state space,

I R↵ : X �! P(X) (relation, nondeterministic programs),
I V : P0 �! P(X) is a valuation.

M, x |= [↵]' i↵ 8y 2 X. xR↵y! M, y |= '.
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Standard PDL Models

I Def. M = (X, {R↵ | ↵ 2 A}, V) is standard if

R↵;� = R↵ � R� (relation composition)
R↵[� = R↵ [ R�

R↵⇤ = R⇤
↵ (reflexive, transitive closure)

R'? = {(x, x) | x 2 [[']]}

I Sound and (weakly) complete axiomatisation of standard
models [Kozen & Parikh 1981]:
PDL = Normal modal logic K (ML of Kripke frames) plus:

[↵;�]'$ [↵][�]' [↵ [ �]'$ [↵]' ^ [�]'

[ ?]'$ ( ! ')

' ^ [↵][↵⇤]'$ [↵⇤]' ' ^ [↵⇤]('! [↵]')! [↵⇤]'
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Game Logic (GL)

Parikh, 1985. Strategic ability in determined 2-player games.

h�i' “player 1 has strategy in � to ensure outcome satisfies '”
(“player 1 is e↵ective for '”)

I Syntax: PDL syntax extended with dual operation on
games:

I �1; �2: play �1 then �2,
I �1 [ �2: player 1 chooses to play �1 or �2,
I �⇤: player 1 chooses when to stop.
I �d: players switch roles.

I Semantics: Game model M = (X, {E� | � 2 �}, V) where
E� : X �! PP(X) is monotonic neighbourhood function:
If U 2 E�(x) and U ✓ U0 then U0 2 E�(x).

U 2 E�(x) i↵ player 1 is e↵ective for U in � starting in x.

Modal semantics: M, x |= h�i' i↵ [[']] 2 E�(x)
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Standard GL Models

I Standard GL model: similar to PDL notion,

U 2 E�d

(x) i↵ X \ U /2 E�(x).

I GL = monotonic modal logic M (ML of
mon. nbhd. frames) plus

h�; �i'$ h�ih�i' h� [ �i'$ h�i' _ h�i'

h ?i'$ ( ^ ') h�di'$ ¬h�i¬'

' _ h�ih�⇤i'! h�⇤i' ' _ h�i'!  
h�⇤i'!  

I Without dual: sound and (weakly) complete [Parikh 1985].
I Without iteration: sound and strongly complete [Pauly

2001].
I Completeness of full GL still open.
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Towards Coalgebraic Dynamic Logic

Basic observation:

I P is monad (P, ⌘, µ) with:

⌘
X

(x) = {x}, µ
X

({U
i

| i 2 I}) =
S

i2I Ui

.

I M is a monad (M, ⌘, µ) with:

⌘
X

(x) = {U ✓ X | x 2 U}
µ
X

(W) = {U ✓ X | ⌘P(X)(U) 2W}
I Composition of programs and games is Kleisli composition.

Basic setup:

I Action/program X �! TX where T a Set-monad
(T describes computation type, side-e↵ects, ...)

I Sequential composition as Kleisli composition ⇤
T

.

I Multi-program setting: X �! (TX)A (A-labelled
T-coalgebra) where A is a set of program labels.
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Coalgebra-Algebra

Two perspectives:

⇠ : X �! (TX)A TA-coalgebra, modal logic

b⇠ : A �! (TX)X algebra homomorphism, program operations

Questions:

I What are “program” operations like [ and d?

I What is a standard model?

I Which compositionality axioms?

I How to prove soundness and completeness?
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Pointwise Program Operations via Natural Operations

I An n-ary natural operation on T is a natural
transformation � : Tn �! T

I � : Tn �! T yields pointwise operation on (TX)X, e.g.,

�X
X

(c
1

, c
2

)(x) = �
X

(c
1

(x), c
2

(x))

I Given finitary signature functor ⌃,
a natural ⌃-algebra is natural transformation ✓ : ⌃T �! T,
and yields pointwise ⌃-algebra ✓X

X

: ⌃((TX)X) �! (TX)X.
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Natural and Pointwise Operations: Examples

Natural operations on P:

I Union [ : P ⇥ P �! P is a natural operation, since

f[U [U0] = f[U] [ f[U0] (Pf(U) = f[U])

The pointwise extension of [ : P ⇥ P �! P is union of
relations (R

1

[ R
2

)(x) = R
1

(x) [ R
2

(x).

I Observation: Intersection and complement are not natural
operations on P.

Natural operations on M:

I [ and \ (since preserved by f�1).

I Dual operation d : M �!M where for all N 2M(X), and
U ✓ X, U 2 Nd i↵ X \ U /2 N.
Dual game operation is the pointwise extension.
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Standard dynamic models

Given a countable set A
0

of atomic programs, and a signature
functor ⌃. Let A = ⌃ [ {; }-terms over A

0

.

We define:

I Given natural algebra ✓ : ⌃T �! T then ⇠ : X �! (TX)A is
✓-standard i↵

b⇠ : A �! (TX)X is a ⌃-algebra homomorphism.

I If T is a monad, then ⇠ : X �! (TX)A is ;-standard i↵

for all ↵,� 2 A, b⇠(↵;�) = b⇠(↵) ⇤ b⇠(�).
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Sound Axioms for Pointwise Operations

I Example: PDL axiom for choice [↵ [ �]p$ [↵]p ^ [�]p.

I Idea: b~ : T �! N turns operations ✓ on T into operations �
on N .

Tn

✓
↵◆

b~n

+3 N n

�

↵◆
T

b~ +3 N

For example: P ⇥ P
[
↵◆

b2n

+3 N ⇥N
\
↵◆

P b2 +3 N
From � : N n �! N , we get rank-1 formula
'(�,↵

1

, . . . ,↵
n

, p) (not in this talk).

Lemma

If ⇠ : X �! (TX)A is ✓-standard and � : N n �! N is such that
b~ � ✓ = � � b~n, then the rank-1 formula
[✓(↵

1

, . . . ,↵
n

)]p$ '(�,↵
1

, . . . ,↵
n

, p) is valid in ⇠.
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Coalgebraic Logic (Def)

A (modal) logic is a triple L = (⇤, A,⇥) where

I ⇤ is a similarity type,

I A ✓ Prop(⇤(Prop(Var))) is a set of rank-1 axioms, and

I ⇥ ✓ F(⇤) is a set of frame conditions

If ' 2 F(⇤), we write `L ' if ' can be derived from A [⇥ with
the help of propositional reasoning (tautologies + MP), uniform
substitution, and the congruence rule.

'$  
~'$ ~ 

C. Kupke Coalgebra & Data



Dynamic Syntax

Given

I ⌃, a signature (functor).

I P
0

, a countable set of atomic propositions.

I A
0

, a countable set of atomic programs.

we define

formulas F(P
0

, A
0

,⌃) 3 ' ::= p 2 P
0

| ¬' | ' _ ' | [↵]'
programs A(P

0

, A
0

,⌃) 3 ↵ ::= a 2 A
0

| ↵;↵ | �(↵
1

, . . . ,↵
n

)

where � 2 ⌃ is n-ary.

(Tests are incorporated later)
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(T, ✓)-Dynamic Logic

Given

I base logic L
b

= ({2}, Ax(2, T), ;) (rank-1)

I ✓ : ⌃T �! T and set A
0

of atomic actions.

We define

⇤ = {[↵] | ↵ 2 A},
Ax = Ax(2, T)

A

[ “✓-axioms00 ,
Fr = {[↵;�]p$ [↵][�]p | ↵,� 2 A, some fresh p 2 P

0

},
L(✓) = (⇤, Ax, ;),

L(✓, ; ) = (⇤, Ax, Fr).

L(✓) and L(✓, ; ) are (T, ✓)-dynamic logics over L
b

.
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Conditions for Soundness

Sequential composition axiom: [↵;�]p$ [↵][�]p.

Recall: b~ : T �! P
op

P
1�1$ ~̆ : T2 �! 2

Lemma

If ⇠ : X �! (TX)A is ;-standard, and b~ : T �! P
op

P is a monad
morphism, then the axiom [↵;�]p$ [↵][�]p is valid in ⇠, for all
↵,� 2 A.

Remark:

I Kelly & Power, 1993: Monad morphism T �! P
op

P

Eilenberg-Moore algebra T2 �! 2
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Examples

I Example: ~ for Kripke 3 corr. to free algebra PP(1)
�! P(1), so b~ : P �! P

op

P is monad morphism. Also ¬~¬.

I Example: Monotonic �, b� : M �! P
op

P is natural inclusion,
hence monad morphism.

I Bad Example: for the sub-distribution monad D! there
appears to be no interesting EM-algebra D!2 �! 2
(and: di�cult to imagine what an axiom for sequential
composition would look like)

Our conclusion

Need to move to many-valued logics when discussing
probabilistic systems (similarly for weighted).
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Strong Completeness Result

If base logic L satisfies conditions for quasi-canonical T-model,
then

I L(✓) is sound and strongly complete wrt ✓-standard
TA-models (standard methods from coalgebraic modal
logic, quasi-canonical model theorem)

I L(✓, ; ) is sound and strongly complete wrt ✓, ;-standard
TA-models (use quasi-canonical model for L(✓) to generate
✓, ;-standard model, show quasi-canonical)

Key property of the canonical model

For all MCSs � and all formulas ' we have

�(�) 2 ~('̂) i↵ ~' 2 �

where '̂ = {� 2 MCS | ' 2 �}.
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Adding Tests

Informally: given formula ', program '? tests whether ' holds.
If the test fails, the program aborts, otherwise do nothing.

I Syntax: '? is a program, when ' is a formula. Formulas
and programs defined by mutual induction.

I Semantics: need T to be “pointed”: for each set X, TX
contains a distinguished element ?

TX

(“abort”), and for all
f : X �! Y, Tf(?

TX

) = ?
TY

.

I Extend dynamic coalgebraic semantics ⇠ : X �! (TX)A,

b⇠('?)(x) =
⇢
⌘
X

(x) if x 2 [[']]M

?
TX

otherwise

(standard wrt tests, b⇠ and [[']] def’d by mutual induction.)
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Axiomatising Tests

In PDL: ['?]p$ ('! p) or h'?ip$ (' ^ p)
In GL: h'?ip$ (' ^ p)

I Predicate lifting ~ : P �! P � T is
– box-like if for all X and U ✓ X, ?

TX

2 ~
X

(U).
– diamond-like if for all X and U ✓ X, ?

TX

62 ~
X

(U).

Lemma: Any ~ : P �! P�T either box-like or diamond-like.

I Axioms:
– If ~ in dynamic semantics is box-like,
then add ['?]p$ ('! p) to Fr,
– If ~ in dynamic semantics is diamond-like,
then add ['?]p$ (' ^ p) to Fr.

I Theorem: L(✓, ; , ?) is strongly complete wrt dynamic
models.
(modify quasi-canonical model, extend to standard model,
show quasi-canonical)
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PDL Conclusion

I possible criticism: no new results; PDL without iteration
not interesting

I one seemingly new result for the lift monad 1 + X

I adding *-operator is (important) work in progress; uses
coalgebraic weak completeness proof & a strengthened
coherence condition for quasi-canonical models
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Part II: Datalog±

(joint work with Gottlob, Hernich, Lukasiewicz)

C. Kupke Coalgebra & Data



Ontology-Based Data Access

3/68

Ontology-Based Data Access

Database

Axioms/
Constraints

Knowledge Base/
Ontology

Conjunctive
Query

entails?

expressed, e.g., in:
● a description logic
● Datalog±
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Intuition: ontology unifies and completes the data
Consider a hotel database (collection of atoms)

D = {Hotel(a), 4Star(a), 4Star(b)}

the rules

Hotel, 4Star v 9Pool

4Star v Hotel,

and the query

Q(x) 9y Hotel(x) ^ Pool(x, y).

The certain answers (choice of semantics) for the query will be

; without ontology
{a, b} with ontology
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Another ontology language: Datalog±

[Cali, Gottlob, Lukasiewicz] A general Datalog-based framework
for tractable query answering over ontologies.
Journal of Web Semantics (2012)
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Motivation for Datalog±

I relations of arbitrary arity

I ontology languages for data access need to be lightweight:
lightweight DLs exist, but definitions are involved

I integration of database typical reasoning such as
“negation-as-failure-to-prove”

(if there is no flight connection between Edinburgh and
Amsterdam in the database, then we conclude
¬Connection(EDI, AMS) - this does not mean that it
follows from the facts in the DB using logical deduction)
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Datalog± Programs

Author(x) �! 9y, z(Article(x, y) ^ publishedAt(y, z))

publishedAt(x, y) ^ publishedAt(x, z) �! y = z

publishedAt(x, y) ^ Conference(y) ^ Journal(y) �!?

Using DL-Notation:

Author v 9Article 9publishedAt
funct publishedAt
9publishedAt� u Conference v ¬Journal
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Datalog± Programs: General Shape

A program is a finite set of Datalog± rules:

R
1

(x
1

) ^ · · · ^ R
k

(x
k

) �!  

where

I R
i

(x
i

) are atoms,
I  is of one of the following forms:

I  ⌘ 9z (S1(y1) ^ . . . · · · ^ Sn(yn)), where the yi’s contain
only variables in z or in the rule body, or

I  ⌘ y1 = y2, where y1 and y2 occur in the rule body, or
I  ⌘?

Simplification: in the talk we will only consider Boolean queries.

C. Kupke Coalgebra & Data



Semantics: two equivalent definitions

For a given database D and Datalog±-rules ⌃:

Semantics I: Certain answers A query holds if it holds in all
possible models of D [ ⌃

Semantics II: Canonical model A query holds if it holds in the
minimal model of D [ ⌃

f

where ⌃
f

is the
skolemisation of ⌃, e.g., a rule

R
1

(x
1

, . . . , x
k

) �! 9y.S(x, y)

is replaced by

R
1

(x
1

, . . . , x
k

) �! S(x, g(x
1

, . . . , x
k

))

where g is a new function symbol.
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Logic Programming

I Skolemisation turns a Datalog± program ⌃ into a logic
program!

I Query answering relative to a Datalog± program can be
done using logic programming techniques.

I Nevertheless is Datalog± interesting on its own: programs
have particular syntactic shapes, need to restrict to
“tractable” fragments

I “Tractable” here means polynomial in the data complexity.
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Data complexity (Vardi 1982)

I complexity of answering query Q relative to a database D
and a program ⌃ is measured in data complexity

I this means: Q and ⌃ are fixed - size of the input is the size
of D

I Idea: size of D the dominating factor
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Some Tractable Cases (Incomplete)

12/68

Some Tractable Fragments

Guarded Datalog±

[Calì-Gottlob-Lukasiewicz '09]

Sticky Datalog±

[Calì-Gottlob-Pieris '10]

Linear Datalog±

[Calì-Gottlob-Lukasiewicz '09]

Sticky-Join Datalog±

[Calì-Gottlob-Pieris '10]

Frontier-Guarded Datalog±

[Baget-Mugnier-Rudolph-Thomazo '11]
= less general than
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Adding negated atoms

The minimal model of a logic program is obtained as the least
fixpoint of a monotone operator

T
P

: P(At) �! P(At)

such that M is the smallest set of atoms that is closed under
application of a (substituted) rule.

Simple Example (propositional program) with negation

¬q,p �! q

�! p

T
P

(;) = {p}, T2

P

(;) = {p, q}
T
P

(;) = {p}, T2

P

(;) = {p, q}, T3

P

(;) ?
= {p} ) T

P

not monotone!
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Solutions

The addition of nonmonotonic negation to logic programs is
well researched, we focused on two options:

I well-founded semantics: canonical model does exist, but
monotone operator more complicated and model is
three-valued (F,T,U)

I stable semantics: two valued models, but no canonical
model - in particular, models cannot be obtained as unique
least fixpoint of a monotone operator

Problem: No previously existing complexity (or even
decidability) results for logic programs involving function
symbols.
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Well-Founded Semantics: Definition
van Gelder-Ross-Schlipf ’91

Number(0), Even(0)
Number(x) �! Number(s(x))
Number(x) ^ ¬Even(x) �! Even(s(x))

Number(0), Even(0)
Number(s(0)), ¬Even(s(0))
Number(s2(0)), Even(s2(0))

I Start with empty set
of literals.

I In each step
I Apply the rules to

infer new atoms.
I Add negations of

atoms that can no
longer be derived.

I This converges to
the well-founded
model!
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Proof in the positive caseProof in the Positive Case

Constant
derivation
depth 

Proof “tree”

Query Q 

     h

h(Q)

C. Kupke Coalgebra & Data



This fails in the negative case

Deciding whether a literal belongs to WFS(D,⌃) may require
an infinite number of iterations:

R(0, 1), P(0)
R(x, y) �! R(y, f(x, y))

R(x, y) ^ ¬P(x) �! Q(y)

R(x, y) ^ P(x) ^ ¬Q(y) �! P(y)
R(x, y) ^ ¬P(y) �! S(0)

0 1 2 3
P

¬Q
0 1 2 3

¬Q

P

¬Q
0 1 2 3

¬Q

P

¬Q

P
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Forward Proofs
Schlipf ’95

I Forward proof of an atom R(a) from a program P:

↵
1

r

1 // ↵
2

r

2 // ↵
3

r

3 // r

n // R(a)

i.e., a series of rule applications ignoring negative side
atoms.

I ¬R(a) will be derived if every forward proof for it “uses” a
negative literal ¬S(b), with S(b) already known to be true.

I R(a) will be derived if there exists a forward proof such
that all side literals are already known to be true.
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Query answering

I alternating algorithm that either tries to find a forward
proof of a given atom or to show that no such proof for a
given negative literal exists

I configurations of the algorithm roughly correspond to
atoms and subsets of their type (in WFS(P))

I key observation: we can identify configurations that are
“X-isomorphic” (where X is the set of relevant constants)
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Back to the positive case
Answering Queries

Constant
derivation
depth 

Query Q 

     h

h(Q)

Proof “tree”
for the positive
program
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Complexity results

#

"

 

!

Input A database D, a guarded normal Datalog±

program ⌃, and a Boolean conjunctive query Q
with negation

Question Is Q true in WFS(D,⌃)?

I PTIME-complete in data complexity

I EXPTIME-complete if predicate’s arities are bounded by a
constant

I 2-EXPTIME-complete in general
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A hidden assumption

I the translation into logic programming implies that we
treat all elements of our models as distinct

I Example:

Employee(x) �! 9y hasEmployer(x, y)

together with D = {Employee(John), Employee(Sam)}.

I Answer of the query

9x(hasEmployer(John, x) ^ ¬ hasEmployer(Sam, x))

depends on whether we generate for John and Sam distinct
employers by applying the rule

I ) Equality-Friendly Well-founded Semantics
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Guarded Fixed Point Logic

The set of formulas of GFP over R is built from atomic formulas
over R (including equality atoms) using Boolean combinations,
and the following two additional formula formation rules:

I. If ↵ is an atomic formula over R containing the variables
in x, and  is a GFP formula over R whose free variables
occur in ↵, then 9x (↵ ^  ) and 8x (↵ �!  ) are GFP
formulas over R. The formula ↵ is called guard.

II. Let R be a k-ary predicate, x a k-tuple of variables, and
 (R, x) a GFP formula over R [ {R} whose free variables
occur in x, and where R appears only positively (in the
scope of an even number of negation symbols) and not in
guards. Then, [lfp

R,x  ](x) and [gfp
R,x  ](x) are GFP

formulas over R with free variables x.
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Example Formula GFP

The following GFP formula says that binary relation E is
well-founded, i.e., no element is the endpoint of an infinite
E-path:

8x, y
�
E(x, y) �! [lfp

W,x 8y
�
E(y, x) �!W(y)

�
](x)

�
.

[Grädel & Walukiewicz] 2-ExpTime decidability
(ExpTime with bounded arities)
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Translation of WFS into GFP (Idea)

Construct a GFP sentence efwfs(P) whose models closely
correspond to the databases in EFWFS(P), i.e., such that for
all queries (“covered NBCQs”) Q over the schema of P, we have
EFWFS(P) |= Q i↵ efwfs(P) |= Q⇤.

I The key is to “existentially quantify” all the instances of
NTGDs that we use to compute the WFS, and to mimic
the fixed-point definition of the WFS using those instances.

I Fixpoint in WFS is modeled with lfp (derivable atoms) and
gfp (those atoms that certainly cannot be derived).

I Upper bound on set of derived positive atoms and
coveredness for derived negative atoms provides guards.
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Stable semantics

I Both approaches also work with the stable semantics

I Data Complexity increases to coNP

I Intuition: Need to check query on all stable models
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Ref’s

I [Gottlob, Hernich, K., and Lukasiewicz] Equality-friendly
well-founded semantics and applications to description
logics. AAAI 2012

I [Hernich, K., Lukasiewicz and Gottlob] Well-founded
semantics for extended datalog and ontological reasoning.
PODS 2013

I [Gottlob, Hernich, K., and Lukasiewicz] Stable model
semantics for guarded existential rules and description
logics. KR2014
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Part III: The connections (Future Work!)
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Datalog±

Issues
I query-rewriting using backward-chaining: very useful - not

su�ciently explored

I need for reasoning with probabilities, weight, preferences
and combinations

I need to operate over semi-structured data

Goals
I Use backward-chaining algorithm from coalgebraic LP to

obtain “parallellizable” query-rewriting algorithm

I Extend this to Datalog± with nonmonotonic negation

I Extend Datalog± to Coalgebraic Datalog± for other types
of data.
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Coalgebraic Datalog±

I Goals:
I extend Datalog± with features such as probabilities, weights

and preferences
I provide e�cient algorithms for query-rewriting and query

answering

I Two Approaches:
I generalise coalgebraic LP to other functors
I add fixpoint operators to coalgebraic predicate logic to

create coalgebraic LFP or GFP

I [Komendantskaya, Schmidt, and Power] Coalgebraic logic
programming: from semantics to implementation. Journal
of Logic and Computation (2014)

I [Litak, Pattinson, Sano, and Schröder] Coalgebraic
predicate logic. ICALP (2012)

C. Kupke Coalgebra & Data



Coalgebraic semi-structured data

I represent tree and graph-structured data coalgebraically

I develop theory of data-labelled coalgebras, similar to recent
work on XML trees

[Figueira, Figueira, and Areces] Basic Model Theory of
XPath on Data Trees. ICDT 2014.

I develop theory of automata operating on data-labelled
structures
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Coalgebraic (core) XPath

I our starting point is core XPath for data graphs:they are expressions of the form

'(x̄) = 9ȳ
n�

i=1

(zi
Li�! ui), (2)

where all variables zi, ui come from x̄, ȳ. The semantics
naturally extends the semantics of RPQs: '(ā) is true in G
iff there is a tuple b̄ of nodes such that, for every i � n, every
pair vi, v�

i interpreting zi and ui is in the answer to the RPQ
zi

Li�! ui.

These have been further extended, for instance, to 2CRPQs
that allow navigation in both directions (i.e., the edges can
be traversed both forwards and backwards [11]), U2CRPQs
that allow unions, or to extended CRPQs, in which paths
witnessing the RPQs zi

Li�! ui can be named and compared
for relationships between them, defined as regular or even
rational relations [7, 6].

3. XPATH-LIKE LANGUAGES FOR
GRAPHS

We follow the standard way of defining XPath fragments
[10, 12, 22, 25, 36, 16] and introduce some variants of graph
XPath, or GXPath, to be interpreted over graph databases.
As usual, XPath formulae are divided into path formulae,
producing sets of pairs of nodes, and node tests, produc-
ing sets of nodes. Path formulae will be denoted by let-
ters from the beginning of the Greek alphabet (↵,�, . . .) and
node formulae by letters from the end of the Greek alphabet
(', , . . .).

Since we deal with data values, we need to define data tests
permitted in node formulae. There will be two kinds of them.

1. Constant tests: For each data value c 2 D, we have
two tests =c and 6=c. The intended meaning is to test if
the data value in the current node equals to, or differs
from, constant c.
The fragment of GXPath that uses constant tests will
be denoted by GXPath(c).

2. Equality/inequality tests: These are typical XPath
(in)equality tests of the form h↵ = �i and h↵ 6= �i,
where ↵ and � are path expressions. The intended
meaning is to check for the existence of two paths, one
satisfying ↵ and the other satisfying �, which end with
equal (resp., different) data values.
The appropriate fragment will be denoted by
GXPath(eq). If we have both constant tests and
equality tests, we denote resulting fragments by
GXPath(c, eq).

Next we define expressions of GXPath. As already men-
tioned in the introduction, we look at core and regular ver-
sions of XPath. They both have node and path expressions.
Node expressions in all fragments are given by the grammar:

', := � | test | ¬' | ' ^  | ' _  | h↵i

where test is one of the permitted data tests defined earlier,
and ↵ is a path expression.

The path formulae of the two flavors of GXPath are given
below. In both cases a ranges over �.

Path expressions of Regular graph XPath, denoted by
GXPathreg, are given by:

↵,� := � | _ | a | a� | ['] | ↵ · � | ↵ [ � | ↵ | ↵⇤

Path expressions of Core graph XPath denoted by
GXPathcore are given by:

↵,� := � | _ | a | a� | a⇤ | a�⇤ | ['] | ↵ ·� | ↵[� | ↵

We call this fragment “Core graph XPath”, since it is natural
to view edge labels (and their reverse) in data graphs as the
single-step axes of the usual XPath on trees. For instance,
a and a� could be similar to “child” and “parent”. Thus, in
our core fragment, we only allow transitive closure over nav-
igational single-step axes, as is done in Core XPath on trees.
Note that we did not explicitly define the counterpart of node
label tests in GXPath node expressions to avoid notational
clutter, but all the results remain true if we add them.

Finally, we consider another feature that was recently pro-
posed in the context of navigational languages on graphs
(such as in SPARQL 1.1 [29]), namely counters. The idea
is to extend all grammars defining path formulae with new
path expressions

↵n,m

for n, m 2 N and n < m. Informally, this means that we
have a path that consists of some k chunks, each satisfying
↵, with n � k � m.

When counting is present in the language, we denote it by
#GXPath, e.g., #GXPathcore.

Given these path and node formulae, we can combine
GXPathcore and GXPathreg with different flavors of node
tests or counting, starting with purely navigational fragments
(neither c nor eq tests are allowed) and up to having both c
and eq tests. For example, #GXPathreg(c, eq) is defined by
mutual recursion as follows:
↵,� := � | _ | a | a� | ['] | ↵ · � | ↵ [ � | ↵ | ↵⇤ | ↵n,m

', := ¬' | ' ^  | h↵i | =c | 6=c | h↵ = �i | h↵ 6= �i
with c ranging over constants.

We define the semantics with respect to a data graph G =
hV, E, �i. The semantics �↵�G of a path expression ↵ is a set
of pairs of vertices and the semantics of a node test, �'�G,
is a set of vertices. The definitions are given in Figure 1. In
that definition, by Rk we mean the k-fold composition of a
binary relation R, i.e., R � R � . . . � R, with R occurring k
times.

Remark. Note that each path expression ↵ can be trans-
formed into a node test by the means of h↵i operator. In
particular, we can test if a node has a b-successor by writing,
for instance, hbi. To reduce the clutter when using such tests
in path expressions, we shall often omit the hi braces and
write e.g. a[b] instead of a[hbi].

I build coalgebraic core XPath starting from coalgebraic
PDL:

I add *
I add non-natural operations
I extend path-expressions to properties of the data, e.g. ↵=,
↵ 6= or regular expressions with memory

I probabilistic or weighted graphs
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On the connection (G)XPath & PDL

I [Libkin, Martens, and Vrgoc] Querying graph databases
with XPath. ICDT (2013)

I [Alechina, Immermann] Reachability Logic: An E�cient
Fragment of Transitive Closure Logic. Logic Journal of the
IGPL (2000)

I [ten Cate, Marx] Navigational XPath: calculus and
algebra. ACM SIGMOD Record (2007)

I [ten Cate, Fontaine, Litak] Some modal aspects of XPath.
Journal of Applied Non-Classical Logics (2010)
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Further steps

I Ontological query answering for path queries.

I [Cardelli, Ghelli] TQL: a query language for semistructured
data based on the ambient logic. Mathematical Structures
in Computer Science (2004)

I long-term: “continuous” queries over streaming data?
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Thanks!
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