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A Really Quick Overview of the Framework

language: ·,∨,∧,0,e,→
I MTL: FLew + (x→ y) ∨ (y→ x) = e (prelinearity)
I BL: MTL + x ∧ y = x · (x→ y)
I IMTL: MTL + (x→0)→0 = x
I IBL (MV): BL + (x→0)→0 = x

`-monoid (positive) language: ·,∨,∧,0,e
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What are the `-reducts of MTL-chains?

∨,∧ is a linear partial order with bounds 0 and e,
· is associative with neutral element e (i.e., monoid),
· is commutative,
· is monotone with respect to the partial order.

When finite, w.l.o.g., it is enough to give the monoidal operation
(under the assumption that the order is 0 < 1 < 2 . . . < n).
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Are these `-reducts of MTL-chains?

0 1 2 3 4
0 0 0 0 0 0
1 0 0 0 0 1
2 0 0 0 2 2
3 0 0 2 3 3
4 0 1 2 3 4

0 1 2 3 4
0 0 0 0 0 0
1 0 0 0 0 1
2 0 0 1 2 2
3 0 0 2 3 3
4 0 1 2 3 4

Associativity is the only non-trivial property to check.
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Some “standard” algebraic models

“Standard” means the lattice reduct is [0,1].

MTL and BL are standard complete.
Continuous (t-norms):

I x · y := x ∧ y (Gödel)
I x · y := x · y (Product)
I x · y := max{0, x + y − 1} (Łukasiewicz)
I ordinal sums of the previous (glue 2 or more using the meet

for the monoidal operator between different components)

Left-Continuous (t-norms):

I x · y :=

{
x ∧ y if x + y > 1
0 otherwise .

(Nilpotent Minimum)

I . . .
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Main Problem to Consider
Is there some `-monoid equation that distinguishes MTL from
BL?

No?

(by HSP Theorem we would get a representation
description for MTL-algebras)

Yes?

(requires a better understanding of (finite)
MTL-chains)

An Embarrassing Question
Is the equation

x1x4x7 ∧ x2x5x8 ∧ x3x6x9 ≤ x1x2x3 ∨ x4x5x6 ∨ x7x8x9

valid in MTL?
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Some Remarks about the `-monoid fragment

The `-monoid reduct of an MTL-algebra determines the
MTL-algebra.

Validity of `-monoid equations is preserved under ordinal
sums.
In chains, “Rees congruences” are trivial examples of
`-monoid congruences.
One has to be careful about not using the powerful
machinery developed when→ is present:

I The `-monoid reduct cannot distinguish between Gödel
algebras and Boolean algebras.

I All continuous t-norms different than Gödel generate the
same variety in the `-monoid reduct.

I . . .
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Advertising slogan

Why considering the `-monoid reduct?

1 a better understanding of the `-monoid fragment of
MTL-algebras will enlighten us with a better understanding
of the full language (including residuum).

2 in some contexts it is easier to deal with the `-monoid
fragment than with the full language.
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“Balance” between Pros and Cons

full language (·,∨,∧,0,e,→)
I Pro:

Congruences are nicely characterized

I Con:

Free algebra is difficult

`-monoid (·,∨,∧,0,e)
I Pro:

Congruences are difficult

I Con:

Free abelian monoid is easy

, it is
⊕

i∈κ(N,+,0)
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Semilinear `-monoids: Variety generated by
`-monoid reducts of MTL-algebras

x ∧ y = y ∧ x x ∨ y = y ∨ x
x ∧ (y ∧ z) = (x ∧ y) ∧ z x ∨ (y ∨ z) = (x ∨ y) ∨ z
x ∧ (x ∨ y) = x x ∨ (x ∧ y) = x

x ∧ e = x x ∨ 0 = x
x · (y · z) = (x · y) · z

x · y = y · x
x · e = x
x · 0 = 0

x · (y ∨ z) = (x · y) ∨ (x · z) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

x · (y ∧ z) = (x · y) ∧ (x · z)
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When A = (A, ·,∨,∧,0,e) is subdirectly
irreducible?

1 A is a chain
2 A has a coatom
3 A is involutive

∀x(x ≈ ¬¬x)

∀xy(¬x = ¬y ⇒ x = y)

∀xy(∀z(x · z = 0⇔ y · z = 0) ⇒ x = y)

∀xy(x < y ⇒ y · ¬x 6= 0)

∀xy(x < y ⇒ ∃z(x · z = 0 & y · z 6= 0))
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2 A has a coatom
3 A is involutive

∀x(x ≈ ¬¬x)

∀xy(¬x = ¬y ⇒ x = y)

∀xy(∀z(x · z = 0⇔ y · z = 0) ⇒ x = y)

∀xy(x < y ⇒ y · ¬x 6= 0)

∀xy(x < y ⇒ ∃z(x · z = 0 & y · z 6= 0))
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Involutive MTL-algebras

The residuum operation can be replaced, in the signature,
with negation because the equation

x→ y = ¬(x · ¬y)

holds.

Duality: if in an equation which is valid in an IMTL-chain A
and which only uses the symbols ·,+,¬,∧,∨,0,e we
simultaneously interchange

· and +, ∧ and ∨, ≤ and ≥, 0 and e,
then the resultant equation is also valid in the same A.
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Remark (Duality)
For every IMTL-algebra A, the following two conditions are
equivalent.

The equation

x1x4x7 ∧ x2x5x8 ∧ x3x6x9 ≤ x1x2x3 ∨ x4x5x6 ∨ x7x8x9

is valid in A.
The equation

(x1 + x4 + x7) ∨ (x2 + x5 + x8) ∨ (x3 + x6 + x9) ≥
≥ (x1 + x2 + x3) ∧ (x4 + x5 + x6) ∧ (x7 + x8 + x9)

is valid in A.
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How many-chains of cardinality n?

1 2 3 4 5 6 7 8 9
BL 1 1 2 22 23 24 25 26 27

IBL (MV) 1 1 1 1 1 1 1 1 1
MTL 1 1 2 6 22 94 451 2386 13775
IMTL 1 1 1 2 3 7 12 31 59
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List of IMTL chains of cardinal 5

Sage

∗(5, 0) 0 1 2 3 4
0 0 0 0 0 0
1 0 0 0 0 1
2 0 0 0 2 2
3 0 0 2 3 3
4 0 1 2 3 4

∗(5, 1) 0 1 2 3 4
0 0 0 0 0 0
1 0 0 0 0 1
2 0 0 0 1 2
3 0 0 1 2 3
4 0 1 2 3 4

∗(5, 2) 0 1 2 3 4
0 0 0 0 0 0
1 0 0 0 0 1
2 0 0 0 1 2
3 0 0 1 1 3
4 0 1 2 3 4

Sage

+(5, 0) 0 1 2 3 4
0 0 1 2 3 4
1 1 1 2 4 4
2 2 2 4 4 4
3 3 4 4 4 4
4 4 4 4 4 4

+(5, 1) 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 4
2 2 3 4 4 4
3 3 4 4 4 4
4 4 4 4 4 4

+(5, 2) 0 1 2 3 4
0 0 1 2 3 4
1 1 3 3 4 4
2 2 3 4 4 4
3 3 4 4 4 4
4 4 4 4 4 4

Strong Advice: Use the sage package created by Peter Jipsen

Félix Bou (IIIA - CSIC) Finite MTL-chains May 8th, 2015, Delft : 16
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List of IMTL chains of cardinal 6

Sage

∗(6, 0) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 2 2
3 0 0 0 2 3 3
4 0 0 2 3 4 4
5 0 1 2 3 4 5

∗(6, 1) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 1 2
3 0 0 0 1 1 3
4 0 0 1 1 1 4
5 0 1 2 3 4 5

∗(6, 2) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 2 2
3 0 0 0 3 3 3
4 0 0 2 3 4 4
5 0 1 2 3 4 5

∗(6, 3) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 2 2
3 0 0 0 1 2 3
4 0 0 2 2 4 4
5 0 1 2 3 4 5

∗(6, 4) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 1 2
3 0 0 0 3 3 3
4 0 0 1 3 3 4
5 0 1 2 3 4 5

∗(6, 5) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 1 2
3 0 0 0 1 1 3
4 0 0 1 1 2 4
5 0 1 2 3 4 5

∗(6, 6) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 1 2
3 0 0 0 1 2 3
4 0 0 1 2 3 4
5 0 1 2 3 4 5
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List of IMTL chains of cardinal 6

Sage

+(6, 0) 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 1 2 3 5 5
2 2 2 3 5 5 5
3 3 3 5 5 5 5
4 4 5 5 5 5 5
5 5 5 5 5 5 5

+(6, 1) 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 4 4 4 5 5
2 2 4 4 5 5 5
3 3 4 5 5 5 5
4 4 5 5 5 5 5
5 5 5 5 5 5 5

+(6, 2) 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 1 2 3 5 5
2 2 2 2 5 5 5
3 3 3 5 5 5 5
4 4 5 5 5 5 5
5 5 5 5 5 5 5

+(6, 3) 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 1 3 3 5 5
2 2 3 4 5 5 5
3 3 3 5 5 5 5
4 4 5 5 5 5 5
5 5 5 5 5 5 5

+(6, 4) 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 2 4 5 5
2 2 2 2 5 5 5
3 3 4 5 5 5 5
4 4 5 5 5 5 5
5 5 5 5 5 5 5

+(6, 5) 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 3 4 4 5 5
2 2 4 4 5 5 5
3 3 4 5 5 5 5
4 4 5 5 5 5 5
5 5 5 5 5 5 5

+(6, 6) 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 5
2 2 3 4 5 5 5
3 3 4 5 5 5 5
4 4 5 5 5 5 5
5 5 5 5 5 5 5

Félix Bou (IIIA - CSIC) Finite MTL-chains May 8th, 2015, Delft : 17



List of IMTL chains of cardinal 7

Sage

∗(7, 0) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 2 2
3 0 0 0 0 3 3 3
4 0 0 0 3 4 4 4
5 0 0 2 3 4 5 5
6 0 1 2 3 4 5 6

∗(7, 1) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 2 2
3 0 0 0 0 2 3 3
4 0 0 0 2 3 4 4
5 0 0 2 3 4 5 5
6 0 1 2 3 4 5 6

∗(7, 2) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 2 2
3 0 0 0 0 2 3 3
4 0 0 0 2 2 4 4
5 0 0 2 3 4 5 5
6 0 1 2 3 4 5 6

∗(7, 3) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 3 3 3
4 0 0 0 3 4 4 4
5 0 0 1 3 4 4 5
6 0 1 2 3 4 5 6

∗(7, 4) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 1 1 3
4 0 0 0 1 3 3 4
5 0 0 1 1 3 3 5
6 0 1 2 3 4 5 6

∗(7, 5) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 1 1 3
4 0 0 0 1 2 3 4
5 0 0 1 1 3 3 5
6 0 1 2 3 4 5 6

∗(7, 6) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 1 1 3
4 0 0 0 1 1 2 4
5 0 0 1 1 2 3 5
6 0 1 2 3 4 5 6

∗(7, 7) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 1 1 3
4 0 0 0 1 1 1 4
5 0 0 1 1 1 1 5
6 0 1 2 3 4 5 6

∗(7, 8) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 1 1 3
4 0 0 0 1 1 1 4
5 0 0 1 1 1 2 5
6 0 1 2 3 4 5 6

∗(7, 9) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 1 2 3
4 0 0 0 1 2 3 4
5 0 0 1 2 3 4 5
6 0 1 2 3 4 5 6

∗(7, 10) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 1 2 3
4 0 0 0 1 1 2 4
5 0 0 1 2 2 4 5
6 0 1 2 3 4 5 6

∗(7, 11) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 2 2
3 0 0 0 0 1 2 3
4 0 0 0 1 1 2 4
5 0 0 2 2 2 5 5
6 0 1 2 3 4 5 6
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Describing 2-generated IMTL-chains
through Token Configurations in (N2,+,0)

IMTL-chain IMTL-chain Nothing IMTL-chain

IMTL-chain IMTL-chain IMTL-chain IMTL-chain
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“Admissible” Configurations in (N2,+,0)

1 antichain

(the “monomial ideal” generated is denoted I)
2 any of the following equivalent conditions hold:

I ({I − {a} : a ∈ N2},⊆) is a total order
I for all a,b ∈ N2, either I − {a} ⊆ I − {b} or I − {b} ⊆ I − {a}
I for all a,b, c,d ∈ N2, if a + b ∈ I and c + d ∈ I, then either

a + d ∈ I or b + c ∈ I
I for all a,b, c,d ∈ N2, if a + b ∈ I and c + d ∈ I, then either

a + c ∈ I or b + d ∈ I
I for all a,b, c,d ∈ N2, if a + b ∈ min(I) and c + d ∈ min(I),

then either a + d ∈ I or b + c ∈ I [computational condition]

Communication Ideal: Any I with these conditions
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The IMTL-chain given by . . .

0

1

Sage

∗(2, 0) 0 1
0 0 0
1 0 1

2-element Boolean Algebra
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The IMTL-chain given by . . .

0 1

2

3

None (1 and 2 are not comparable)
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∗(4, 0) 0 1 2 3
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3 0 1 2 3

∗(4, 1) 0 1 2 3
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1 0 0 0 1
2 0 0 2 2
3 0 1 2 3
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The IMTL-chain given by . . .

0 1 2 3

4

5

Sage

∗(6, 0) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 2 2
3 0 0 0 2 3 3
4 0 0 2 3 4 4
5 0 1 2 3 4 5

∗(6, 1) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 1 2
3 0 0 0 1 1 3
4 0 0 1 1 1 4
5 0 1 2 3 4 5

∗(6, 2) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 2 2
3 0 0 0 3 3 3
4 0 0 2 3 4 4
5 0 1 2 3 4 5

∗(6, 3) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 2 2
3 0 0 0 1 2 3
4 0 0 2 2 4 4
5 0 1 2 3 4 5

∗(6, 4) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 1 2
3 0 0 0 3 3 3
4 0 0 1 3 3 4
5 0 1 2 3 4 5

∗(6, 5) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 1 2
3 0 0 0 1 1 3
4 0 0 1 1 2 4
5 0 1 2 3 4 5

∗(6, 6) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 1 2
3 0 0 0 1 2 3
4 0 0 1 2 3 4
5 0 1 2 3 4 5

Félix Bou (IIIA - CSIC) Finite MTL-chains May 8th, 2015, Delft : 27



The IMTL-chain given by . . .

0 1 2 3

4

5

Sage

∗(6, 0) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 2 2
3 0 0 0 2 3 3
4 0 0 2 3 4 4
5 0 1 2 3 4 5

∗(6, 1) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 1 2
3 0 0 0 1 1 3
4 0 0 1 1 1 4
5 0 1 2 3 4 5

∗(6, 2) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 2 2
3 0 0 0 3 3 3
4 0 0 2 3 4 4
5 0 1 2 3 4 5

∗(6, 3) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 2 2
3 0 0 0 1 2 3
4 0 0 2 2 4 4
5 0 1 2 3 4 5

∗(6, 4) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 1 2
3 0 0 0 3 3 3
4 0 0 1 3 3 4
5 0 1 2 3 4 5

∗(6, 5) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 1 2
3 0 0 0 1 1 3
4 0 0 1 1 2 4
5 0 1 2 3 4 5

∗(6, 6) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 1 2
3 0 0 0 1 2 3
4 0 0 1 2 3 4
5 0 1 2 3 4 5

Félix Bou (IIIA - CSIC) Finite MTL-chains May 8th, 2015, Delft : 27



The IMTL-chain given by . . .

0 1 2 3

4 5

Sage

∗(6, 0) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 2 2
3 0 0 0 2 3 3
4 0 0 2 3 4 4
5 0 1 2 3 4 5

∗(6, 1) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 1 2
3 0 0 0 1 1 3
4 0 0 1 1 1 4
5 0 1 2 3 4 5

∗(6, 2) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 2 2
3 0 0 0 3 3 3
4 0 0 2 3 4 4
5 0 1 2 3 4 5

∗(6, 3) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 2 2
3 0 0 0 1 2 3
4 0 0 2 2 4 4
5 0 1 2 3 4 5

∗(6, 4) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 1 2
3 0 0 0 3 3 3
4 0 0 1 3 3 4
5 0 1 2 3 4 5

∗(6, 5) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 1 2
3 0 0 0 1 1 3
4 0 0 1 1 2 4
5 0 1 2 3 4 5

∗(6, 6) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 1 2
3 0 0 0 1 2 3
4 0 0 1 2 3 4
5 0 1 2 3 4 5

Félix Bou (IIIA - CSIC) Finite MTL-chains May 8th, 2015, Delft : 27



The IMTL-chain given by . . .

0 1 2 3

4 5

Sage

∗(6, 0) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 2 2
3 0 0 0 2 3 3
4 0 0 2 3 4 4
5 0 1 2 3 4 5

∗(6, 1) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 1 2
3 0 0 0 1 1 3
4 0 0 1 1 1 4
5 0 1 2 3 4 5

∗(6, 2) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 2 2
3 0 0 0 3 3 3
4 0 0 2 3 4 4
5 0 1 2 3 4 5

∗(6, 3) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 2 2
3 0 0 0 1 2 3
4 0 0 2 2 4 4
5 0 1 2 3 4 5

∗(6, 4) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 1 2
3 0 0 0 3 3 3
4 0 0 1 3 3 4
5 0 1 2 3 4 5

∗(6, 5) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 1 2
3 0 0 0 1 1 3
4 0 0 1 1 2 4
5 0 1 2 3 4 5

∗(6, 6) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 0 0 1 2
3 0 0 0 1 2 3
4 0 0 1 2 3 4
5 0 1 2 3 4 5

Félix Bou (IIIA - CSIC) Finite MTL-chains May 8th, 2015, Delft : 27
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0 0 0 0 0 0 0
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The IMTL-chain given by . . .

0 1 2 3

4 5

6

Sage

∗(7, 0) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 2 2
3 0 0 0 0 3 3 3
4 0 0 0 3 4 4 4
5 0 0 2 3 4 5 5
6 0 1 2 3 4 5 6

∗(7, 1) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 2 2
3 0 0 0 0 2 3 3
4 0 0 0 2 3 4 4
5 0 0 2 3 4 5 5
6 0 1 2 3 4 5 6

∗(7, 2) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 2 2
3 0 0 0 0 2 3 3
4 0 0 0 2 2 4 4
5 0 0 2 3 4 5 5
6 0 1 2 3 4 5 6

∗(7, 3) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 3 3 3
4 0 0 0 3 4 4 4
5 0 0 1 3 4 4 5
6 0 1 2 3 4 5 6

∗(7, 4) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 1 1 3
4 0 0 0 1 3 3 4
5 0 0 1 1 3 3 5
6 0 1 2 3 4 5 6

∗(7, 5) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 1 1 3
4 0 0 0 1 2 3 4
5 0 0 1 1 3 3 5
6 0 1 2 3 4 5 6

∗(7, 6) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 1 1 3
4 0 0 0 1 1 2 4
5 0 0 1 1 2 3 5
6 0 1 2 3 4 5 6

∗(7, 7) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 1 1 3
4 0 0 0 1 1 1 4
5 0 0 1 1 1 1 5
6 0 1 2 3 4 5 6

∗(7, 8) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 1 1 3
4 0 0 0 1 1 1 4
5 0 0 1 1 1 2 5
6 0 1 2 3 4 5 6

∗(7, 9) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 1 2 3
4 0 0 0 1 2 3 4
5 0 0 1 2 3 4 5
6 0 1 2 3 4 5 6

∗(7, 10) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 1 2 3
4 0 0 0 1 1 2 4
5 0 0 1 2 2 4 5
6 0 1 2 3 4 5 6

∗(7, 11) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 2 2
3 0 0 0 0 1 2 3
4 0 0 0 1 1 2 4
5 0 0 2 2 2 5 5
6 0 1 2 3 4 5 6
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The IMTL-chain given by . . .

0 1 2 3

4 5

6

Sage

∗(7, 0) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 2 2
3 0 0 0 0 3 3 3
4 0 0 0 3 4 4 4
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0 0 0 0 0 0 0 0
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6 0 1 2 3 4 5 6
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2 0 0 0 0 0 1 2
3 0 0 0 0 3 3 3
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6 0 1 2 3 4 5 6
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5 0 0 1 1 3 3 5
6 0 1 2 3 4 5 6

∗(7, 5) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 1 1 3
4 0 0 0 1 2 3 4
5 0 0 1 1 3 3 5
6 0 1 2 3 4 5 6

∗(7, 6) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 1 1 3
4 0 0 0 1 1 2 4
5 0 0 1 1 2 3 5
6 0 1 2 3 4 5 6

∗(7, 7) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 1 1 3
4 0 0 0 1 1 1 4
5 0 0 1 1 1 1 5
6 0 1 2 3 4 5 6

∗(7, 8) 0 1 2 3 4 5 6
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4 0 0 0 1 1 1 4
5 0 0 1 1 1 2 5
6 0 1 2 3 4 5 6
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6 0 1 2 3 4 5 6
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The IMTL-chain given by . . .

0 1 2 3

4 5 6

Sage

∗(7, 0) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 2 2
3 0 0 0 0 3 3 3
4 0 0 0 3 4 4 4
5 0 0 2 3 4 5 5
6 0 1 2 3 4 5 6

∗(7, 1) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 2 2
3 0 0 0 0 2 3 3
4 0 0 0 2 3 4 4
5 0 0 2 3 4 5 5
6 0 1 2 3 4 5 6

∗(7, 2) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 2 2
3 0 0 0 0 2 3 3
4 0 0 0 2 2 4 4
5 0 0 2 3 4 5 5
6 0 1 2 3 4 5 6

∗(7, 3) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 3 3 3
4 0 0 0 3 4 4 4
5 0 0 1 3 4 4 5
6 0 1 2 3 4 5 6

∗(7, 4) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 1 1 3
4 0 0 0 1 3 3 4
5 0 0 1 1 3 3 5
6 0 1 2 3 4 5 6

∗(7, 5) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 1 1 3
4 0 0 0 1 2 3 4
5 0 0 1 1 3 3 5
6 0 1 2 3 4 5 6

∗(7, 6) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 1 1 3
4 0 0 0 1 1 2 4
5 0 0 1 1 2 3 5
6 0 1 2 3 4 5 6

∗(7, 7) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 1 1 3
4 0 0 0 1 1 1 4
5 0 0 1 1 1 1 5
6 0 1 2 3 4 5 6

∗(7, 8) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 1 1 3
4 0 0 0 1 1 1 4
5 0 0 1 1 1 2 5
6 0 1 2 3 4 5 6

∗(7, 9) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 1 2 3
4 0 0 0 1 2 3 4
5 0 0 1 2 3 4 5
6 0 1 2 3 4 5 6

∗(7, 10) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1 2
3 0 0 0 0 1 2 3
4 0 0 0 1 1 2 4
5 0 0 1 2 2 4 5
6 0 1 2 3 4 5 6

∗(7, 11) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
2 0 0 0 0 0 2 2
3 0 0 0 0 1 2 3
4 0 0 0 1 1 2 4
5 0 0 2 2 2 5 5
6 0 1 2 3 4 5 6
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Representation of involutive chains
Every algebra associated with a communication ideal of
(N,+,0)2 is a finite IMTL-chain.

All IMTL-chains that are 2-generated (as `-monoid) come
from a communication ideal of (N,+,0)2

Every algebra associated with a communication ideal of
(N,+,0)k is a finite IMTL-chain.
All IMTL-chains that are k-generated (as `-monoid) come
from a communication ideal of (N,+,0)k .

The same can be said for arbitrary κ using the monoid⊕
i∈κ(N,+,0); but here it is crucial to remember that

involutive refers to a notion in the `-monoid fragment.
If a chain is n-potent, then we can replace the monoid
(N,+,0) with the “truncated” one over {0,1,2, . . . ,n}.
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Can we “easily” recognize when I is a
communication ideal?

Some computational algebra notions

Monomial orderings of dimension k : total orders �
compatibles with (N,+,0)k

[coincide with the compatibles
with (Z,+,0)k , and also with (Q,+,0)k and (R,+,0)k ]

Admissible Monomial orderings of dimension k : the ones
where all elements of Nk are positive (equivalently, being
well order).
Robbiano has classified all monomial orderings using
invertible matrices of real numbers.
There are very nice geometrical interpretations of what are
monomial orderings.
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Some monomial orderings of (N,+,0)2

describe the subsets of Rn Bn, Bn−1, . . . , Bn−r+1.
Let Bj, n− r + 1 ≤ j ≤ n− s+ 1 be the subsets of Rn described by





u11x1 + · · ·+ u1nxn = 0
...

...
...

uj−1 1x1 + · · ·+ uj−1 nxn = 0

uj1x1 + · · ·+ ujnxn > 0

It is easy to check that Bn, . . . , Bn−s+1 are the first s components of a semi-flag.
There exists many semi-flags which have first components Bn, . . . , Bn−s+1, and every
one of these satisfies the thesis. By the definition of Bn . . . Bn−s+1 the skeleton of B is
equal to Pτ (cfr. remark 6). �

Remark 12 From the proof of the lemma 11, it follows that for rational orderings the
associated semi-flag is unique. For more general orderings, this is not true.

Example 13 The term-ordering τ := deglex(x > y) has been examined in the example
7. The semi-flag B associated to it is defined by

B2 := {(x, y) ∈ R2 | x+ y > 0} ∪B1 :=





(x, y) ∈ R2

∣∣∣∣∣∣∣




x+ y = 0

x > 0





The full dots represent the skeleton of B,

the shadowed area B2

and the halfline from the origin B1.
@

@
@
@

@
@
@

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦ ←−B1

B2

Example 14 Consider the term-ordering τ described by the vector list
u := [(1,

√
37)] introduced in the example 3. Two of the associated semi-flags are B and

C, whose components are, respectively,

B2 := {(x, y) ∈ R2 | {x+
√

37y > 0}

B1 :=





(x, y) ∈ R2

∣∣∣∣∣∣∣




x+
√

37y = 0

x > 0





and

C2 := {(x, y) ∈ R2 | {x+
√

37y > 0}

C1 :=





(x, y) ∈ R2

∣∣∣∣∣∣∣




x+
√

37y = 0

y > 0




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Some monomial orderings of (N,+,0)2
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Note that SB ∩B1 = ∅ = SC ∩ C1

3 Module orderings

We are interested in the orderings on a finitely generated, free module over a polynomial
ring.

Definition 15 Let M be a free R module, {ei}i∈S its unitary vectors and τ ∈ T n; then

(i) the set MT (M) := {t ei | t ∈ T n} is the set of the module-terms of M ;
(ii) let a, b ∈ T n and m, n ∈ MT (M). Then, a Riquier ordering µ is a total ordering

on MT (M)such that

a >τ b⇒ am >µ bm ,m >µ n⇒ am >µ an and m ei > n ei ⇒ m ej > n ej ∀ j ∈ S

If a e1 > e1 ∀ a ∈ TO(T n), then µ is a Riquier term-ordering.

Examples of Riquier orderings are given in examples 21,22,23

Example 16 Let R := k[x]2 and µ the total module ordering on MT (R) defined by

xa ei >µ x
b ej ⇔





i = j = 1 and a > b

i = j = 2 and a < b

i > j

It is easy to see that µ is a total ordering on R2, but µ is not a Riquier ordering, since
x e1 >µ 1 e1 but x e2 <µ 1 e2.

Theorem 17 (Classification theorem) Let τ be an ordering on T n and M be a free,
finitely generated R-module of rank r. Let µ be a Riquier module ordering on MT (M).

7
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Some monomial orderings of (N,+,0)2
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on MT (M)such that

a >τ b⇒ am >µ bm ,m >µ n⇒ am >µ an and m ei > n ei ⇒ m ej > n ej ∀ j ∈ S

If a e1 > e1 ∀ a ∈ TO(T n), then µ is a Riquier term-ordering.

Examples of Riquier orderings are given in examples 21,22,23

Example 16 Let R := k[x]2 and µ the total module ordering on MT (R) defined by

xa ei >µ x
b ej ⇔





i = j = 1 and a > b

i = j = 2 and a < b

i > j

It is easy to see that µ is a total ordering on R2, but µ is not a Riquier ordering, since
x e1 >µ 1 e1 but x e2 <µ 1 e2.

Theorem 17 (Classification theorem) Let τ be an ordering on T n and M be a free,
finitely generated R-module of rank r. Let µ be a Riquier module ordering on MT (M).
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Two trivial ways to introduce communication
ideals

1 All upsets of admisible monomial orderings of (Nk ,+,0) are
communication ideals.
For k = 2, communications ideals coincide exactly with
(principal) upsets of admissible monomial orderings.

2 The inverse image of a communication ideal under a
monoid homomorphism is also a communication ideal.
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Revisiting previous Token Configurations

IMTL-chain IMTL-chain Nothing IMTL-chain

IMTL-chain IMTL-chain IMTL-chain IMTL-chain
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Application
The equation

x1x4x7 ∧ x2x5x8 ∧ x3x6x9 ≤ x1x2x3 ∨ x4x5x6 ∨ x7x8x9

is valid in BL, but fails in MTL.

Alternative presentation of the equation:

x̄ x̂ x̃ ∧ ȳ ŷ ỹ ∧ z̄ẑz̃ ≤ x̄ ȳ z̄ ∨ x̂ ŷ ẑ ∨ x̃ ỹ z̃

valid in BL

[Proof Sketch: 1) It holds in the 1-generated
infinite product algebra (by cancellativity), 2) It holds in finite
MV-chains, 3) It holds in all BL-algebras]

fails in MTL

[Proof Sketch: explicit 36-element chain E ]
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valid in BL [Proof Sketch: 1) It holds in the 1-generated
infinite product algebra (by cancellativity), 2) It holds in finite
MV-chains, 3) It holds in all BL-algebras]
fails in MTL

[Proof Sketch: explicit 36-element chain E ]

Félix Bou (IIIA - CSIC) Finite MTL-chains May 8th, 2015, Delft : 36



Application
The equation

x1x4x7 ∧ x2x5x8 ∧ x3x6x9 ≤ x1x2x3 ∨ x4x5x6 ∨ x7x8x9

is valid in BL, but fails in MTL.

Alternative presentation of the equation:
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#FUSION
fus_table = [
# 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35 |
#----------------------------------------------------------------------------------------------------------------|---
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # | 0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], # | 1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2], # | 2
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3], # | 3
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 3, 4], # | 4
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 5, 5, 5], # | 5
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 5, 5, 5, 6], # | 6
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 5, 5, 7, 7, 7], # | 7
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 3, 5, 5, 7, 7, 8], # | 8
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 4, 5, 6, 7, 7, 9], # | 9
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,10,10,10,10,10,10,10,10,10,10], # | 10
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,10,10,10,10,10,10,10,10,10,11], # | 11
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3,10,10,10,10,10,10,10,12,12,12], # | 12
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 5,10,10,10,10,10,13,13,13,13,13], # | 13
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 5, 5,10,10,10,10,10,13,13,13,13,14], # | 14
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 5, 5, 5,10,10,10,10,10,13,13,13,14,15], # | 15
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 5, 7, 7,10,10,10,12,12,13,13,16,16,16], # | 16
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 3, 3, 5, 7, 8,10,10,11,12,12,13,13,16,16,17], # | 17
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18], # | 18
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,19], # | 19
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,20,20,20], # | 20
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 3,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,20,20,21], # | 21
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 3,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,20,21,22], # | 22
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 5, 5, 5,18,18,18,18,18,18,18,18,18,18,18,18,18,23,23,23,23,23], # | 23
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 5, 5, 7, 7,18,18,18,18,18,18,18,18,18,18,18,20,20,23,23,24,24,24], # | 24
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 5, 5, 5, 7, 8,18,18,18,18,18,18,18,18,18,18,19,20,20,23,23,24,24,25], # | 25
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,10,10,10,10,10,10,10,10,18,18,18,18,18,18,18,18,26,26,26,26,26,26,26,26,26,26], # | 26
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,10,10,10,10,10,10,10,10,18,18,18,18,18,18,18,18,26,26,26,26,26,26,26,26,26,27], # | 27
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,10,10,10,10,10,10,10,11,18,18,18,18,18,18,18,19,26,26,26,26,26,26,26,26,26,28], # | 28
[ 0, 0, 0, 0, 0, 0, 0, 3, 3, 3,10,10,10,10,10,10,12,12,18,18,18,18,18,18,20,20,26,26,26,26,26,26,26,29,29,29], # | 29
[ 0, 0, 0, 0, 0, 0, 1, 3, 3, 4,10,10,10,10,10,10,12,12,18,18,18,18,18,18,20,20,26,26,26,26,26,26,27,29,29,30], # | 30
[ 0, 0, 0, 0, 0, 5, 5, 5, 5, 5,10,10,10,13,13,13,13,13,18,18,18,18,18,23,23,23,26,26,26,26,26,31,31,31,31,31], # | 31
[ 0, 0, 0, 0, 1, 5, 5, 5, 5, 6,10,10,10,13,13,13,13,13,18,18,18,18,18,23,23,23,26,26,26,26,27,31,31,31,31,32], # | 32
[ 0, 0, 0, 3, 3, 5, 5, 7, 7, 7,10,10,12,13,13,13,16,16,18,18,20,20,20,23,24,24,26,26,26,29,29,31,31,33,33,33], # | 33
[ 0, 0, 1, 3, 3, 5, 5, 7, 7, 7,10,10,12,13,13,14,16,16,18,18,20,20,21,23,24,24,26,26,26,29,29,31,31,33,33,34], # | 34
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35], # | 35

]
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Exotic MTL-chain:

there is some `-monoid equation which
holds in all BL-algebras and fails in this chain
Dimension:

number of generators using ·,∨,∧,0,e (i.e.,
number of monomial irreducible elements)

Claim
The algebra E is an exotic MTL-chain of dimension 9; the set of
irreducible elements is {9,15,17,22,25,28,30,32,34}.

Counterexample: Consider the interpretation

〈e(x1),e(x2), . . . ,e(x9)〉 = 〈9,28,34,30,25,15,32,17,22〉.

This is the unique counterexample up to symmetry

(and so
there are 36 counterexamples)
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#RESIDUUM
res_table = [
# 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35 |
#----------------------------------------------------------------------------------------------------------------|---
[35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 0
[34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 1
[33,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 2
[32,32,32,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 3
[31,32,32,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 4
[30,30,30,30,30,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 5
[29,30,30,30,30,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 6
[28,28,28,30,30,32,32,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 7
[27,28,28,30,30,32,32,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 8
[26,28,28,29,30,31,32,34,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 9
[25,25,25,25,25,25,25,25,25,25,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 10
[24,25,25,25,25,25,25,25,25,25,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 11
[23,23,23,25,25,25,25,25,25,25,32,32,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 12
[22,22,22,22,22,25,25,25,25,25,30,30,30,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 13
[21,22,22,22,22,25,25,25,25,25,30,30,30,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 14
[20,21,22,22,22,25,25,25,25,25,30,30,30,33,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 15
[19,19,19,22,22,23,23,25,25,25,28,28,30,32,32,32,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 16
[18,19,19,22,22,23,23,24,25,25,27,28,30,32,32,32,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 17
[17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 18
[16,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 19
[15,15,15,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,32,32,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 20
[14,15,15,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,32,32,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 21
[13,14,15,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,32,32,33,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 22
[12,12,12,12,12,17,17,17,17,17,17,17,17,17,17,17,17,17,30,30,30,30,30,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 23
[11,11,11,12,12,15,15,17,17,17,17,17,17,17,17,17,17,17,28,28,30,30,30,32,35,35,35,35,35,35,35,35,35,35,35,35], # | 24
[10,11,11,12,12,15,15,16,17,17,17,17,17,17,17,17,17,17,27,28,30,30,30,32,34,35,35,35,35,35,35,35,35,35,35,35], # | 25
[ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,17,17,17,17,17,17,17,17,25,25,25,25,25,25,25,25,35,35,35,35,35,35,35,35,35,35], # | 26
[ 8, 9, 9, 9, 9, 9, 9, 9, 9, 9,17,17,17,17,17,17,17,17,25,25,25,25,25,25,25,25,34,35,35,35,35,35,35,35,35,35], # | 27
[ 7, 9, 9, 9, 9, 9, 9, 9, 9, 9,16,17,17,17,17,17,17,17,24,25,25,25,25,25,25,25,34,34,35,35,35,35,35,35,35,35], # | 28
[ 6, 6, 6, 9, 9, 9, 9, 9, 9, 9,15,15,17,17,17,17,17,17,23,23,25,25,25,25,25,25,32,32,32,35,35,35,35,35,35,35], # | 29
[ 5, 6, 6, 8, 9, 9, 9, 9, 9, 9,15,15,17,17,17,17,17,17,23,23,25,25,25,25,25,25,31,32,32,34,35,35,35,35,35,35], # | 30
[ 4, 4, 4, 4, 4, 9, 9, 9, 9, 9,12,12,12,17,17,17,17,17,22,22,22,22,22,25,25,25,30,30,30,30,30,35,35,35,35,35], # | 31
[ 3, 4, 4, 4, 4, 8, 9, 9, 9, 9,12,12,12,17,17,17,17,17,22,22,22,22,22,25,25,25,29,30,30,30,30,34,35,35,35,35], # | 32
[ 2, 2, 2, 4, 4, 6, 6, 9, 9, 9,11,11,12,15,15,15,17,17,19,19,22,22,22,23,25,25,28,28,28,30,30,32,32,35,35,35], # | 33
[ 1, 2, 2, 4, 4, 6, 6, 9, 9, 9,11,11,12,14,15,15,17,17,19,19,21,22,22,23,25,25,28,28,28,30,30,32,32,34,35,35], # | 34
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35], # | 35

]
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#ADDITION
add_table = [
# 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35 |
#----------------------------------------------------------------------------------------------------------------|---
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35], # | 0
[ 1, 2, 2, 4, 4, 6, 6, 9, 9, 9,11,11,12,14,15,15,17,17,19,19,21,22,22,23,25,25,28,28,28,30,30,32,32,34,35,35], # | 1
[ 2, 2, 2, 4, 4, 6, 6, 9, 9, 9,11,11,12,15,15,15,17,17,19,19,22,22,22,23,25,25,28,28,28,30,30,32,32,35,35,35], # | 2
[ 3, 4, 4, 4, 4, 8, 9, 9, 9, 9,12,12,12,17,17,17,17,17,22,22,22,22,22,25,25,25,29,30,30,30,30,34,35,35,35,35], # | 3
[ 4, 4, 4, 4, 4, 9, 9, 9, 9, 9,12,12,12,17,17,17,17,17,22,22,22,22,22,25,25,25,30,30,30,30,30,35,35,35,35,35], # | 4
[ 5, 6, 6, 8, 9, 9, 9, 9, 9, 9,15,15,17,17,17,17,17,17,23,23,25,25,25,25,25,25,31,32,32,34,35,35,35,35,35,35], # | 5
[ 6, 6, 6, 9, 9, 9, 9, 9, 9, 9,15,15,17,17,17,17,17,17,23,23,25,25,25,25,25,25,32,32,32,35,35,35,35,35,35,35], # | 6
[ 7, 9, 9, 9, 9, 9, 9, 9, 9, 9,16,17,17,17,17,17,17,17,24,25,25,25,25,25,25,25,34,34,35,35,35,35,35,35,35,35], # | 7
[ 8, 9, 9, 9, 9, 9, 9, 9, 9, 9,17,17,17,17,17,17,17,17,25,25,25,25,25,25,25,25,34,35,35,35,35,35,35,35,35,35], # | 8
[ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,17,17,17,17,17,17,17,17,25,25,25,25,25,25,25,25,35,35,35,35,35,35,35,35,35,35], # | 9
[10,11,11,12,12,15,15,16,17,17,17,17,17,17,17,17,17,17,27,28,30,30,30,32,34,35,35,35,35,35,35,35,35,35,35,35], # | 10
[11,11,11,12,12,15,15,17,17,17,17,17,17,17,17,17,17,17,28,28,30,30,30,32,35,35,35,35,35,35,35,35,35,35,35,35], # | 11
[12,12,12,12,12,17,17,17,17,17,17,17,17,17,17,17,17,17,30,30,30,30,30,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 12
[13,14,15,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,32,32,33,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 13
[14,15,15,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,32,32,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 14
[15,15,15,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,32,32,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 15
[16,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 16
[17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 17
[18,19,19,22,22,23,23,24,25,25,27,28,30,32,32,32,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 18
[19,19,19,22,22,23,23,25,25,25,28,28,30,32,32,32,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 19
[20,21,22,22,22,25,25,25,25,25,30,30,30,33,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 20
[21,22,22,22,22,25,25,25,25,25,30,30,30,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 21
[22,22,22,22,22,25,25,25,25,25,30,30,30,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 22
[23,23,23,25,25,25,25,25,25,25,32,32,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 23
[24,25,25,25,25,25,25,25,25,25,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 24
[25,25,25,25,25,25,25,25,25,25,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 25
[26,28,28,29,30,31,32,34,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 26
[27,28,28,30,30,32,32,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 27
[28,28,28,30,30,32,32,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 28
[29,30,30,30,30,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 29
[30,30,30,30,30,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 30
[31,32,32,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 31
[32,32,32,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 32
[33,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 33
[34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 34
[35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35], # | 35

]
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How to obtain the previous exotic chain E?

Remember we want to falsify the equation

(x1 + x4 + x7) ∨ (x2 + x5 + x8) ∨ (x3 + x6 + x9) ≥
≥ (x1 + x2 + x3) ∧ (x4 + x5 + x6) ∧ (x7 + x8 + x9)

There is a communication ideal I of (N9,+,0) such that
e1 + e4 + e7 6∈ I, e2 + e5 + e8 6∈ I, e3 + e6 + e9 6∈ I

e1 + e2 + e3 ∈ I, e4 + e5 + e6 ∈ I, e7 + e8 + e9 ∈ I
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h : (N,+,0)9 −→ (Z,+,0)5 is the monoid homomorphism

h(a1,a2, . . . ,a9) :=




1 0 0 0 0 1 0 1 0
0 1 0 0 0 1 1 0 0
0 0 0 1 0 −1 −1 0 1
0 0 1 0 0 1 1 1 −1
0 0 0 0 1 −1 0 −1 1







a1

a2

a3

a4

a5

a6

a7

a8

a9




h is length-preserving and

(1,1,0,1,0) =

h(e1 + e2 + e3) = h(e4 + e5 + e6) = h(e7 + e8 + e9) =
h(e1 + e4 + e7) = h(e2 + e5 + e8) = h(e3 + e6 + e9) =
I ′ := {a ∈ N9 : (1,1,0,1,1) �lex h(a)} is a commun. ideal
I := I ′ ∪ {e1 + e2 + e3,e4 + e5 + e6,e7 + e8 + e9} (small
perturbation),
Claim: I is a communication ideal of (N,+,0)9 satisfying our
requirements.
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Additional Remarks

The variety generated by `-monoid reducts of BL-algebras
has an explicit axiomatization which requires an infinite
number of axioms (essentially [Repnitskii, 1983-1984])

Similar ideas allow to characterize involutive uninorm
chains.
Open: Is there some exotic IMTL chain of dimension less
than 9? What is the minimal dimension of them? (i.e., what
is the minimum number of variables appearing in a
`-monoid equation that distinguishes MTL from BL?)
Open: Is there some “very expressive” language that
cannot distinguish MTL from BL? What about ·,∨,0,1?
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Can these ideas help in . . . ?

What is the computational complexity problem of MTL (or of
the `-monoid fragment)?

Can we adapt canonical formulas (Nick-Nick-Luca) to the
`-monoid fragment? Can we give an algorithm that from a
finite IMTL-chain produces an explicit axiomatization of its
`-monoid variety?

I Cardinal ≤ n + 1 can be captured with the equation

x1 ∧
∧

2≤i≤j≤n
i+j=n+2

(xi · xj) ≤
∨

1≤i≤j≤n
i+j=n+1

(xi · xj)

I involutive MTL-chains are “locally finite”.
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Summary

a better understanding of the `-monoid fragment of
MTL-algebras will enlighten us with a better understanding
of the full language (including residuum).

the monoidal operation in MTL chains can be recovered
from involutive ones.
IMTL chains correspond to communication ideals.
upsets of admissible monomial orderings provide an easy
method to obtain communication ideals.
an small perturbation method has been used to obtain a
quite pathological example of communication ideal (its
associated ITML-chain is exotic).
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