A Computational Approach to Finite MTL-chains

Félix Bou

Artificial Intelligence Research Institute (IIIA - CSIC) Barcelona (Spain) fbou@iiia.csic.es

May 8th, 2015 ALCOP 2015 (Delft)

Outline

(9) Preliminaries
(2) Main Problem to Consider
(3) Reducing MTL-chains to involutive ones

4 Representation Theorem for involutive MTL-chains
(5) An Application: Exotic MTL-chains

6 Final Remarks

A Really Quick Overview of the Framework

- language: $\cdot, \vee, \wedge, 0, e, \rightarrow$
- MTL: $\quad \mathrm{FL}_{e w}+\quad(x \rightarrow y) \vee(y \rightarrow x)=e$ (prelinearity)
- BL: MTL $+x \wedge y=x \cdot(x \rightarrow y)$
- IMTL: MTL + $(x \rightarrow 0) \rightarrow 0=x$
- IBL (MV): $\mathrm{BL}+(x \rightarrow 0) \rightarrow 0=x$

A Really Quick Overview of the Framework

- language: $\cdot, \vee, \wedge, 0, e, \rightarrow$
- MTL: $\quad \mathrm{FL}_{e w}+\quad(x \rightarrow y) \vee(y \rightarrow x)=e$ (prelinearity)
- BL: MTL $+x \wedge y=x \cdot(x \rightarrow y)$
- IMTL: MTL $+\quad(x \rightarrow 0) \rightarrow 0=x$
- IBL (MV): $\mathrm{BL}+(x \rightarrow 0) \rightarrow 0=x$
- ℓ-monoid (positive) language: $\cdot, \vee, \wedge, 0, e$

What are the ℓ-reducts of MTL-chains?

- \vee, \wedge is a linear partial order with bounds 0 and e,
- . is associative with neutral element e (i.e., monoid),
- . is commutative,
- . is monotone with respect to the partial order.

What are the ℓ-reducts of MTL-chains?

- \vee, \wedge is a linear partial order with bounds 0 and e,
- . is associative with neutral element e (i.e., monoid),
- . is commutative,
- . is monotone with respect to the partial order.

When finite, w.l.o.g., it is enough to give the monoidal operation (under the assumption that the order is $0<1<2 \ldots<n$).

Are these ℓ-reducts of MTL-chains?

	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	0	2	2
3	0	0	2	3	3
4	0	1	2	3	4

	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	1	2	2
3	0	0	2	3	3
4	0	1	2	3	4

Are these ℓ-reducts of MTL-chains?

	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	0	2	2
3	0	0	2	3	3
4	0	1	2	3	4

	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	1	2	2
3	0	0	2	3	3
4	0	1	2	3	4

Associativity is the only non-trivial property to check.

Some "standard" algebraic models

- "Standard" means the lattice reduct is $[0,1]$.

Some "standard" algebraic models

- "Standard" means the lattice reduct is $[0,1]$.
- MTL and BL are standard complete.

Some "standard" algebraic models

- "Standard" means the lattice reduct is [0, 1].
- MTL and BL are standard complete.
- Continuous (t-norms):

Some "standard" algebraic models

- "Standard" means the lattice reduct is $[0,1]$.
- MTL and BL are standard complete.
- Continuous (t-norms):
- $x \cdot y:=x \wedge y$ (Gödel)

Some "standard" algebraic models

- "Standard" means the lattice reduct is $[0,1]$.
- MTL and BL are standard complete.
- Continuous (t-norms):
- $x \cdot y:=x \wedge y$ (Gödel)
- $x \cdot y:=x \cdot y$ (Product)

Some "standard" algebraic models

- "Standard" means the lattice reduct is $[0,1]$.
- MTL and BL are standard complete.
- Continuous (t-norms):
- $x \cdot y:=x \wedge y$ (Gödel)
- $x \cdot y:=x \cdot y$ (Product)
- $x \cdot y:=\max \{0, x+y-1\}$ (Łukasiewicz)

Some "standard" algebraic models

- "Standard" means the lattice reduct is $[0,1]$.
- MTL and BL are standard complete.
- Continuous (t-norms):
- $x \cdot y:=x \wedge y$ (Gödel)
- $x \cdot y:=x \cdot y$ (Product)
- $x \cdot y:=\max \{0, x+y-1\}$ (Łukasiewicz)
- ordinal sums of the previous (glue 2 or more using the meet for the monoidal operator between different components)

Some "standard" algebraic models

- "Standard" means the lattice reduct is $[0,1]$.
- MTL and BL are standard complete.
- Continuous (t-norms):
- $x \cdot y:=x \wedge y$ (Gödel)
- $x \cdot y:=x \cdot y$ (Product)
- $x \cdot y:=\max \{0, x+y-1\}$ (Łukasiewicz)
- ordinal sums of the previous (glue 2 or more using the meet for the monoidal operator between different components)
- Left-Continuous (t-norms):

Some "standard" algebraic models

- "Standard" means the lattice reduct is $[0,1]$.
- MTL and BL are standard complete.
- Continuous (t-norms):
- $x \cdot y:=x \wedge y$ (Gödel)
- $x \cdot y:=x \cdot y$ (Product)
- $x \cdot y:=\max \{0, x+y-1\}$ (Łukasiewicz)
- ordinal sums of the previous (glue 2 or more using the meet for the monoidal operator between different components)
- Left-Continuous (t-norms):

$$
\text { - } x \cdot y:= \begin{cases}x \wedge y & \text { if } x+y>1 \\ 0 & \text { otherwise } .\end{cases}
$$

(Nilpotent Minimum)

Some "standard" algebraic models

- "Standard" means the lattice reduct is $[0,1]$.
- MTL and BL are standard complete.
- Continuous (t-norms):
- $x \cdot y:=x \wedge y$ (Gödel)
- $x \cdot y:=x \cdot y$ (Product)
- $x \cdot y:=\max \{0, x+y-1\}$ (Łukasiewicz)
- ordinal sums of the previous (glue 2 or more using the meet for the monoidal operator between different components)
- Left-Continuous (t-norms):
- $x \cdot y:= \begin{cases}x \wedge y & \text { if } x+y>1 \\ 0 & \text { otherwise . }\end{cases}$
(Nilpotent Minimum)

Main Problem to Consider

Is there some ℓ-monoid equation that distinguishes MTL from BL?

Main Problem to Consider

Is there some ℓ-monoid equation that distinguishes MTL from BL?

An Embarrassing Question

Is the equation

$$
x_{1} x_{4} x_{7} \wedge x_{2} x_{5} x_{8} \wedge x_{3} x_{6} x_{9} \leq x_{1} x_{2} x_{3} \vee x_{4} x_{5} x_{6} \vee x_{7} x_{8} x_{9}
$$

valid in MTL?

Main Problem to Consider

Is there some ℓ-monoid equation that distinguishes MTL from BL?

- No?
- Yes?

An Embarrassing Question

Is the equation

$$
x_{1} x_{4} x_{7} \wedge x_{2} x_{5} x_{8} \wedge x_{3} x_{6} x_{9} \leq x_{1} x_{2} x_{3} \vee x_{4} x_{5} x_{6} \vee x_{7} x_{8} x_{9}
$$

valid in MTL?

Main Problem to Consider

Is there some ℓ-monoid equation that distinguishes MTL from BL?

- No? (by HSP Theorem we would get a representation description for MTL-algebras)
- Yes?

An Embarrassing Question

Is the equation

$$
x_{1} x_{4} x_{7} \wedge x_{2} x_{5} x_{8} \wedge x_{3} x_{6} x_{9} \leq x_{1} x_{2} x_{3} \vee x_{4} x_{5} x_{6} \vee x_{7} x_{8} x_{9}
$$ valid in MTL?

Main Problem to Consider

Is there some ℓ-monoid equation that distinguishes MTL from BL?

- No? (by HSP Theorem we would get a representation description for MTL-algebras)
- Yes? (requires a better understanding of (finite) MTL-chains)

An Embarrassing Question

Is the equation

$$
x_{1} x_{4} x_{7} \wedge x_{2} x_{5} x_{8} \wedge x_{3} x_{6} x_{9} \leq x_{1} x_{2} x_{3} \vee x_{4} x_{5} x_{6} \vee x_{7} x_{8} x_{9}
$$ valid in MTL?

Some Remarks about the ℓ-monoid fragment

- The ℓ-monoid reduct of an MTL-algebra determines the MTL-algebra.

Some Remarks about the ℓ-monoid fragment

- The ℓ-monoid reduct of an MTL-algebra determines the MTL-algebra.
- Validity of ℓ-monoid equations is preserved under ordinal sums.

Some Remarks about the ℓ-monoid fragment

- The ℓ-monoid reduct of an MTL-algebra determines the MTL-algebra.
- Validity of ℓ-monoid equations is preserved under ordinal sums.
- In chains, "Rees congruences" are trivial examples of ℓ-monoid congruences.

Some Remarks about the ℓ-monoid fragment

- The ℓ-monoid reduct of an MTL-algebra determines the MTL-algebra.
- Validity of ℓ-monoid equations is preserved under ordinal sums.
- In chains, "Rees congruences" are trivial examples of ℓ-monoid congruences.
- One has to be careful about not using the powerful machinery developed when \rightarrow is present:

Some Remarks about the ℓ-monoid fragment

- The ℓ-monoid reduct of an MTL-algebra determines the MTL-algebra.
- Validity of ℓ-monoid equations is preserved under ordinal sums.
- In chains, "Rees congruences" are trivial examples of ℓ-monoid congruences.
- One has to be careful about not using the powerful machinery developed when \rightarrow is present:
- The ℓ-monoid reduct cannot distinguish between Gödel algebras and Boolean algebras.

Some Remarks about the ℓ-monoid fragment

- The ℓ-monoid reduct of an MTL-algebra determines the MTL-algebra.
- Validity of ℓ-monoid equations is preserved under ordinal sums.
- In chains, "Rees congruences" are trivial examples of ℓ-monoid congruences.
- One has to be careful about not using the powerful machinery developed when \rightarrow is present:
- The ℓ-monoid reduct cannot distinguish between Gödel algebras and Boolean algebras.
- All continuous t-norms different than Gödel generate the same variety in the ℓ-monoid reduct.

Some Remarks about the ℓ-monoid fragment

- The ℓ-monoid reduct of an MTL-algebra determines the MTL-algebra.
- Validity of ℓ-monoid equations is preserved under ordinal sums.
- In chains, "Rees congruences" are trivial examples of ℓ-monoid congruences.
- One has to be careful about not using the powerful machinery developed when \rightarrow is present:
- The ℓ-monoid reduct cannot distinguish between Gödel algebras and Boolean algebras.
- All continuous t-norms different than Gödel generate the same variety in the ℓ-monoid reduct.
- ...

Advertising slogan

Why considering the ℓ-monoid reduct?

Advertising slogan

Why considering the ℓ-monoid reduct?

(1) a better understanding of the ℓ-monoid fragment of MTL-algebras will enlighten us with a better understanding of the full language (including residuum).

Advertising slogan

Why considering the ℓ-monoid reduct?

(1) a better understanding of the ℓ-monoid fragment of MTL-algebras will enlighten us with a better understanding of the full language (including residuum).
(2) in some contexts it is easier to deal with the ℓ-monoid fragment than with the full language.

"Balance" between Pros and Cons

- full language $(\cdot, \vee, \wedge, 0, e, \rightarrow)$
- Pro:
- Con:
- ℓ-monoid $(\cdot, \vee, \wedge, 0, e)$
- Pro:
- Con:

"Balance" between Pros and Cons

- full language $(\cdot, \vee, \wedge, 0, e, \rightarrow)$
- Pro: Congruences are nicely characterized
- Con:
- ℓ-monoid $(\cdot, \vee, \wedge, 0, e)$
- Pro:
- Con:

"Balance" between Pros and Cons

- full language $(\cdot, \vee, \wedge, 0, e, \rightarrow)$
- Pro: Congruences are nicely characterized
- Con: Free algebra is difficult
- ℓ-monoid $(\cdot, \vee, \wedge, 0, e)$
- Pro:
- Con:

"Balance" between Pros and Cons

- full language $(\cdot, \vee, \wedge, 0, e, \rightarrow)$
- Pro: Congruences are nicely characterized
- Con: Free algebra is difficult
- ℓ-monoid $(\cdot, \vee, \wedge, 0, e)$
- Pro: Congruences are difficult
- Con:

"Balance" between Pros and Cons

- full language $(\cdot, \vee, \wedge, 0, e, \rightarrow)$
- Pro: Congruences are nicely characterized
- Con: Free algebra is difficult
- ℓ-monoid $(\cdot, \vee, \wedge, 0, e)$
- Pro: Congruences are difficult
- Con: Free abelian monoid is easy

"Balance" between Pros and Cons

- full language $(\cdot, \vee, \wedge, 0, e, \rightarrow)$
- Pro: Congruences are nicely characterized
- Con: Free algebra is difficult
- ℓ-monoid $(\cdot, \vee, \wedge, 0, e)$
- Pro: Congruences are difficult
- Con: Free abelian monoid is easy, it is $\bigoplus_{i \in \kappa}(\mathbb{N},+, 0)$

Semilinear ℓ-monoids: Variety generated by ℓ-monoid reducts of MTL-algebras

Semilinear ℓ-monoids: Variety generated by ℓ-monoid reducts of MTL-algebras

$$
\begin{aligned}
x \wedge y & =y \wedge x \\
x \wedge(y \wedge z) & =(x \wedge y) \wedge z \\
x \wedge(x \vee y) & =x \\
x \wedge e & =x
\end{aligned}
$$

$$
\begin{aligned}
x \vee y & =y \vee x \\
x \vee(y \vee z) & =(x \vee y) \vee z \\
x \vee(x \wedge y) & =x \\
x \vee 0 & =x
\end{aligned}
$$

Semilinear ℓ-monoids: Variety generated by ℓ-monoid reducts of MTL-algebras

$$
\begin{aligned}
& x \wedge y=y \wedge x \\
& x \wedge(y \wedge z)=(x \wedge y) \wedge z \\
& x \vee(y \vee z)=(x \vee y) \vee z \\
& x \wedge(x \vee y)=x \\
& x \wedge e=x \\
& x \vee(x \wedge y)=x \\
& x \vee 0=x \\
& x \cdot(y \cdot z)=(x \cdot y) \cdot z \\
& x \cdot y=y \cdot x \\
& x \cdot e=x \\
& x \cdot 0=0
\end{aligned}
$$

Semilinear ℓ-monoids: Variety generated by ℓ-monoid reducts of MTL-algebras

$$
\begin{aligned}
& x \wedge y=y \wedge x \\
& x \wedge(y \wedge z)=(x \wedge y) \wedge z \\
& x \wedge(x \vee y)=x \\
& x \wedge e=x \\
& x \cdot(y \cdot z)=(x \cdot y) \cdot z \\
& x \cdot y=y \cdot x \\
& x \cdot e=x \\
& x \cdot 0=0 \\
& x \cdot(y \vee z)=(x \cdot y) \vee(x \cdot z) \quad x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z) \\
& x \cdot(y \wedge z)=(x \cdot y) \wedge(x \cdot z)
\end{aligned}
$$

When $\mathbf{A}=(A, \cdot, \vee, \wedge, 0, e)$ is subdirectly irreducible?

(1) \mathbf{A} is a chain
(2) A has a coatom
(3) \mathbf{A} is involutive

When $\mathbf{A}=(A, \cdot, \vee, \wedge, 0, e)$ is subdirectly irreducible?

(1) A is a chain
(2) A has a coatom
(3) \mathbf{A} is involutive

$$
\forall x(x \approx \neg \neg x)
$$

When $\mathbf{A}=(A, \cdot, \vee, \wedge, 0, e)$ is subdirectly irreducible?

(1) \mathbf{A} is a chain
(2) A has a coatom
(3) A is involutive

$$
\begin{gathered}
\forall x(x \approx \neg \neg x) \\
\forall x y(\neg x=\neg y \Rightarrow x=y)
\end{gathered}
$$

When $\mathbf{A}=(A, \cdot, \vee, \wedge, 0, e)$ is subdirectly irreducible?

(1) A is a chain
(2) A has a coatom
(3) A is involutive

$$
\begin{gathered}
\forall x(x \approx \neg \neg x) \\
\forall x y(\neg x=\neg y \Rightarrow x=y) \\
\forall x y(\forall z(x \cdot z=0 \Leftrightarrow y \cdot z=0) \Rightarrow x=y)
\end{gathered}
$$

When $\mathbf{A}=(A, \cdot, \vee, \wedge, 0, e)$ is subdirectly irreducible?

(1) A is a chain
(2) A has a coatom
(3) A is involutive

$$
\begin{gathered}
\forall x(x \approx \neg \neg x) \\
\forall x y(\neg x=\neg y \Rightarrow x=y) \\
\forall x y(\forall z(x \cdot z=0 \Leftrightarrow y \cdot z=0) \Rightarrow x=y) \\
\forall x y(x<y \Rightarrow y \cdot \neg x \neq 0)
\end{gathered}
$$

When $\mathbf{A}=(A, \cdot, \vee, \wedge, 0, e)$ is subdirectly irreducible?

(1) A is a chain
(2) \mathbf{A} has a coatom
(3) A is involutive

$$
\begin{gathered}
\forall x(x \approx \neg \neg x) \\
\forall x y(\neg x=\neg y \Rightarrow x=y) \\
\forall x y(\forall z(x \cdot z=0 \Leftrightarrow y \cdot z=0) \Rightarrow x=y) \\
\forall x y(x<y \Rightarrow y \cdot \neg x \neq 0) \\
\forall x y(x<y \Rightarrow \exists z(x \cdot z=0 \& y \cdot z \neq 0))
\end{gathered}
$$

Involutive MTL-algebras

- The residuum operation can be replaced, in the signature, with negation because the equation

$$
x \rightarrow y=\neg(x \cdot \neg y)
$$

holds.

Involutive MTL-algebras

- The residuum operation can be replaced, in the signature, with negation because the equation

$$
x \rightarrow y=\neg(x \cdot \neg y)
$$

holds.

- Duality: if in an equation which is valid in an IMTL-chain \boldsymbol{A} and which only uses the symbols $\cdot,+, \neg, \wedge, \vee, 0, e$ we simultaneously interchange

$$
\cdot \text { and }+, \quad \wedge \text { and } \vee, \quad \leq \text { and } \geq, \quad 0 \text { and } e,
$$

then the resultant equation is also valid in the same \boldsymbol{A}.

Remark (Duality)

For every IMTL-algebra \boldsymbol{A}, the following two conditions are equivalent.

- The equation
$x_{1} x_{4} x_{7} \wedge x_{2} x_{5} x_{8} \wedge x_{3} x_{6} x_{9} \leq x_{1} x_{2} x_{3} \vee x_{4} x_{5} x_{6} \vee x_{7} x_{8} x_{9}$
is valid in \boldsymbol{A}.
- The equation

$$
\begin{aligned}
& \left(x_{1}+x_{4}+x_{7}\right) \vee\left(x_{2}+x_{5}+x_{8}\right) \vee\left(x_{3}+x_{6}+x_{9}\right) \geq \\
& \geq\left(x_{1}+x_{2}+x_{3}\right) \wedge\left(x_{4}+x_{5}+x_{6}\right) \wedge\left(x_{7}+x_{8}+x_{9}\right)
\end{aligned}
$$

is valid in \boldsymbol{A}.

How many-chains of cardinality n ?

	1	2	3	4	5	6	7	8	9
$B L$	1	1	2	2^{2}	2^{3}	2^{4}	2^{5}	2^{6}	2^{7}

How many-chains of cardinality n ?

	1	2	3	4	5	6	7	8	9
BL	1	1	2	2^{2}	2^{3}	2^{4}	2^{5}	2^{6}	2^{7}
IBL (MV)	1	1	1	1	1	1	1	1	1

How many-chains of cardinality n ?

	1	2	3	4	5	6	7	8	9
BL	1	1	2	2^{2}	2^{3}	2^{4}	2^{5}	2^{6}	2^{7}
$\mathrm{IBL}(\mathrm{MV})$	1	1	1	1	1	1	1	1	1
MTL	1	1	2	6	22	94	451	2386	13775

A030453 Number of linearly ordered Abelian monoids of size n (semi-groups with 1 greatest element of the corresponding chain as neutral element); triangular norms on an n-chain.

1, 1, 2, 6. 22, 94, 451, 2386, 13775, B6417, 590489, 4446029, 37869449, 382549464 (list graph; refs; listen; history: text internal format)
OFFSET $\quad 1,3$
LINKS Table of $n, a(n)$ for $n=1, \ldots 14$. Bernard de Baets, Home page
Index entries for sequences related to monoids
CROSSREFS Sequence in context: $\frac{A 150274}{} \frac{A 109317}{A 109153}$ * A001861 $\frac{A 049526}{} \frac{A 1 B 7251}{}$
KEYWORD Adj
nonn.hard.nice
AUTHOR Bernard De Baets (Bernard.DeBaets(AT)rug.ac.be)
Status
approved

How many-chains of cardinality n ?

	1	2	3	4	5	6	7	8	9
BL	1	1	2	2^{2}	2^{3}	2^{4}	2^{5}	2^{6}	2^{7}
IBL (MV)	1	1	1	1	1	1	1	1	1
MTL	1	1	2	6	22	94	451	2386	13775
IMTL	1	1	1	2	3	7	12	31	59

> A034786 Number of linearly ordered Girard monoids of size n; number of t-norms 0 on an n-chain inducing an involutive residual negator.
$1,1,1,2,3,7,12,31,59,161,329,944,2067,6148,14558,44483,116372$ (list; graph; refs; listen; history; text; internal format)
OFFSET 1,4
REFERENCES
M. Nachtegae1, The Dizzy Number of Fuzzy Implication Operators on Finite Chains, in "Fuzzy Logic and Intelligent Technologies for Nuclear Science and Industry", ed, Ruan D.. Abderrahim H., D'hondt P., Kerre E., 1998, pp. 29-35.
LINKS
Table of $n, a(n)$ for $n=1, .17$.
Index entries for sequences related to monoids
CROSSREFS
Cf + A030453
Sequence in context $=\frac{A 134565}{A 100982} \frac{A 186009}{*} * \frac{A 080107}{A 056156}$ A112837 Adjacent sequences: $A 034783 \widehat{A 034784} \widehat{A 034785}=\boxed{A 034787}$ A034788 $\overline{4034789}$
KEYWORD
nonn
AUTHOR
Bernard De Baets (Bernard DeBaets(AT)rug.ac.be), Mike Nachtegael (mike, nachtegael (AT) rug, ac, be)
STATUS
approved

List of IMTL chains of cardinal 5

List of IMTL chains of cardinal 5

List of IMTL chains of cardinal 5

Strong Advice: Use the sage package created by Peter Jipsen

List of IMTL chains of cardinal 6

$$
\begin{aligned}
& \begin{array}{c|ccccccccccccccc|cccccc}
*(6,0) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & *(6,1) & 0 & 1 & 2 & 3 & 4 & 5 & *(6,2) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 2 & 2 & & 2 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
3 & 0 & 0 & 0 & 2 & 3 & 3 & & 3 & 0 & 0 & 1 & 2 & 2 & 0 & 0 & 0 & 0 & 2 & 2 \\
4 & 0 & 0 & 2 & 3 & 4 & 4 & 4 & 0 & 0 & 1 & 1 & 3 & 3 & 0 & 0 & 0 & 3 & 3 & 3 \\
5 & 0 & 1 & 2 & 3 & 4 & 5 & & 5 & 0 & 1 & 1 & 1 & 4 & 4 & 0 & 0 & 2 & 3 & 4 & 4 \\
\hline
\end{array} \\
& \begin{array}{c|ccccccccccccccc|cccccc}
*(6,3) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & *(6,4) & 0 & 1 & 2 & 3 & 4 & 5 & *(6,5) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 2 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
3 & 0 & 0 & 0 & 1 & 2 & 3 & 3 & 0 & 0 & 0 & 1 & 2 & 2 & 0 & 0 & 0 & 0 & 1 & 2 \\
4 & 0 & 0 & 2 & 2 & 4 & 4 & 4 & 0 & 0 & 3 & 3 & 3 & 3 & 0 & 0 & 0 & 1 & 1 & 3 \\
5 & 0 & 1 & 2 & 3 & 4 & 5 & & 5 & 0 & 1 & 2 & 3 & 3 & 4 & 4 & 5 & 4 & 0 & 0 & 1 & 1 \\
2 & 2 & 4 \\
\hline
\end{array} \\
& \begin{array}{c|llllll}
*(6,6) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 \\
2 & 0 & 0 & 0 & 0 & 1 & 2 \\
3 & 0 & 0 & 0 & 1 & 2 & 3 \\
4 & 0 & 0 & 1 & 2 & 3 & 4 \\
5 & 0 & 1 & 2 & 3 & 4 & 5
\end{array}
\end{aligned}
$$

List of IMTL chains of cardinal 6

$$
\begin{aligned}
& \begin{array}{c|lllllll|lllllll|llllll}
+(6,0) & 0 & 1 & 2 & 3 & 4 & 5 \\
& 0 & 1 & 2 & 3 & 4 & 5 \\
& +(6,1) & 0 & 1 & 2 & 3 & 4 & 5 & +(6,2) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 1 & 1 & 2 & 3 & 5 & 5 & 0 & 0 & 1 & 2 & 3 & 4 & 5 & 0 & 0 & 1 & 2 & 3 & 4 & 5 \\
2 & 2 & 2 & 3 & 5 & 5 & 5 & 1 & 1 & 4 & 4 & 4 & 5 & 5 & 1 & 1 & 1 & 2 & 3 & 5 & 5 \\
3 & 3 & 3 & 5 & 5 & 5 & 5 & 2 & 2 & 4 & 4 & 5 & 5 & 5 & 2 & 2 & 2 & 2 & 5 & 5 & 5 \\
4 & 4 & 5 & 5 & 5 & 5 & 5 & 3 & 3 & 4 & 5 & 5 & 5 & 5 & 3 & 3 & 3 & 5 & 5 & 5 & 5 \\
5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 4 & 5 & 5 & 5 & 5 & 5 & 4 & 4 & 5 & 5 & 5 & 5 & 5 \\
\hline
\end{array} \\
& \begin{array}{c|cccccc}
+(6,3) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 0 & 0 & 1 & 2 & 3 & 4 & 5 \\
1 & 1 & 1 & 3 & 3 & 5 & 5 \\
2 & 2 & 3 & 4 & 5 & 5 & 5 \\
3 & 3 & 3 & 5 & 5 & 5 & 5 \\
4 & 4 & 5 & 5 & 5 & 5 & 5 \\
5 & 5 & 5 & 5 & 5 & 5 & 5
\end{array} \\
& \begin{array}{c|cccccc}
+(6,6) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 0 & 0 & 1 & 2 & 3 & 4 & 5 \\
1 & 1 & 2 & 3 & 4 & 5 & 5 \\
2 & 2 & 3 & 4 & 5 & 5 & 5 \\
3 & 3 & 4 & 5 & 5 & 5 & 5 \\
4 & 4 & 5 & 5 & 5 & 5 & 5 \\
5 & 5 & 5 & 5 & 5 & 5 & 5
\end{array} \\
& \begin{array}{c|cccccc}
+(6,4) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 0 & 0 & 1 & 2 & 3 & 4 & 5 \\
1 & 1 & 2 & 2 & 4 & 5 & 5 \\
2 & 2 & 2 & 2 & 5 & 5 & 5 \\
3 & 3 & 4 & 5 & 5 & 5 & 5 \\
4 & 4 & 5 & 5 & 5 & 5 & 5 \\
5 & 5 & 5 & 5 & 5 & 5 & 5
\end{array} \\
& \begin{array}{c|cccccc}
+(6,5) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 0 & 0 & 1 & 2 & 3 & 4 & 5 \\
1 & 1 & 3 & 4 & 4 & 5 & 5 \\
2 & 2 & 4 & 4 & 5 & 5 & 5 \\
3 & 3 & 4 & 5 & 5 & 5 & 5 \\
4 & 4 & 5 & 5 & 5 & 5 & 5 \\
5 & 5 & 5 & 5 & 5 & 5 & 5
\end{array}
\end{aligned}
$$

List of IMTL chains of cardinal 7

$$
\begin{aligned}
& \begin{array}{c|lllllll}
*(7,3) & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{c|lllllll}
*(7,4) & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
2 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\
3 & 0 & 0 & 0 & 0 & 1 & 1 & 3 \\
4 & 0 & 0 & 0 & 1 & 3 & 3 & 4 \\
5 & 0 & 0 & 1 & 1 & 3 & 3 & 5 \\
6 & 0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array} \\
& \begin{array}{c|lllllll}
*(7,5) & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
2 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\
3 & 0 & 0 & 0 & 0 & 1 & 1 & 3 \\
4 & 0 & 0 & 0 & 1 & 2 & 3 & 4 \\
5 & 0 & 0 & 1 & 1 & 3 & 3 & 5 \\
6 & 0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array} \\
& \begin{array}{c|lllllll}
*(7,6) & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
2 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\
3 & 0 & 0 & 0 & 0 & 1 & 1 & 3 \\
4 & 0 & 0 & 0 & 1 & 1 & 2 & 4 \\
5 & 0 & 0 & 1 & 1 & 2 & 3 & 5 \\
6 & 0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array} \\
& \begin{array}{c|lllllll}
*(7,7) & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
2 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\
3 & 0 & 0 & 0 & 0 & 1 & 1 & 3 \\
4 & 0 & 0 & 0 & 1 & 1 & 1 & 4 \\
5 & 0 & 0 & 1 & 1 & 1 & 1 & 5 \\
6 & 0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array} \\
& \begin{array}{c|lllllll}
*(7,8) & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
2 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\
3 & 0 & 0 & 0 & 0 & 1 & 1 & 3 \\
4 & 0 & 0 & 0 & 1 & 1 & 1 & 4 \\
5 & 0 & 0 & 1 & 1 & 1 & 2 & 5 \\
6 & 0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array} \\
& \begin{array}{c|lllllll}
*(7,9) & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
2 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\
3 & 0 & 0 & 0 & 0 & 1 & 2 & 3 \\
4 & 0 & 0 & 0 & 1 & 2 & 3 & 4 \\
5 & 0 & 0 & 1 & 2 & 3 & 4 & 5 \\
6 & 0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array} \\
& \begin{array}{c|ccccccc}
*(7,10) & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
2 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\
3 & 0 & 0 & 0 & 0 & 1 & 2 & 3 \\
4 & 0 & 0 & 0 & 1 & 1 & 2 & 4 \\
5 & 0 & 0 & 1 & 2 & 2 & 4 & 5 \\
6 & 0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array} \\
& \begin{array}{c|lllllll}
*(7,11) & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
2 & 0 & 0 & 0 & 0 & 0 & 2 & 2 \\
3 & 0 & 0 & 0 & 0 & 1 & 2 & 3 \\
4 & 0 & 0 & 0 & 1 & 1 & 2 & 4 \\
5 & 0 & 0 & 2 & 2 & 2 & 5 & 5 \\
6 & 0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array}
\end{aligned}
$$

List of IMTL chains of cardinal 7

$$
\begin{aligned}
& \begin{array}{c|cccccccc|ccccccc}
+(7,0) & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & & +(7,1) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
\end{array} \\
& \begin{array}{c|ccccccc}
+(7,2) & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 0 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
1 & 1 & 1 & 2 & 3 & 4 & 6 & 6 \\
2 & 2 & 2 & 4 & 4 & 6 & 6 & 6 \\
3 & 3 & 3 & 4 & 6 & 6 & 6 & 6 \\
4 & 4 & 4 & 6 & 6 & 6 & 6 & 6 \\
5 & 5 & 6 & 6 & 6 & 6 & 6 & 6 \\
6 & 6 & 6 & 6 & 6 & 6 & 6 & 6
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c|ccccccc}
+(7,6) & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 0 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
1 & 1 & 3 & 4 & 5 & 5 & 6 & 6 \\
2 & 2 & 4 & 5 & 5 & 6 & 6 & 6 \\
3 & 3 & 5 & 5 & 6 & 6 & 6 & 6 \\
4 & 4 & 5 & 6 & 6 & 6 & 6 & 6 \\
5 & 5 & 6 & 6 & 6 & 6 & 6 & 6 \\
6 & 6 & 6 & 6 & 6 & 6 & 6 & 6
\end{array} \\
& \begin{array}{c|ccccccc}
+(7,7) & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 0 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
1 & 1 & 5 & 5 & 5 & 5 & 6 & 6 \\
2 & 2 & 5 & 5 & 5 & 6 & 6 & 6 \\
3 & 3 & 5 & 5 & 6 & 6 & 6 & 6 \\
4 & 4 & 5 & 6 & 6 & 6 & 6 & 6 \\
5 & 5 & 6 & 6 & 6 & 6 & 6 & 6 \\
6 & 6 & 6 & 6 & 6 & 6 & 6 & 6
\end{array} \\
& \begin{array}{c|ccccccc}
+(7,8) & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 0 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
1 & 1 & 4 & 5 & 5 & 5 & 6 & 6 \\
2 & 2 & 5 & 5 & 5 & 6 & 6 & 6 \\
3 & 3 & 5 & 5 & 6 & 6 & 6 & 6 \\
4 & 4 & 5 & 6 & 6 & 6 & 6 & 6 \\
5 & 5 & 6 & 6 & 6 & 6 & 6 & 6 \\
6 & 6 & 6 & 6 & 6 & 6 & 6 & 6
\end{array}
\end{aligned}
$$

Describing 2-generated IMTL-chains through Token Configurations in $\left(\mathbb{N}^{2},+, 0\right)$

Describing 2-generated IMTL-chains through Token Configurations in $\left(\mathbb{N}^{2},+, 0\right)$

Nothing

Describing 2-generated IMTL-chains through Token Configurations in $\left(\mathbb{N}^{2},+, 0\right)$

IMTL-chain

IMTL-chain

IMTL-chain

IMTL-chain

Nothing

IMTL-chain

IMTL-chain

"Admissible" Configurations in $\left(\mathbb{N}^{2},+, 0\right)$

(1) antichain

"Admissible" Configurations in $\left(\mathbb{N}^{2},+, 0\right)$

(1) antichain (the "monomial ideal" generated is denoted I)

"Admissible" Configurations in $\left(\mathbb{N}^{2},+, 0\right)$

(1) antichain (the "monomial ideal" generated is denoted I)
(2) any of the following equivalent conditions hold:

"Admissible" Configurations in $\left(\mathbb{N}^{2},+, 0\right)$

(1) antichain (the "monomial ideal" generated is denoted I)
(2) any of the following equivalent conditions hold:

- $\left(\left\{I-\{a\}: a \in \mathbb{N}^{2}\right\}, \subseteq\right)$ is a total order
- for all $a, b \in \mathbb{N}^{2}$, either $I-\{a\} \subseteq I-\{b\}$ or $I-\{b\} \subseteq I-\{a\}$

"Admissible" Configurations in $\left(\mathbb{N}^{2},+, 0\right)$

(1) antichain (the "monomial ideal" generated is denoted I)
(2) any of the following equivalent conditions hold:

- $\left(\left\{I-\{a\}: a \in \mathbb{N}^{2}\right\}, \subseteq\right)$ is a total order
- for all $a, b \in \mathbb{N}^{2}$, either $I-\{a\} \subseteq I-\{b\}$ or $I-\{b\} \subseteq I-\{a\}$
- for all $a, b, c, d \in \mathbb{N}^{2}$, if $a+b \in I$ and $c+d \in I$, then either $a+d \in I$ or $b+c \in I$
- for all $a, b, c, d \in \mathbb{N}^{2}$, if $a+b \in I$ and $c+d \in I$, then either $a+c \in I$ or $b+d \in I$

"Admissible" Configurations in $\left(\mathbb{N}^{2},+, 0\right)$

(1) antichain (the "monomial ideal" generated is denoted I)
(2) any of the following equivalent conditions hold:

- $\left(\left\{I-\{a\}: a \in \mathbb{N}^{2}\right\}, \subseteq\right)$ is a total order
- for all $a, b \in \mathbb{N}^{2}$, either $I-\{a\} \subseteq I-\{b\}$ or $I-\{b\} \subseteq I-\{a\}$
- for all $a, b, c, d \in \mathbb{N}^{2}$, if $a+b \in I$ and $c+d \in I$, then either $a+d \in I$ or $b+c \in I$
- for all $a, b, c, d \in \mathbb{N}^{2}$, if $a+b \in I$ and $c+d \in I$, then either $a+c \in I$ or $b+d \in I$
- for all $a, b, c, d \in \mathbb{N}^{2}$, if $a+b \in \min (I)$ and $c+d \in \min (I)$, then either $a+d \in I$ or $b+c \in I$ [computational condition]

"Admissible" Configurations in $\left(\mathbb{N}^{2},+, 0\right)$

(1) antichain (the "monomial ideal" generated is denoted I)
(2) any of the following equivalent conditions hold:

- $\left(\left\{I-\{a\}: a \in \mathbb{N}^{2}\right\}, \subseteq\right)$ is a total order
- for all $a, b \in \mathbb{N}^{2}$, either $I-\{a\} \subseteq I-\{b\}$ or $I-\{b\} \subseteq I-\{a\}$
- for all $a, b, c, d \in \mathbb{N}^{2}$, if $a+b \in I$ and $c+d \in I$, then either $a+d \in I$ or $b+c \in I$
- for all $a, b, c, d \in \mathbb{N}^{2}$, if $a+b \in I$ and $c+d \in I$, then either $a+c \in I$ or $b+d \in I$
- for all $a, b, c, d \in \mathbb{N}^{2}$, if $a+b \in \min (I)$ and $c+d \in \min (I)$, then either $a+d \in I$ or $b+c \in I$ [computational condition]

Communication Ideal: Any I with these conditions

The IMTL-chain given by ...

$$
\begin{array}{c|cc}
*(2,0) & 0 & 1 \\
\hline 0 & 0 & 0 \\
1 & 0 & 1
\end{array}
$$

The IMTL-chain given by ...

$$
\begin{array}{c|cc}
*(2,0) & 0 & 1 \\
\hline 0 & 0 & 0 \\
1 & 0 & 1
\end{array}
$$

2-element Boolean Algebra

The IMTL-chain given by ...

$$
\begin{array}{c|cc}
*(2,0) & 0 & 1 \\
\hline 0 & 0 & 0 \\
1 & 0 & 1
\end{array}
$$

The IMTL-chain given by ...

$$
\begin{array}{c|cc}
*(2,0) & 0 & 1 \\
\hline 0 & 0 & 0 \\
1 & 0 & 1
\end{array}
$$

2-element Boolean Algebra

The IMTL-chain given by ...

None (1 and 2 are not comparable)

The IMTL-chain given by ...

$*(4,0)$	0	1	2	3
0	0	0	0	0
1	0	0	0	1
2	0	0	1	2
3	0	1	2	3

4-element MV chain

The IMTL-chain given by ...

$$
\begin{array}{c|cccc}
*(4,0) & 0 & 1 & 2 & 3 \\
\hline 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
2 & 0 & 0 & 1 & 2 \\
3 & 0 & 1 & 2 & 3
\end{array}
$$

The IMTL-chain given by ...

$*(4,0)$	0	1	2	3
0	0	0	0	0
1	0	0	0	1
2	0	0	1	2
3	0	1	2	3

4-element MV chain

The IMTL-chain given by ...

$*(4,1)$	0	1	2	3
0	0	0	0	0
1	0	0	0	1
2	0	0	2	2
3	0	1	2	3

The IMTL-chain given by ...

$*(4,1)$	0	1	2	3
0	0	0	0	0
1	0	0	0	1
2	0	0	2	2
3	0	1	2	3

4-element Nilpotent Minimum chain

The IMTL-chain given by ...

$$
\begin{array}{c|cccccc}
*(6,5) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 \\
2 & 0 & 0 & 0 & 0 & 1 & 2 \\
3 & 0 & 0 & 0 & 1 & 1 & 3 \\
4 & 0 & 0 & 1 & 1 & 2 & 4 \\
5 & 0 & 1 & 2 & 3 & 4 & 5
\end{array}
$$

The IMTL-chain given by ...

$$
\begin{array}{c|lllllll}
*(7,10) & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
2 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\
3 & 0 & 0 & 0 & 0 & 1 & 2 & 3 \\
4 & 0 & 0 & 0 & 1 & 1 & 2 & 4 \\
5 & 0 & 0 & 1 & 2 & 2 & 4 & 5 \\
6 & 0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array}
$$

Representation of involutive chains

- Every algebra associated with a communication ideal of $(\mathbb{N},+, 0)^{2}$ is a finite IMTL-chain.

Representation of involutive chains

- Every algebra associated with a communication ideal of $(\mathbb{N},+, 0)^{2}$ is a finite IMTL-chain.
- All IMTL-chains that are 2 -generated (as ℓ-monoid) come from a communication ideal of $(\mathbb{N},+, 0)^{2}$

Representation of involutive chains

- Every algebra associated with a communication ideal of $(\mathbb{N},+, 0)^{2}$ is a finite IMTL-chain.
- All IMTL-chains that are 2-generated (as ℓ-monoid) come from a communication ideal of $(\mathbb{N},+, 0)^{2}$
- Every algebra associated with a communication ideal of $(\mathbb{N},+, 0)^{k}$ is a finite IMTL-chain.

Representation of involutive chains

- Every algebra associated with a communication ideal of $(\mathbb{N},+, 0)^{2}$ is a finite IMTL-chain.
- All IMTL-chains that are 2-generated (as ℓ-monoid) come from a communication ideal of $(\mathbb{N},+, 0)^{2}$
- Every algebra associated with a communication ideal of $(\mathbb{N},+, 0)^{k}$ is a finite IMTL-chain.
- All IMTL-chains that are k-generated (as ℓ-monoid) come from a communication ideal of $(\mathbb{N},+, 0)^{k}$.

Representation of involutive chains

- Every algebra associated with a communication ideal of $(\mathbb{N},+, 0)^{2}$ is a finite IMTL-chain.
- All IMTL-chains that are 2 -generated (as ℓ-monoid) come from a communication ideal of $(\mathbb{N},+, 0)^{2}$
- Every algebra associated with a communication ideal of $(\mathbb{N},+, 0)^{k}$ is a finite IMTL-chain.
- All IMTL-chains that are k-generated (as ℓ-monoid) come from a communication ideal of $(\mathbb{N},+, 0)^{k}$.
- The same can be said for arbitrary κ using the monoid $\bigoplus_{i \epsilon_{\kappa}}(\mathbb{N},+, 0)$; but here it is crucial to remember that involutive refers to a notion in the ℓ-monoid fragment.

Representation of involutive chains

- Every algebra associated with a communication ideal of $(\mathbb{N},+, 0)^{2}$ is a finite IMTL-chain.
- All IMTL-chains that are 2-generated (as ℓ-monoid) come from a communication ideal of $(\mathbb{N},+, 0)^{2}$
- Every algebra associated with a communication ideal of $(\mathbb{N},+, 0)^{k}$ is a finite IMTL-chain.
- All IMTL-chains that are k-generated (as ℓ-monoid) come from a communication ideal of $(\mathbb{N},+, 0)^{k}$.
- The same can be said for arbitrary κ using the monoid $\bigoplus_{i \epsilon_{\kappa}}(\mathbb{N},+, 0)$; but here it is crucial to remember that involutive refers to a notion in the ℓ-monoid fragment.
- If a chain is n-potent, then we can replace the monoid $(\mathbb{N},+, 0)$ with the "truncated" one over $\{0,1,2, \ldots, n\}$.

Can we "easily" recognize when I is a communication ideal?

Some computational algebra notions

Can we "easily" recognize when I is a communication ideal?

Some computational algebra notions

- Monomial orderings of dimension k : total orders \preceq compatibles with $(\mathbb{N},+, 0)^{k}$

Can we "easily" recognize when I is a communication ideal?

Some computational algebra notions

- Monomial orderings of dimension k : total orders \preceq compatibles with $(\mathbb{N},+, 0)^{k}$ [coincide with the compatibles with $(\mathbb{Z},+, 0)^{k}$, and also with $(\mathbb{Q},+, 0)^{k}$ and $\left.(\mathbb{R},+, 0)^{k}\right]$

Can we "easily" recognize when I is a communication ideal?

Some computational algebra notions

- Monomial orderings of dimension k : total orders \preceq compatibles with $(\mathbb{N},+, 0)^{k}$ [coincide with the compatibles with $(\mathbb{Z},+, 0)^{k}$, and also with $(\mathbb{Q},+, 0)^{k}$ and $\left.(\mathbb{R},+, 0)^{k}\right]$
- Admissible Monomial orderings of dimension k : the ones where all elements of \mathbb{N}^{k} are positive (equivalently, being well order).

Can we "easily" recognize when I is a communication ideal?

Some computational algebra notions

- Monomial orderings of dimension k : total orders \preceq compatibles with $(\mathbb{N},+, 0)^{k}$ [coincide with the compatibles with $(\mathbb{Z},+, 0)^{k}$, and also with $(\mathbb{Q},+, 0)^{k}$ and $\left.(\mathbb{R},+, 0)^{k}\right]$
- Admissible Monomial orderings of dimension k : the ones where all elements of \mathbb{N}^{k} are positive (equivalently, being well order).
- Robbiano has classified all monomial orderings using invertible matrices of real numbers.

Can we "easily" recognize when I is a communication ideal?

Some computational algebra notions

- Monomial orderings of dimension k : total orders \preceq compatibles with $(\mathbb{N},+, 0)^{k}$ [coincide with the compatibles with $(\mathbb{Z},+, 0)^{k}$, and also with $(\mathbb{Q},+, 0)^{k}$ and $\left.(\mathbb{R},+, 0)^{k}\right]$
- Admissible Monomial orderings of dimension k : the ones where all elements of \mathbb{N}^{k} are positive (equivalently, being well order).
- Robbiano has classified all monomial orderings using invertible matrices of real numbers.
- There are very nice geometrical interpretations of what are monomial orderings.

Some monomial orderings of $(\mathbb{N},+, 0)^{2}$

Some monomial orderings of $(\mathbb{N},+, 0)^{2}$

Some monomial orderings of $(\mathbb{N},+, 0)^{2}$

Two trivial ways to introduce communication ideals

(1) All upsets of admisible monomial orderings of $\left(\mathbb{N}^{k},+, 0\right)$ are communication ideals.
For $k=2$, communications ideals coincide exactly with (principal) upsets of admissible monomial orderings.
(2) The inverse image of a communication ideal under a monoid homomorphism is also a communication ideal.

Revisiting previous Token Configurations

IMTL-chain

IMTL-chain

IMTL-chain

IMTL-chain

Application

The equation

$$
x_{1} x_{4} x_{7} \wedge x_{2} x_{5} x_{8} \wedge x_{3} x_{6} x_{9} \leq x_{1} x_{2} x_{3} \vee x_{4} x_{5} x_{6} \vee x_{7} x_{8} x_{9}
$$ is valid in BL, but fails in MTL.

Application

The equation

$$
x_{1} x_{4} x_{7} \wedge x_{2} x_{5} x_{8} \wedge x_{3} x_{6} x_{9} \leq x_{1} x_{2} x_{3} \vee x_{4} x_{5} x_{6} \vee x_{7} x_{8} x_{9}
$$ is valid in BL, but fails in MTL.

Alternative presentation of the equation:

$$
\bar{x} \hat{x} \tilde{x} \wedge \bar{y} \hat{y} \tilde{y} \wedge \bar{z} \hat{z} \tilde{z} \quad \leq \quad \bar{x} \bar{y} \bar{z} \vee \hat{x} \hat{y} \hat{z} \vee \tilde{x} \tilde{y} \tilde{z}
$$

Application

The equation

$$
x_{1} x_{4} x_{7} \wedge x_{2} x_{5} x_{8} \wedge x_{3} x_{6} x_{9} \leq x_{1} x_{2} x_{3} \vee x_{4} x_{5} x_{6} \vee x_{7} x_{8} x_{9}
$$

is valid in BL, but fails in MTL.
Alternative presentation of the equation:

$$
\bar{x} \hat{x} \tilde{x} \wedge \bar{y} \hat{y} \tilde{y} \wedge \bar{z} \hat{z} \tilde{z} \quad \leq \quad \bar{x} \bar{y} \bar{z} \vee \hat{x} \hat{y} \hat{z} \vee \tilde{x} \tilde{y} \tilde{z}
$$

- valid in BL [Proof Sketch: 1) It holds in the 1-generated infinite product algebra (by cancellativity), 2) It holds in finite MV-chains, 3) It holds in all BL-algebras]

Application

The equation

$$
x_{1} x_{4} x_{7} \wedge x_{2} x_{5} x_{8} \wedge x_{3} x_{6} x_{9} \leq x_{1} x_{2} x_{3} \vee x_{4} x_{5} x_{6} \vee x_{7} x_{8} x_{9}
$$

is valid in BL, but fails in MTL.
Alternative presentation of the equation:

$$
\bar{x} \hat{x} \tilde{x} \wedge \bar{y} \hat{y} \tilde{y} \wedge \bar{z} \hat{z} \tilde{z} \quad \leq \quad \bar{x} \bar{y} \bar{z} \vee \hat{x} \hat{y} \hat{z} \vee \tilde{x} \tilde{y} \tilde{z}
$$

- valid in BL [Proof Sketch: 1) It holds in the 1-generated infinite product algebra (by cancellativity), 2) It holds in finite MV-chains, 3) It holds in all BL-algebras]
- fails in MTL

Application

The equation

$$
x_{1} x_{4} x_{7} \wedge x_{2} x_{5} x_{8} \wedge x_{3} x_{6} x_{9} \leq x_{1} x_{2} x_{3} \vee x_{4} x_{5} x_{6} \vee x_{7} x_{8} x_{9}
$$

is valid in BL, but fails in MTL.
Alternative presentation of the equation:

$$
\bar{x} \hat{x} \tilde{x} \wedge \bar{y} \hat{y} \tilde{y} \wedge \bar{z} \hat{z} \tilde{z} \quad \leq \quad \bar{x} \bar{y} \bar{z} \vee \hat{x} \hat{y} \hat{z} \vee \tilde{x} \tilde{y} \tilde{z}
$$

- valid in BL [Proof Sketch: 1) It holds in the 1-generated infinite product algebra (by cancellativity), 2) It holds in finite MV-chains, 3) It holds in all BL-algebras]
- fails in MTL [Proof Sketch: explicit 36-element chain E]

 1
- Exotic MTL-chain:
- Exotic MTL-chain: there is some ℓ-monoid equation which holds in all BL-algebras and fails in this chain
- Exotic MTL-chain: there is some ℓ-monoid equation which holds in all BL-algebras and fails in this chain
- Dimension:
- Exotic MTL-chain: there is some ℓ-monoid equation which holds in all BL-algebras and fails in this chain
- Dimension: number of generators using $\cdot, \vee, \wedge, 0, e$ (i.e., number of monomial irreducible elements)
- Exotic MTL-chain: there is some ℓ-monoid equation which holds in all BL-algebras and fails in this chain
- Dimension: number of generators using $\cdot, \vee, \wedge, 0, e$ (i.e., number of monomial irreducible elements)

Claim

The algebra E is an exotic MTL-chain of dimension 9; the set of irreducible elements is $\{9,15,17,22,25,28,30,32,34\}$.

- Exotic MTL-chain: there is some ℓ-monoid equation which holds in all BL-algebras and fails in this chain
- Dimension: number of generators using $\cdot, \vee, \wedge, 0, e$ (i.e., number of monomial irreducible elements)

Claim

The algebra E is an exotic MTL-chain of dimension 9; the set of irreducible elements is $\{9,15,17,22,25,28,30,32,34\}$.

Counterexample: Consider the interpretation

$$
\left\langle e\left(x_{1}\right), e\left(x_{2}\right), \ldots, e\left(x_{9}\right)\right\rangle=\langle 9,28,34,30,25,15,32,17,22\rangle .
$$

This is the unique counterexample up to symmetry

- Exotic MTL-chain: there is some ℓ-monoid equation which holds in all BL-algebras and fails in this chain
- Dimension: number of generators using $\cdot, \vee, \wedge, 0, e$ (i.e., number of monomial irreducible elements)

Claim

The algebra \boldsymbol{E} is an exotic MTL-chain of dimension 9; the set of irreducible elements is $\{9,15,17,22,25,28,30,32,34\}$.

Counterexample: Consider the interpretation

$$
\left\langle e\left(x_{1}\right), e\left(x_{2}\right), \ldots, e\left(x_{9}\right)\right\rangle=\langle 9,28,34,30,25,15,32,17,22\rangle .
$$

This is the unique counterexample up to symmetry (and so there are 36 counterexamples)

\＃RESIDUUM

```
res_table = [
```

 \(\# 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35\)
 \([35,35]\),
 \([34,35]\)
 \([33,34,35]\),
 \([32,32,32,35]\),
 \([31,32,32,34,35]\)
 \([30,30,30,30,30,35]\)
 \([29,30,30,30,30,34,35]\)
 \([28,28,28,30,30,32,32,35]\)

$[26,28,28,29,30,31,32,34,34,35]$
$[25,25,25,25,25,25,25,25,25,25,35]$
$[24,25,25,25,25,25,25,25,25,25,34,35]$
$[23,23,23,25,25,25,25,25,25,25,32,32,35]$
$[22,22,22,22,22,25,25,25,25,25,30,30,30,35]$
$[21,22,22,22,22,25,25,25,25,25,30,30,30,34,35]$
$[20,21,22,22,22,25,25,25,25,25,30,30,30,33,34,35]$
$[19,19,19,22,22,23,23,25,25,25,28,28,30,32,32,32,35]$
$[18,19,19,22,22,23,23,24,25,25,27,28,30,32,32,32,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35]$
$[17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35]$
$[16,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35]$
$[15,15,15,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,32,32,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35]$
$[14,15,15,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,32,32,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35]$
$[13,14,15,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,32,32,33,34,35,35,35,35,35,35,35,35,35,35,35,35,35,35]$
$[12,12,12,12,12,17,17,17,17,17,17,17,17,17,17,17,17,17,30,30,30,30,30,35,35,35,35,35,35,35,35,35,35,35,35,35]$
$[11,11,11,12,12,15,15,17,17,17,17,17,17,17,17,17,17,17,28,28,30,30,30,32,35,35,35,35,35,35,35,35,35,35,35,35]$
$[10,11,11,12,12,15,15,16,17,17,17,17,17,17,17,17,17,17,27,28,30,30,30,32,34,35,35,35,35,35,35,35,35,35,35,35]$,
$[9,9,9,9,9,9,9,9,9,9,17,17,17,17,17,17,17,17,25,25,25,25,25,25,25,25,35,35,35,35,35,35,35,35,35,35]$,
$[8,9,9,9,9,9,9,9,9,9,17,17,17,17,17,17,17,17,25,25,25,25,25,25,25,25,34,35,35,35,35,35,35,35,35,35]$
$[7,9,9,9,9,9,9,9,9,9,16,17,17,17,17,17,17,17,24,25,25,25,25,25,25,25,34,34,35,35,35,35,35,35,35,35]$
$[6,6,6,9,9,9,9,9,9,9,15,15,17,17,17,17,17,17,23,23,25,25,25,25,25,25,32,32,32,35,35,35,35,35,35,35]$
$[5,6,6,8,9,9,9,9,9,9,15,15,17,17,17,17,17,17,23,23,25,25,25,25,25,25,31,32,32,34,35,35,35,35,35,35]$
$[4,4,4,4,4,9,9,9,9,9,12,12,12,17,17,17,17,17,22,22,22,22,22,25,25,25,30,30,30,30,30,35,35,35,35,35]$,
$[3,4,4,4,4,8,9,9,9,9,12,12,12,17,17,17,17,17,22,22,22,22,22,25,25,25,29,30,30,30,30,34,35,35,35,35]$
$[2,2,2,4,4,6,6,9,9,9,11,11,12,15,15,15,17,17,19,19,22,22,22,23,25,25,28,28,28,30,30,32,32,35,35,35]$
$[1,2,2,4,4,6,6,9,9,9,11,11,12,14,15,15,17,17,19,19,21,22,22,23,25,25,28,28,28,30,30,32,32,34,35,35]$
$[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35]$
1

\#ADDITION

add_table $=$ [
$\# 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35$
$[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35]$, $[1,2,2,4,4,6,6,9,9,9,11,11,12,14,15,15,17,17,19,19,21,22,22,23,25,25,28,28,28,30,30,32,32,34,35,35]$
$[2,2,2,4,4,6,6,9,9,9,11,11,12,15,15,15,17,17,19,19,22,22,22,23,25,25,28,28,28,30,30,32,32,35,35,35]$,
$[3,4,4,4,4,8,9,9,9,9,12,12,12,17,17,17,17,17,22,22,22,22,22,25,25,25,29,30,30,30,30,34,35,35,35,35]$,
$[4,4,4,4,4,9,9,9,9,9,12,12,12,17,17,17,17,17,22,22,22,22,22,25,25,25,30,30,30,30,30,35,35,35,35,35]$

1
2
3
4
5
6
7
8
9
10
111
112
113
13
114
115
116
117
118
118
119
120
121
121
122
123 124 125 126 127 128 129 130 $\begin{array}{r}131 \\ \hline\end{array}$ 132 133 133
134 \#/ 35

How to obtain the previous exotic chain E ?

Remember we want to falsify the equation

$$
\begin{aligned}
& \left(x_{1}+x_{4}+x_{7}\right) \vee\left(x_{2}+x_{5}+x_{8}\right) \vee\left(x_{3}+x_{6}+x_{9}\right) \geq \\
& \geq\left(x_{1}+x_{2}+x_{3}\right) \wedge\left(x_{4}+x_{5}+x_{6}\right) \wedge\left(x_{7}+x_{8}+x_{9}\right)
\end{aligned}
$$

- There is a communication ideal $/$ of $\left(\mathbb{N}^{9},+, 0\right)$ such that

$$
\begin{aligned}
& e_{1}+e_{4}+e_{7} \notin I, e_{2}+e_{5}+e_{8} \notin I, e_{3}+e_{6}+e_{9} \notin I \\
& e_{1}+e_{2}+e_{3} \in I, e_{4}+e_{5}+e_{6} \in I, e_{7}+e_{8}+e_{9} \in I
\end{aligned}
$$

- $h:(\mathbb{N},+, 0)^{9} \longrightarrow(\mathbb{Z},+, 0)^{5}$ is the monoid homomorphism
$h\left(a_{1}, a_{2}, \ldots, a_{9}\right):=\left(\begin{array}{rrrrrrrrr}1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & -1 & 1\end{array}\right)\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ a_{5} \\ a_{6} \\ a_{7} \\ a_{8} \\ a_{9}\end{array}\right)$
- $h:(\mathbb{N},+, 0)^{9} \longrightarrow(\mathbb{Z},+, 0)^{5}$ is the monoid homomorphism
$h\left(a_{1}, a_{2}, \ldots, a_{9}\right):=\left(\begin{array}{rrrrrrrrr}1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & -1 & 1\end{array}\right)\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ a_{5} \\ a_{6} \\ a_{7} \\ a_{8} \\ a_{9}\end{array}\right)$
- his length-preserving and
$h\left(e_{1}+e_{2}+e_{3}\right)=h\left(e_{4}+e_{5}+e_{6}\right)=h\left(e_{7}+e_{8}+e_{9}\right)=$
$h\left(e_{1}+e_{4}+e_{7}\right)=h\left(e_{2}+e_{5}+e_{8}\right)=h\left(e_{3}+e_{6}+e_{9}\right)=$
- $h:(\mathbb{N},+, 0)^{9} \longrightarrow(\mathbb{Z},+, 0)^{5}$ is the monoid homomorphism
$h\left(a_{1}, a_{2}, \ldots, a_{9}\right):=\left(\begin{array}{rrrrrrrrr}1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & -1 & 1\end{array}\right)\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ a_{5} \\ a_{6} \\ a_{7} \\ a_{8} \\ a_{9}\end{array}\right)$
- his length-preserving and $(1,1,0,1,0)=$
$h\left(e_{1}+e_{2}+e_{3}\right)=h\left(e_{4}+e_{5}+e_{6}\right)=h\left(e_{7}+e_{8}+e_{9}\right)=$
$h\left(e_{1}+e_{4}+e_{7}\right)=h\left(e_{2}+e_{5}+e_{8}\right)=h\left(e_{3}+e_{6}+e_{9}\right)=$
- $h:(\mathbb{N},+, 0)^{9} \longrightarrow(\mathbb{Z},+, 0)^{5}$ is the monoid homomorphism
$h\left(a_{1}, a_{2}, \ldots, a_{9}\right):=\left(\begin{array}{rrrrrrrrr}1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & -1 & 1\end{array}\right)\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ a_{5} \\ a_{6} \\ a_{7} \\ a_{8} \\ a_{9}\end{array}\right)$ $h\left(e_{1}+e_{2}+e_{3}\right)=h\left(e_{4}+e_{5}+e_{6}\right)=h\left(e_{7}+e_{8}+e_{9}\right)=$ $h\left(e_{1}+e_{4}+e_{7}\right)=h\left(e_{2}+e_{5}+e_{8}\right)=h\left(e_{3}+e_{6}+e_{9}\right)=$
- $I^{\prime}:=\left\{a \in \mathbb{N}^{9}:(1,1,0,1,1) \preceq_{\text {lex }} h(a)\right\}$ is a commun. ideal
- $h:(\mathbb{N},+, 0)^{9} \longrightarrow(\mathbb{Z},+, 0)^{5}$ is the monoid homomorphism
$h\left(a_{1}, a_{2}, \ldots, a_{9}\right):=\left(\begin{array}{rrrrrrrrr}1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & -1 & 1\end{array}\right)\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ a_{5} \\ a_{6} \\ a_{7} \\ a_{8} \\ a_{9}\end{array}\right)$
$h\left(e_{1}+e_{2}+e_{3}\right)=h\left(e_{4}+e_{5}+e_{6}\right)=h\left(e_{7}+e_{8}+e_{9}\right)=$ $h\left(e_{1}+e_{4}+e_{7}\right)=h\left(e_{2}+e_{5}+e_{8}\right)=h\left(e_{3}+e_{6}+e_{9}\right)=$
- $I^{\prime}:=\left\{a \in \mathbb{N}^{9}:(1,1,0,1,1) \preceq_{\text {lex }} h(a)\right\}$ is a commun. ideal
- $I:=I^{\prime} \cup\left\{e_{1}+e_{2}+e_{3}, e_{4}+e_{5}+e_{6}, e_{7}+e_{8}+e_{9}\right\}$ (small perturbation),
- $h:(\mathbb{N},+, 0)^{9} \longrightarrow(\mathbb{Z},+, 0)^{5}$ is the monoid homomorphism
$h\left(a_{1}, a_{2}, \ldots, a_{9}\right):=\left(\begin{array}{rrrrrrrrr}1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & -1 & 1\end{array}\right)\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ a_{5} \\ a_{6} \\ a_{7} \\ a_{8} \\ a_{9}\end{array}\right)$ $h\left(e_{1}+e_{2}+e_{3}\right)=h\left(e_{4}+e_{5}+e_{6}\right)=h\left(e_{7}+e_{8}+e_{9}\right)=$ $h\left(e_{1}+e_{4}+e_{7}\right)=h\left(e_{2}+e_{5}+e_{8}\right)=h\left(e_{3}+e_{6}+e_{9}\right)=$
- $I^{\prime}:=\left\{a \in \mathbb{N}^{9}:(1,1,0,1,1) \preceq_{\text {lex }} h(a)\right\}$ is a commun. ideal
- $I:=I^{\prime} \cup\left\{e_{1}+e_{2}+e_{3}, e_{4}+e_{5}+e_{6}, e_{7}+e_{8}+e_{9}\right\}$ (small perturbation),
- Claim: I is a communication ideal of $(\mathbb{N},+, 0)^{9}$ satisfying our requirements.

Additional Remarks

- The variety generated by ℓ-monoid reducts of BL-algebras has an explicit axiomatization which requires an infinite number of axioms (essentially [Repnitskii, 1983-1984])

Additional Remarks

- The variety generated by ℓ-monoid reducts of BL-algebras has an explicit axiomatization which requires an infinite number of axioms (essentially [Repnitskii, 1983-1984])
- Similar ideas allow to characterize involutive uninorm chains.

Additional Remarks

- The variety generated by ℓ-monoid reducts of BL-algebras has an explicit axiomatization which requires an infinite number of axioms (essentially [Repnitskii, 1983-1984])
- Similar ideas allow to characterize involutive uninorm chains.
- Open: Is there some exotic IMTL chain of dimension less than 9 ? What is the minimal dimension of them? (i.e., what is the minimum number of variables appearing in a ℓ-monoid equation that distinguishes MTL from BL?)

Additional Remarks

- The variety generated by ℓ-monoid reducts of BL-algebras has an explicit axiomatization which requires an infinite number of axioms (essentially [Repnitskii, 1983-1984])
- Similar ideas allow to characterize involutive uninorm chains.
- Open: Is there some exotic IMTL chain of dimension less than 9 ? What is the minimal dimension of them? (i.e., what is the minimum number of variables appearing in a ℓ-monoid equation that distinguishes MTL from BL?)
- Open: Is there some "very expressive" language that cannot distinguish MTL from BL? What about $\cdot, \vee, 0,1$?

Can these ideas help in ...?

- What is the computational complexity problem of MTL (or of the ℓ-monoid fragment)?

Can these ideas help in ...?

- What is the computational complexity problem of MTL (or of the ℓ-monoid fragment)?
- Can we adapt canonical formulas (Nick-Nick-Luca) to the ℓ-monoid fragment? Can we give an algorithm that from a finite IMTL-chain produces an explicit axiomatization of its ℓ-monoid variety?

Can these ideas help in ...?

- What is the computational complexity problem of MTL (or of the ℓ-monoid fragment)?
- Can we adapt canonical formulas (Nick-Nick-Luca) to the ℓ-monoid fragment? Can we give an algorithm that from a finite IMTL-chain produces an explicit axiomatization of its ℓ-monoid variety?
- Cardinal $\leq n+1$ can be captured with the equation

$$
x_{1} \wedge \bigwedge_{\substack{2 \leq i \leq i \leq n \\ i j=j n+2}}\left(x_{i} \cdot x_{j}\right) \leq \bigvee_{\substack{1 \leq i \leq i \leq n \\ i j j=n+1}}\left(x_{i} \cdot x_{j}\right)
$$

Can these ideas help in ...?

- What is the computational complexity problem of MTL (or of the ℓ-monoid fragment)?
- Can we adapt canonical formulas (Nick-Nick-Luca) to the ℓ-monoid fragment? Can we give an algorithm that from a finite IMTL-chain produces an explicit axiomatization of its ℓ-monoid variety?
- Cardinal $\leq n+1$ can be captured with the equation

$$
x_{1} \wedge \bigwedge_{\substack{2 \leq i \leq i \leq n \\ i j=j+2}}\left(x_{i} \cdot x_{j}\right) \leq \varliminf_{\substack{1 \leq i \leq i \leq n \\ i j j=n+1}}\left(x_{i} \cdot x_{j}\right)
$$

- involutive MTL-chains are "locally finite".

Summary

- a better understanding of the ℓ-monoid fragment of MTL-algebras will enlighten us with a better understanding of the full language (including residuum).

Summary

- a better understanding of the ℓ-monoid fragment of MTL-algebras will enlighten us with a better understanding of the full language (including residuum).
- the monoidal operation in MTL chains can be recovered from involutive ones.

Summary

- a better understanding of the ℓ-monoid fragment of MTL-algebras will enlighten us with a better understanding of the full language (including residuum).
- the monoidal operation in MTL chains can be recovered from involutive ones.
- IMTL chains correspond to communication ideals.

Summary

- a better understanding of the ℓ-monoid fragment of MTL-algebras will enlighten us with a better understanding of the full language (including residuum).
- the monoidal operation in MTL chains can be recovered from involutive ones.
- IMTL chains correspond to communication ideals.
- upsets of admissible monomial orderings provide an easy method to obtain communication ideals.

Summary

- a better understanding of the ℓ-monoid fragment of MTL-algebras will enlighten us with a better understanding of the full language (including residuum).
- the monoidal operation in MTL chains can be recovered from involutive ones.
- IMTL chains correspond to communication ideals.
- upsets of admissible monomial orderings provide an easy method to obtain communication ideals.
- an small perturbation method has been used to obtain a quite pathological example of communication ideal (its associated ITML-chain is exotic).

