Coalgebra & Data

Clemens Kupke
University of Strathclyde
Glasgow, Scotland

Alcop 2015, Delft, 7 May 2015

C. Kupke Coalgebra & Data

Overview

» iteration-free coalgebraic PDL

» brief overview
» completeness

» Datalog®

» Intro: ontology-based data access & Datalog™®
» the problem with negative information
» normal Datalog®

» Coalgebra & Data

C. Kupke Coalgebra & Data

Part 0: Basics of Coalgebraic Logics in 4 slides

C. Kupke Joalgebra & Data

Coalgebraic Modal Logic & PDL

» Observation: Kripke models are P-coalgebras, ie, pairs
(X, 7) with
v: X —=PX

» in this context X is usually a set

» Idea: Develop modal logic for T-coalgebras, where T is an
endofunctor. Development should be parametric in T.

C. Kupke Coalgebra & Data

Coalgebraic Logic: Syntax

Given a modal similarity type A (ie., a collection of modal
operators) and a set Var of propositional variables.

Definition
The set F(A) of formulas over A is defined a follows:
FN)spu=peVar|L—p|loAp|Qp, Qe

Note

In this talk the (basic) similarity type will consist of one unary
modality only!

C. Kupke Coalgebra & Data

Coalgebraic Logic: Semantics
In order to be able to interpret modal formulas we need
> a set functor T

» for every modal operator © € A a natural transformation
Q:P— PT,

where P denotes the contravariant power set functor.

Formulas are then interpreted over T-models (X, v, V)
consisting of

v:X—=TX and V:Var — P(X).

[p] = V(p) for p € Var

[O¢] = Py(O(leD) =+ (LeD)

C. Kupke Coalgebra & Data

Equivalently

QO :P — PT is in one-to-one correspondence to

» O:T — PP (T-coalgebras to neighbourhood frames)

xEQp it [¢] € (Vo))

» O : T2 — 2 (“allowed 0-1 patterns”)

X Xl X[el
.,
(X)) O

C. Kupke Coalgebra & Data

Examples

» T=P, 0=0:

U) = {VEX|UCV}
V) = {UCX|UCV}and
OVCP2) =1 iff 0¢€V

QOU) = {NeMX|UceN}
O(N) = N
ONeM2) = 1 iff 1eN

C. Kupke Coalgebra & Data

Part I: Coalgebraic PDL
(joint work H.H. Hansen, R.Leal)

C. Kupke Coalgebra & Data

Propositional Dynamic Logic (PDL)

Fischer & Ladner, 1977. Reason about program correctness.

[a]e “after all successful executions of program «, ¢ holds”

> Syntax:
formulas ¢ n= pePo|pleVellap
programs « € A = a€Ap|aalaUala*|p?

composition (;), choice (U), iteration (*), tests (¢?)

» Multi-modal Kripke semantics: M = (X,{Rq | @ € A}, V)
where X is state space,
» R, : X — P(X) (relation, nondeterministic programs),
» V: Py — P(X) is a valuation.
M,x | [a]e iff VyeX.xRyy = M,y E .

C. Kupke Coalgebra & Data

Standard PDL Models

» Def. M = (X,{Rq | @ € A}, V) is standard if

Rap
RaU,B
Rox
R,

Ro o Rp (relation composition)
R, U R/g
R} (reflexive, transitive closure)

{(xx) [x e [#]}

» Sound and (weakly) complete axiomatisation of standard
models [Kozen & Parikh 1981]:
PDL = Normal modal logic K (ML of Kripke frames) plus:

[Blp < [a][Ble [U Blp < [a]p A [Ble
[W7e < (¥ — »)
e Ala]la*]p < [a*]e e Aa*](p = [alp) = [a"]p

C. Kupke Coalgebra & Data

Game Logic (GL)

Parikh, 1985. Strategic ability in determined 2-player games.

{7y “player 1 has strategy in 7 to ensure outcome satisfies ¢”
(“player 1 is effective for ¢”)
» Syntax: PDL syntax extended with dual operation on
games:

> v1;72: play 71 then s,
~v1 U~a: player 1 chooses to play ;1 or 7a,
~*: player 1 chooses when to stop.
» 44 players switch roles.
» Semantics: Game model M = (X, {E, | v € ['}, V) where
E, : X — PP(X) is monotonic neighbourhood function:
If Ue E,(x) and U C U’ then U’ € E,(x).

U € E, (x) iff player 1 is effective for U in ~ starting in x.
Modal semantics: M,x = (v)¢ iff [¢] € E4(x)

v

v

C. Kupke Coalgebra & Data

Standard GL Models
» Standard GL model: similar to PDL notion,

U € Ea(x) iff X\ U ¢ B, ().

v

GL = monotonic modal logic M (ML of
mon. nbhd. frames) plus

(Vi) < (1S (YUSp < (M V(e

() & (Y A @) (e < (1)

eV MY = (e eViNe =9
(Y e =

v

Without dual: sound and (weakly) complete [Parikh 1985].
Without iteration: sound and strongly complete [Pauly
2001].

Completeness of full GL still open.

v

v

C. Kupke Coalgebra & Data

Towards Coalgebraic Dynamic Logic

Basic observation:
» P is monad (P,n, u) with:
nx(x) ={x}, px({Uil|i€I})= U Ui
» M is a monad (M,n, u) with:
nx(x) = {UCX|xeU}
px(W) = {UCS X |[npx)(U) € W}

» Composition of programs and games is Kleisli composition.

Basic setup:

» Action/program X — TX where T a Set-monad
(T describes computation type, side-effects, ...)

» Sequential composition as Kleisli composition .

» Multi-program setting: X — (TX)* (A-labelled
T-coalgebra) where A is a set of program labels.

C. Kupke Coalgebra & Data

Coalgebra-Algebra

Two perspectives:

£: X — (TX)A TA-coalgebra, modal logic

§A : A — (TX)* algebra homomorphism, program operations

Questions:
» What are “program” operations like U and 97
» What is a standard model?
» Which compositionality axioms?

» How to prove soundness and completeness?

C. Kupke Coalgebra & Data

Pointwise Program Operations via Natural Operations

» An n-ary natural operation on T is a natural
transformation o: T" — T

» o: T" — T yields pointwise operation on (TX)X, e.g.,
(1, e2)(x) = ox(c1(x), c2(x))
» Given finitary signature functor X,

a natural X-algebra is natural transformation 6: ¥XT — T,
and yields pointwise T-algebra 6% : L((TX)X) — (TX)X.

C. Kupke Coalgebra & Data

Natural and Pointwise Operations: Examples

Natural operations on P:

» Union U: P x P — P is a natural operation, since
f[lUu U] = f[UJUf[U] (Pf(U) = {[U])

The pointwise extension of U: P x P — P is union of
relations (R; URs)(x) = Ri(x) U Ra(x).

» Observation: Intersection and complement are not natural
operations on P.

Natural operations on M:
» U and N (since preserved by f=1).

» Dual operation 4: M — M where for all N € M(X), and
UCX,UeNdiff X\ U¢N.
Dual game operation is the pointwise extension.

C. Kupke Coalgebra & Data

Standard dynamic models

Given a countable set Ay of atomic programs, and a signature
functor . Let A = X U {; }-terms over Ay.

We define:

» Given natural algebra 0: ¥T — T then £: X — (TX) is
f-standard iff

~

£:A — (TX)® isa X-algebra homomorphism.

» If T is a monad, then &: X — (TX)? is ;-standard iff
for all o, B € A, (e B) = E(a) % £(B)-

C. Kupke Coalgebra & Data

Sound Axioms for Pointwise Operations

» Example: PDL axiom for choice [U S]p < [a]p A [B]p.
» Idea: O: T — A turns operations # on T into operations x

on N.
o =2 A For example: P x PN XN
b, bk bo,ob

From y: N® — N, we get rank-1 formula
o(x, a1, ...,an,p) (not in this talk).

Lemma

If ¢: X — (TX)* is f-standard and x: N™® — N is such that
Qo =x0o0" then the rank-1 formula

[O(at,...,on)]p ¢ ©(x,a1,...,aq,p) is valid in &.

C. Kupke Coalgebra & Data

Coalgebraic Logic (Def)

A (modal) logic is a triple £ = (A, A, ©) where
» A is a similarity type,
» A C Prop(A(Prop(Var))) is a set of rank-1 axioms, and
» © C F(A) is a set of frame conditions

If o € F(N), we write 1 ¢ if ¢ can be derived from AU © with
the help of propositional reasoning (tautologies + MP), uniform
substitution, and the congruence rule.

oY
Qp < Oy

C. Kupke Coalgebra & Data

Dynamic Syntax

Given
» Y, a signature (functor).
» Py, a countable set of atomic propositions.

» Ag, a countable set of atomic programs.

we define
formulas F(Pg,Ap,X) > ¢ 1= pePo|-¢|eVellae
programs A(Pg,Ap,X)d>a == a€Ag|a;al|o(a,...,on)

where ¢ € ¥ is n-ary.

(Tests are incorporated later)

C. Kupke Coalgebra & Data

(T, #)-Dynamic Logic

Given
» base logic £, = ({0}, Ax(0,T),0) (rank-1)
» 0: >XT — T and set Ag of atomic actions.

We define
AN = {lo]| a€ A},
Ax = Ax(0,T)a U “f-axioms” |

Fr = {[a;8]p < [a][Blp | o, B € A, some fresh p € Py},
L£(O) = (A Ax,0),
£0,;) = (A Ax,Fr).

L(0) and L(6,;) are (T, 6)-dynamic logics over Ly,.

C. Kupke Coalgebra & Data

Conditions for Soundness

Sequential composition axiom: [«; S]p < [o][B]p.
Recal: O:T —P"P & 0:T2 -2

Lemma

If £: X — (TX)A is ;-standard, and ©: T — P*"P is a monad
morphism, then the axiom [«; B]p < [a][S]p is valid in &, for all
a, B € A.

Remark:
> Kelly & Power, 1993: Monad morphism T — P*"P
Eilenberg-Moore algebra T2 — 2

C. Kupke Coalgebra & Data

Examples

» Example: © for Kripke < corr. to free algebra PP(1)
— P(1), so Q: P — PP is monad morphism. Also =Q-.

» Example: Monotonic A, X: M — PP is natural inclusion,
hence monad morphism.

» Bad Example: for the sub-distribution monad D,, there
appears to be no interesting EM-algebra D“2 — 2
(and: difficult to imagine what an axiom for sequential
composition would look like)

Our conclusion

Need to move to many-valued logics when discussing
probabilistic systems (similarly for weighted).

C. Kupke Coalgebra & Data

Strong Completeness Result

If base logic £ satisfies conditions for quasi-canonical T-model,
then

» L(0) is sound and strongly complete wrt #-standard
TA-models (standard methods from coalgebraic modal
logic, quasi-canonical model theorem)

» £(0,;) is sound and strongly complete wrt 6, ;-standard
TA-models (use quasi-canonical model for £(f) to generate
0, ;-standard model, show quasi-canonical)

Key property of the canonical model
For all MCSs I and all formulas ¢ we have

v eQ(p) iff Qperl

where ¢ = {A € MCS | p € A}.

C. Kupke Coalgebra & Data

Adding Tests

Informally: given formula ¢, program ¢? tests whether ¢ holds.
If the test fails, the program aborts, otherwise do nothing.

» Syntax: ¢? is a program, when ¢ is a formula. Formulas
and programs defined by mutual induction.

» Semantics: need T to be “pointed”: for each set X, TX
contains a distinguished element Lpx (“abort”), and for all
f: X — Y, Tf(J_Tx) = J_Ty.

» Extend dynamic coalgebraic semantics £: X — (TX)A,

~ X if x m
£(e?)(x) :{ T;(X) ofthefvgii(]l

(standard wrt tests, £ and [¢] def’d by mutual induction.)

C. Kupke Coalgebra & Data

Axiomatising Tests

InPDL: [p?p < (p—=p) or (p?)p <« (pAD)
In GL: (pNp <> (@A D)

» Predicate lifting O: P — Po T is
— box-like if for all X and U C X, Lpx € Ox(U).
— diamond-like if for all X and U C X, Lpx & Ox(U).
Lemma: Any ©O: P — PoT either box-like or diamond-like.

> Axioms:
— If © in dynamic semantics is box-like,
then add [¢?]p <+ (¢ — p) to Fr,
— If © in dynamic semantics is diamond-like,
then add [¢?]p <> (¢ A p) to Fr.

» Theorem: L(6,;,?) is strongly complete wrt dynamic
models.
(modify quasi-canonical model, extend to standard model,
show quasi-canonical)

C. Kupke Coalgebra & Data

PDL Conclusion

» possible criticism: no new results; PDL without iteration
not interesting

» one seemingly new result for the lift monad 1 + X

» adding *-operator is (important) work in progress; uses
coalgebraic weak completeness proof & a strengthened
coherence condition for quasi-canonical models

C. Kupke Coalgebra & Data

Part II: Datalog®
(joint work with Gottlob, Hernich, Lukasiewicz)

C. Kupke Coalgebra & Data

Ontology-Based Data Access

Database

entails? | Conjunctive

Query

Axioms/

Constraints \

expressed, e.g., in:
* a description logic

Knowledge Base/
* Datalog®

Ontology

C. Kupke Coalgebra & Data

Intuition: ontology unifies and completes the data

Consider a hotel database (collection of atoms)
D = {Hotel(a), 4Star(a), 4Star(b) }
the rules

dPool
Hotel,

Hotel, 4Star
4Star

M1

and the query
Q(x) < Jy Hotel(x) A Pool(x,y).
The certain answers (choice of semantics) for the query will be

0 without ontology
{a,b} with ontology

C. Kupke Coalgebra & Data

Another ontology language: Datalog™

[Cali, Gottlob, Lukasiewicz] A general Datalog-based framework
for tractable query answering over ontologies.
Journal of Web Semantics (2012)

C. Kupke Coalgebra & Data

Motivation for Datalog®

» relations of arbitrary arity

» ontology languages for data access need to be lightweight:
lightweight DLs exist, but definitions are involved

» integration of database typical reasoning such as
“negation-as-failure-to-prove”

(if there is no flight connection between Edinburgh and
Amsterdam in the database, then we conclude
—Connection(EDI, AMS) - this does not mean that it
follows from the facts in the DB using logical deduction)

C. Kupke Coalgebra & Data

Datalog®™ Programs

Author(x) — Ty, z(Article(x, y) A publishedAt(y, z))
publishedAt(x, y) A publishedAt(x,z) — y =z

publishedAt(x,y) A Conference(y) A Journal(y) —L

Using DL-Notation:

Author C JArticle dpublished At
funct publishedAt
JpublishedAt™ M Conference C —Journal

C. Kupke Coalgebra & Data

Datalog®™ Programs: General Shape

A program is a finite set of Datalog® rules:
Rl(il) A A Rk(ik) —

where
» Ri(X;) are atoms,
» 1 is of one of the following forms:
» =37 (S1(¥;) A ... - ASu(¥,)), where the §;’s contain
only variables in Z or in the rule body, or

» 1) =y = yo, where y; and y3 occur in the rule body, or
» =1

Simplification: in the talk we will only consider Boolean queries.

C. Kupke Coalgebra & Data

Semantics: two equivalent definitions

For a given database D and Datalog®rules ¥:

Semantics I: Certain answers A query holds if it holds in all
possible models of D U X

Semantics II: Canonical model A query holds if it holds in the
minimal model of D U X where ¥ is the
skolemisation of X, e.g., a rule

Rl(Xh s 7Xk) - ElyS(i7 y)
is replaced by
Rl(Xb s ’Xk) — S(iag(xla s ,Xk))

where g is a new function symbol.

C. Kupke Coalgebra & Data

Logic Programming

» Skolemisation turns a Datalog®™ program ¥ into a logic
program!

» Query answering relative to a Datalog® program can be
done using logic programming techniques.

» Nevertheless is Datalog® interesting on its own: programs
have particular syntactic shapes, need to restrict to
“tractable” fragments

> “Tractable” here means polynomial in the data complexity.

C. Kupke Coalgebra & Data

Data complexity (Vardi 1982)

» complexity of answering query Q relative to a database D
and a program X is measured in data complexity

» this means: Q and ¥ are fixed - size of the input is the size
of D

» Idea: size of D the dominating factor

C. Kupke Coalgebra & Data

Some Tractable Cases (Incomplete)

Frontier-Guarded Datalog*
[Baget-Mugnier-Rudolph-Thomazo 1]

Guarded Datalog*
[Cali-Gottlob-Lukasiewicz '09]

Sticky-Join Datalog*
[Cali-Gottlob-Pieris 10]

Linear Datalog* Sticky Datalog*
[Cali-Gottlob-Lukasiewicz '09] [Cali-Gottlob-Pieris 10]

C. Kupke Coalgebra & Data

Adding negated atoms

The minimal model of a logic program is obtained as the least
fixpoint of a monotone operator

Tp : P(At) — P(At)

such that M is the smallest set of atoms that is closed under
application of a (substituted) rule.

Simple Example (propositional program) with negation

-4p — q
— Db

Tp(0) = {p}, T3 (0) = {p,a}
Tp(0) = {p}, Tp(0) = {p,a}, TR(0)

?
= {p} = Tp not monotone!

C. Kupke Coalgebra & Data

Solutions

The addition of nonmonotonic negation to logic programs is
well researched, we focused on two options:

» well-founded semantics: canonical model does exist, but
monotone operator more complicated and model is
three-valued (F,T,U)

» stable semantics: two valued models, but no canonical
model - in particular, models cannot be obtained as unique
least fixpoint of a monotone operator

Problem: No previously existing complexity (or even
decidability) results for logic programs involving function
symbols.

C. Kupke Coalgebra & Data

Well-Founded Semantics: Definition
van Gelder-Ross-Schlipf ‘91

> Start with empty set
of literals.

Number(0), Even(0) » In each step
Number(x) — Number(s(x)) » Apply the rules to
Number(x) A =Even(x) — Even(s(x)) infer new atoms.
» Add negations of
Number(0), Even(0) atoms that can no
Number(s(0)), ~Even(s () longer be derived.
Number(s%(0)), Even(s?(0)) » This converges to
the well-founded
model!

C. Kupke Coalgebra & Data

Proof in the positive case

Proof “tree”

Constant

derivation
/ \ \ depth
Query Q

C. Kupke Coalgebra & Data

This fails in the negative case

Deciding whether a literal belongs to WFS(D, ¥) may require
an infinite number of iterations:

R(0,1), P(0)
R(x,y) = R(y, {(x,y))

R(x,y) A =P(x) — Q(¥)

R(x,y) AP(x) A =Q(y) — P(y)
R(x,y) A =P(y) — S(0)

o—a—2 @ o—a—2 @ o—a—e—
-0 -0 -0 -0 -0

C. Kupke Coalgebra & Data

Forward Proofs
Schlipf '95

» Forward proof of an atom R(a) from a program P:

(o1 n a9 = a3 = S R(é)

i.e., a series of rule applications ignoring negative side
atoms.

» —R(a) will be derived if every forward proof for it “uses” a
negative literal =S(b), with S(b) already known to be true.

» R(a) will be derived if there exists a forward proof such
that all side literals are already known to be true.

C. Kupke Coalgebra & Data

Query answering

» alternating algorithm that either tries to find a forward
proof of a given atom or to show that no such proof for a
given negative literal exists

» configurations of the algorithm roughly correspond to
atoms and subsets of their type (in WEFS(P))

» key observation: we can identify configurations that are
“X-isomorphic” (where X is the set of relevant constants)

C. Kupke Coalgebra & Data

Back to the positive case
Proof “tree”

for the positive
program

Xh Constant

derivation
/ \ depth
Query Q

C. Kupke Coalgebra & Data

Complexity results

Input A database D, a guarded normal Datalog®™
program ¥, and a Boolean conjunctive query Q
with negation

Question Is Q true in WFS(D, X)?

» PTIME-complete in data complexity

» EXPTIME-complete if predicate’s arities are bounded by a
constant

» 2-EXPTIME-complete in general

C. Kupke Coalgebra & Data

A hidden assumption

» the translation into logic programming implies that we
treat all elements of our models as distinct

» Example:
Employee(x) — Jy hasEmployer(x, y)
together with D = {Employee(John), Employee(Sam)}.
» Answer of the query
Jdx(hasEmployer(John, x) A —hasEmployer(Sam, x))

depends on whether we generate for John and Sam distinct
employers by applying the rule
» = Equality-Friendly Well-founded Semantics

C. Kupke Coalgebra & Data

Guarded Fixed Point Logic

The set of formulas of GFP over R is built from atomic formulas
over R (including equality atoms) using Boolean combinations,
and the following two additional formula formation rules:

[. If «v is an atomic formula over R containing the variables
in x, and 9 is a GFP formula over R whose free variables
occur in o, then 3X (a A ¢) and VX (o —) are GFP
formulas over R. The formula « is called guard.

II. Let R be a k-ary predicate, X a k-tuple of variables, and
P(R,X) a GFP formula over R U {R} whose free variables
occur in X, and where R appears only positively (in the
scope of an even number of negation symbols) and not in
guards. Then, [lfpg £ ¥](X) and [gfpg 5 ¥](X) are GFP
formulas over R with free variables X.

C. Kupke Coalgebra & Data

Example Formula GFP

The following GFP formula says that binary relation E is
well-founded, i.e., no element is the endpoint of an infinite
E-path:

Vx,y (E(x,y) — [pw Vy (E(y,x) = W(y))](x)) -

[Gradel & Walukiewicz| 2-ExpTime decidability
(ExpTime with bounded arities)

C. Kupke Coalgebra & Data

Translation of WFS into GFP (Idea)

Construct a GFP sentence efwfs(P) whose models closely
correspond to the databases in EFWFS(P), i.e., such that for
all queries (“covered NBCQs”) Q over the schema of P, we have
EFWFS(P) = Q iff efwfs(P) E Q*.

» The key is to “existentially quantify” all the instances of
NTGDs that we use to compute the WFS, and to mimic
the fixed-point definition of the WF'S using those instances.

» Fixpoint in WF'S is modeled with Ifp (derivable atoms) and
gfp (those atoms that certainly cannot be derived).

» Upper bound on set of derived positive atoms and
coveredness for derived negative atoms provides guards.

C. Kupke Coalgebra & Data

Stable semantics

» Both approaches also work with the stable semantics

» Data Complexity increases to coNP

» Intuition: Need to check query on all stable models

C. Kupke Coalgebra & Data

Ref’s

» [Gottlob, Hernich, K., and Lukasiewicz] Equality-friendly
well-founded semantics and applications to description
logics. AAAT 2012

» [Hernich, K., Lukasiewicz and Gottlob] Well-founded
semantics for extended datalog and ontological reasoning.
PODS 2013

» [Gottlob, Hernich, K., and Lukasiewicz| Stable model
semantics for guarded existential rules and description
logics. KR2014

C. Kupke Coalgebra & Data

Part III: The connections (Future Work!)

C. Kupke Joalgebra & Data

Datalog™

Issues
» query-rewriting using backward-chaining: very useful - not
sufficiently explored

» need for reasoning with probabilities, weight, preferences
and combinations

» need to operate over semi-structured data

Goals

» Use backward-chaining algorithm from coalgebraic LP to
obtain “parallellizable” query-rewriting algorithm

» Extend this to Datalog® with nonmonotonic negation

» Extend Datalog® to Coalgebraic Datalog® for other types
of data.

C. Kupke Coalgebra & Data

Coalgebraic Datalog™®

» Goals:

» extend Datalog® with features such as probabilities, weights
and preferences

» provide efficient algorithms for query-rewriting and query
answering

» Two Approaches:

» generalise coalgebraic LP to other functors
» add fixpoint operators to coalgebraic predicate logic to
create coalgebraic LFP or GFP

» [Komendantskaya, Schmidt, and Power| Coalgebraic logic
programming: from semantics to implementation. Journal
of Logic and Computation (2014)

» [Litak, Pattinson, Sano, and Schréder| Coalgebraic
predicate logic. ICALP (2012)

C. Kupke Coalgebra & Data

Coalgebraic semi-structured data

» represent tree and graph-structured data coalgebraically

» develop theory of data-labelled coalgebras, similar to recent
work on XML trees

[Figueira, Figueira, and Areces| Basic Model Theory of
XPath on Data Trees. ICDT 2014.

» develop theory of automata operating on data-labelled
structures

C. Kupke Coalgebra & Data

Coalgebraic (core) XPath

» our starting point is core XPath for data graphs:

The path formulae of the two flavors of GXPath are given
below. In both cases a ranges over .

Path expressions of Regular graph XPath, denoted by
GXPathyeg, are given by:

a,fi=cl_lala | g |a-B|aUup]|ala
Path expressions of Core graph XPath denoted by
GXPathe are given by:

ofi=c|_lala [a | o | gl] ap|aupla

» build coalgebraic core XPath starting from coalgebraic
PDL:
» add *
» add non-natural operations
» extend path-expressions to properties of the data, e.g. o=,
a7 or regular expressions with memory
» probabilistic or weighted graphs

C. Kupke Coalgebra & Data

On the connection (G)XPath & PDL

» [Libkin, Martens, and Vrgoc| Querying graph databases
with XPath. ICDT (2013)

» [Alechina, Immermann| Reachability Logic: An Efficient
Fragment of Transitive Closure Logic. Logic Journal of the
IGPL (2000)

» [ten Cate, Marx| Navigational XPath: calculus and
algebra. ACM SIGMOD Record (2007)

» [ten Cate, Fontaine, Litak] Some modal aspects of XPath.
Journal of Applied Non-Classical Logics (2010)

C. Kupke Coalgebra & Data

Further steps

> ’ Ontological query answering for path queries.

» [Cardelli, Ghelli] TQL: a query language for semistructured
data based on the ambient logic. Mathematical Structures
in Computer Science (2004)

» long-term: “continuous” queries over streaming data?

C. Kupke Coalgebra & Data

algebra & Data

