
Structural Resolution

Katya Komendantskaya

School of Computing, University of Dundee, UK

07 May 2015

Outline

Motivation

Coalgebraic Semantics for Structural Resolution

The Three Tier Tree calculus for Structural Resolution

Type-Theoretic view of Structural Resolution

Conclusions and Future work

Programming Language Semantics

Why do we call Computing Computer Science?

Because it has areas/methods/foundations that have been
discovered, rather than engineered...

Example

Programming languages are engineered; Their semantics – e.g.
λ -calculus have been discovered...

Programming language semantics discovers foundations of
programming languages.

Proof methods: structural, unstructured, and?

Abstracting from the details, all proof-search and
proof-inference methods can be classified as

more or less Structural...

Γ A`

Proof inference methods: structural

Constructive Type theory

is more Structural...

Γ Ap :`

To prove Γ ` A, we need to show that type A has inhabitant p;
namely, we have to conSTRUCT it.

Proof inference methods

Resolution-based first-order automated theorem provers
(ATPs)

are less Structural...

Γ A`

To prove Γ ` A, we need to assume A is false, and derive a
contradiction from Γ∪¬A.
It only matters if resolution finitely succeeds; the proof structure
is irrelevant.

Logic Programming...

SLD resolution = Unification + Search

Note: it is an engineered language, in the sense of the first slide...

SLD-resolution + unification in LP derivations.

Program NatList:

Example

1.nat(0) ←
2.nat(s(x)) ← nat(x)

3.list(nil) ←
4.list(cons(x,y)) ←

nat(x), list(y)

← list(cons(x,y))

SLD-resolution + unification in LP derivations.

Example

1.nat(0) ←
2.nat(s(x)) ← nat(x)

3.list(nil) ←
4.list(cons(x,y)) ←

nat(x), list(y)

← list(cons(x,y))

← nat(x),list(y)

SLD-resolution (+ unification) in LP derivations.

Example

1.nat(0) ←
2.nat(s(x)) ← nat(x)

3.list(nil) ←
4.list(cons(x,y)) ←

nat(x), list(y)

← list(cons(x,y))

← nat(x),list(y)

← list(y)

SLD-resolution (+ unification) in LP derivations.

Example

1.nat(0) ←
2.nat(s(x)) ← nat(x)

3.list(nil) ←
4.list(cons(x,y)) ←

nat(x), list(y)

← list(cons(x,y))

← nat(x),list(y)

← list(y)

�

The answer is “Yes”, NatList ` list(cons(x ,y)) if x/0, y/nil , but
we can get more substitutions by backtracking.
SLD-refutation = finite successful SLD-derivation. SLD-refutations
are sound and complete.

Problem

LP has never received a coherent, uniform theory of Universal
Termination.

the program P is terminating, if, given any term A, a derivation for
P ` A returns an answer in a finite number of derivation steps.

I The survey [deSchreye, 1994] lists some 119 approaches to
termination in LP, neither using universal termination.

I The consensus has not been reached to this day.

Reasons? – The lack of structural theory, namely:

Problem

LP has never received a coherent, uniform theory of Universal
Termination.

the program P is terminating, if, given any term A, a derivation for
P ` A returns an answer in a finite number of derivation steps.

I The survey [deSchreye, 1994] lists some 119 approaches to
termination in LP, neither using universal termination.

I The consensus has not been reached to this day.

Reasons? – The lack of structural theory, namely:

Reason-1. Non-determinism of proof-search in LP: –
termination depends on the searching strategy and order of
clauses.

NatList2:

Example

1.nat(0) ←
2.nat(s(x)) ← nat(x)

3.list(cons(x,y)) ←

nat(x), list(y)

4.list(nil) ←

← list(cons(x,y))

← nat(x),list(y)

← list(cons(x′,y′))

. . .

We have no means to analyse the structure of computations but
run a search... which may be deceiving.

Reason-1. Non-determinism of proof-search in LP: –
termination depends on the searching strategy and order of
clauses.

NatList2:

Example

1.nat(0) ←
2.nat(s(x)) ← nat(x)

3.list(cons(x,y)) ←

nat(x), list(y)

4.list(nil) ←

← list(cons(x,y))

← nat(x),list(y)

← list(cons(x′,y′))

. . .

We have no means to analyse the structure of computations but
run a search... which may be deceiving.

Reason 2. Termination and (deciding) entailment are
closely connected in LP.

This creates an obstacle on the way to reasoning about coinductive
programs, that do not assume finite success in derivations.

Program Stream:

Example

1.bit(0) ←
2.bit(1) ←
3.stream(scons(x,y)) ←

bit(x), stream(y)

No answer, as derivation never
terminates. Neverthless, the
program could be given a coin-
dutive meaning...

← stream(scons(x,y))

← bit(x),stream(y)

← stream(y)

← bit(x1),stream(y1)

← stream(y1)

...

No distinction between type, function definition, and proof that
could help to separate the issues...

Reason 2. Termination and (deciding) entailment are
closely connected in LP.

This creates an obstacle on the way to reasoning about coinductive
programs, that do not assume finite success in derivations.
Program Stream:

Example

1.bit(0) ←
2.bit(1) ←
3.stream(scons(x,y)) ←

bit(x), stream(y)

No answer, as derivation never
terminates. Neverthless, the
program could be given a coin-
dutive meaning...

← stream(scons(x,y))

← bit(x),stream(y)

← stream(y)

← bit(x1),stream(y1)

← stream(y1)

...

No distinction between type, function definition, and proof that
could help to separate the issues...

Reason 2. Termination and (deciding) entailment are
closely connected in LP.

This creates an obstacle on the way to reasoning about coinductive
programs, that do not assume finite success in derivations.
Program Stream:

Example

1.bit(0) ←
2.bit(1) ←
3.stream(scons(x,y)) ←

bit(x), stream(y)

No answer, as derivation never
terminates. Neverthless, the
program could be given a coin-
dutive meaning...

← stream(scons(x,y))

← bit(x),stream(y)

← stream(y)

← bit(x1),stream(y1)

← stream(y1)

...

No distinction between type, function definition, and proof that
could help to separate the issues...

Reason 2. Termination and (deciding) entailment are
closely connected in LP.

This creates an obstacle on the way to reasoning about coinductive
programs, that do not assume finite success in derivations.
Program Stream:

Example

1.bit(0) ←
2.bit(1) ←
3.stream(scons(x,y)) ←

bit(x), stream(y)

No answer, as derivation never
terminates. Neverthless, the
program could be given a coin-
dutive meaning...

← stream(scons(x,y))

← bit(x),stream(y)

← stream(y)

← bit(x1),stream(y1)

← stream(y1)

...

No distinction between type, function definition, and proof that
could help to separate the issues...

Problems...

This unstructured approach to ` gives us too little formal
support to analyse termination

What does it mean if your program does not terminate?

I May be it is a corecursive program, like Stream...

I May be it is a recursive program, but badly ordered, like
NatList2...

I Or may be it is a recursive program with coinductive
interpretation? (again, NatList2)

I Or may be it is just some bad loop without particular
computational meaning:

badstream(scons(x ,y))← badstream(scons(x ,y))

We are missing a theory, a language, to talk about such
things...

Problems...

This unstructured approach to ` gives us too little formal
support to analyse termination

What does it mean if your program does not terminate?

I May be it is a corecursive program, like Stream...

I May be it is a recursive program, but badly ordered, like
NatList2...

I Or may be it is a recursive program with coinductive
interpretation? (again, NatList2)

I Or may be it is just some bad loop without particular
computational meaning:

badstream(scons(x ,y))← badstream(scons(x ,y))

We are missing a theory, a language, to talk about such
things...

Problems...

This unstructured approach to ` gives us too little formal
support to analyse termination

What does it mean if your program does not terminate?

I May be it is a corecursive program, like Stream...

I May be it is a recursive program, but badly ordered, like
NatList2...

I Or may be it is a recursive program with coinductive
interpretation? (again, NatList2)

I Or may be it is just some bad loop without particular
computational meaning:

badstream(scons(x ,y))← badstream(scons(x ,y))

We are missing a theory, a language, to talk about such
things...

Problems...

This unstructured approach to ` gives us too little formal
support to analyse termination

What does it mean if your program does not terminate?

I May be it is a corecursive program, like Stream...

I May be it is a recursive program, but badly ordered, like
NatList2...

I Or may be it is a recursive program with coinductive
interpretation? (again, NatList2)

I Or may be it is just some bad loop without particular
computational meaning:

badstream(scons(x ,y))← badstream(scons(x ,y))

We are missing a theory, a language, to talk about such
things...

Problems...

This unstructured approach to ` gives us too little formal
support to analyse termination

What does it mean if your program does not terminate?

I May be it is a corecursive program, like Stream...

I May be it is a recursive program, but badly ordered, like
NatList2...

I Or may be it is a recursive program with coinductive
interpretation? (again, NatList2)

I Or may be it is just some bad loop without particular
computational meaning:

badstream(scons(x ,y))← badstream(scons(x ,y))

We are missing a theory, a language, to talk about such
things...

Problems...

This unstructured approach to ` gives us too little formal
support to analyse termination

What does it mean if your program does not terminate?

I May be it is a corecursive program, like Stream...

I May be it is a recursive program, but badly ordered, like
NatList2...

I Or may be it is a recursive program with coinductive
interpretation? (again, NatList2)

I Or may be it is just some bad loop without particular
computational meaning:

badstream(scons(x ,y))← badstream(scons(x ,y))

We are missing a theory, a language, to talk about such
things...

Problems with LP termination and static program analysis

From its conception in 1960’s, LP/ATP has not formulated a
theory of universal termination!

All below programs do not terminate, and fail to produce any
answer in PROLOG.
F1. P1. Peano num-
bers.

F2. P2. Infinite streams. F3. P3. Bad recur-
sion.

nat(s(x)) ← nat(x)
nat(0)←

stream(scons(x,y)) ←
nat(x),stream(y)

bad(x)← bad(x)

inductive definition coinductive definition non-well-founded

No termination – no program analysis

Problems with LP termination and static program analysis

From its conception in 1960’s, LP/ATP has not formulated a
theory of universal termination!

All below programs do not terminate, and fail to produce any
answer in PROLOG.
F1. P1. Peano num-
bers.

F2. P2. Infinite streams. F3. P3. Bad recur-
sion.

nat(s(x)) ← nat(x)
nat(0)←

stream(scons(x,y)) ←
nat(x),stream(y)

bad(x)← bad(x)

inductive definition coinductive definition non-well-founded

No termination – no program analysis

Problems with LP termination and static program analysis

From its conception in 1960’s, LP/ATP has not formulated a
theory of universal termination!

All below programs do not terminate, and fail to produce any
answer in PROLOG.
F1. P1. Peano num-
bers.

F2. P2. Infinite streams. F3. P3. Bad recur-
sion.

nat(s(x)) ← nat(x)
nat(0)←

stream(scons(x,y)) ←
nat(x),stream(y)

bad(x)← bad(x)

inductive definition coinductive definition non-well-founded

No termination – no program analysis

New methods. In search of a missing link

Is there a mysterious Missing link theory?

– Structural Resolution (also S-Resolution)

Is there place for a DISCOVERY here, which could expose A
BETTER STRUCTURED resolution?

New methods. In search of a missing link

Is there a mysterious Missing link theory?

– Structural Resolution (also S-Resolution)

Is there place for a DISCOVERY here, which could expose A
BETTER STRUCTURED resolution?

What IS

S-Resolution?

Outline

Motivation

Coalgebraic Semantics for Structural Resolution

The Three Tier Tree calculus for Structural Resolution

Type-Theoretic view of Structural Resolution

Conclusions and Future work

Fibrational Coalgebraic Semantics of LP in 3 ideas

Idea 1: Logic programs as coalgebras

Definition

For a functor F , a coalgebra is a pair (U,c) consisting of a set U
and a function c : U → F (U).

1. Let At be the set of all atoms appearing in a program P.
Then P can be identified with a Pf Pf -coalgebra (At,p),
where p : At −→ Pf (Pf (At)) sends an atom A to the set of
bodies of those clauses in P with head A.

Example

T ← Q,R
T ← S
p(T) = {{Q,R},{S}}

Fibrational Coalgebraic Semantics of CoALP in 3 ideas

Idea 2: Derivations modelled by coalgebra for the comonad on
Pf Pf

In general, if U : H-coalg −→ C has a right adjoint G , the
composite functor UG : C −→ C possesses the canonical structure
of a comonad C (H), called the cofree comonad on H. One can
form a coalgebra for a comonad C (H).

I Taking p : At −→ Pf Pf (At), the corresponding
C (Pf Pf)-coalgebra where C (Pf Pf) is the cofree comonad on
Pf Pf is given as follows: C (Pf Pf)(At) is given by a limit of
the form

. . .−→ At×Pf Pf (At×Pf Pf (At))−→ At×Pf Pf (At)−→ At.

This gives a “tree-like” structure: we call them &V -trees.

Example

Example

T ← Q,R
T ← S
Q←
S ← R

T

Q R S

R
This models and-or parallel trees known in LP [AMAST 2010]

Fibrational Coalgebraic Semantics of CoALP in 3 ideas

Idea 3: Add Lawvere Theories to model first-order signature

Definition

A Lawvere theory consists of a small category L with strictly
associative finite products, and a strict finite-product preserving
functor I : Nop→ L.

Take Lawvere Theory LΣ to model the terms over Σ
∗ ob(LΣ) is N.
∗∗ For each n ∈ Nat, let x1, . . . ,xn be a specified list of distinct
variables.
∗∗∗ ob(LΣ)(n,m) is the set of m-tuples (t1, . . . , tm) of terms
generated by the function symbols in Σ and variables x1, . . . ,xn.
∗∗∗∗ composition in LΣ is first-order substitution.

Take the functor At : L op
Σ → Set that sends a natural number n to

the set of all atomic formulae generated by Σ and n variables.
Model a program P by the [L op

Σ ,Pf Pf]-coalgebra.

Fibrational Coalgebraic Semantics of CoALP in 3 ideas

Idea 3: Add Lawvere Theories to model first-order signature

Definition

A Lawvere theory consists of a small category L with strictly
associative finite products, and a strict finite-product preserving
functor I : Nop→ L.

Take Lawvere Theory LΣ to model the terms over Σ
∗ ob(LΣ) is N.
∗∗ For each n ∈ Nat, let x1, . . . ,xn be a specified list of distinct
variables.
∗∗∗ ob(LΣ)(n,m) is the set of m-tuples (t1, . . . , tm) of terms
generated by the function symbols in Σ and variables x1, . . . ,xn.
∗∗∗∗ composition in LΣ is first-order substitution.
Take the functor At : L op

Σ → Set that sends a natural number n to
the set of all atomic formulae generated by Σ and n variables.

Model a program P by the [L op
Σ ,Pf Pf]-coalgebra.

Fibrational Coalgebraic Semantics of CoALP in 3 ideas

Idea 3: Add Lawvere Theories to model first-order signature

Definition

A Lawvere theory consists of a small category L with strictly
associative finite products, and a strict finite-product preserving
functor I : Nop→ L.

Take Lawvere Theory LΣ to model the terms over Σ
∗ ob(LΣ) is N.
∗∗ For each n ∈ Nat, let x1, . . . ,xn be a specified list of distinct
variables.
∗∗∗ ob(LΣ)(n,m) is the set of m-tuples (t1, . . . , tm) of terms
generated by the function symbols in Σ and variables x1, . . . ,xn.
∗∗∗∗ composition in LΣ is first-order substitution.
Take the functor At : L op

Σ → Set that sends a natural number n to
the set of all atomic formulae generated by Σ and n variables.
Model a program P by the [L op

Σ ,Pf Pf]-coalgebra.

Examples

Program Stream: “fibers” given by term arities. Take the fiber of
1 to model all terms with 1 free variable. Then &V -trees:

stream(x) stream(scons(x,x))

bit(x) stream(x)

stream(scons(0,scons(x,x)))

bit(0) stream(scons(x,x))

bit(x) stream(x)

Note the finite size

Examples

Program Stream: “fibers” given by term arities. Take the fiber of
1 to model all terms with 1 free variable. Then &V -trees:

stream(x)

stream(scons(x,x))

bit(x) stream(x)

stream(scons(0,scons(x,x)))

bit(0) stream(scons(x,x))

bit(x) stream(x)

Note the finite size

Examples

Program Stream: “fibers” given by term arities. Take the fiber of
1 to model all terms with 1 free variable. Then &V -trees:

stream(x) stream(scons(x,x))

bit(x) stream(x)

stream(scons(0,scons(x,x)))

bit(0) stream(scons(x,x))

bit(x) stream(x)

Note the finite size

Examples

Program Stream: “fibers” given by term arities. Take the fiber of
1 to model all terms with 1 free variable. Then &V -trees:

stream(x) stream(scons(x,x))

bit(x) stream(x)

stream(scons(0,scons(x,x)))

bit(0) stream(scons(x,x))

bit(x) stream(x)

Note the finite size

Examples

Program ListNat: “fibers” given by term arities. Take the fiber of
2 to model all terms with 2 free variables. Then &V -trees:

list(X) list(nil)

list(cons(0,nil))

nat(0) list(nil)

list(cons(X,Y))

nat(X) list(Y)

Note the partial nature...

Examples

Program ListNat: “fibers” given by term arities. Take the fiber of
2 to model all terms with 2 free variables. Then &V -trees:

list(X) list(nil)

list(cons(0,nil))

nat(0) list(nil)

list(cons(X,Y))

nat(X) list(Y)

Note the partial nature...

Structural Resolution:

Discovery A:

(A) Structural Properties of Programs Uniquely determine
Structural Properties of Computations

S-Resolution
for LP

Coalgebraic
Semantics

structural

properties

ss

A Problem:

Structures suggested by the CoAlgebraic semantics do not
really fit into LP tradition

I each &∨-tree gives only partial computation compared to
SLD-resolution;

I seems to suggest laziness?

I introduces the (alien to LP) restriction on substitutions, due
to fibers;

I the restriction works almost like term-matching...

I seems to suggest connection to term-rewriting systems?

I accounts for many choices in rewriting...

I seems to suggest and-or parallelism?

In short,

it introduced more questions than answers...

A Problem:

Structures suggested by the CoAlgebraic semantics do not
really fit into LP tradition

I each &∨-tree gives only partial computation compared to
SLD-resolution;

I seems to suggest laziness?

I introduces the (alien to LP) restriction on substitutions, due
to fibers;

I the restriction works almost like term-matching...

I seems to suggest connection to term-rewriting systems?

I accounts for many choices in rewriting...

I seems to suggest and-or parallelism?

In short,

it introduced more questions than answers...

Outline

Motivation

Coalgebraic Semantics for Structural Resolution

The Three Tier Tree calculus for Structural Resolution

Type-Theoretic view of Structural Resolution

Conclusions and Future work

Our running example

Example

1. nat(s(x))← nat(x)
2. nat(0)←
3. stream(scons(x,y))← nat(x),stream(y)

Note: double-hopeless for SLD-resolution-based ATP!

Defining structural resolution from first principles...

Main credo: we do not impose types or extra annotations, but look
deep for “sub-atomic” structures innate in first-order proofs.

Given a logic program P there is a first-order signature Σ in P...

P A`
=⇒

Σ

`P A

Example

For our example, Σ = {0,s,scons,nat,stream} + Variables.

Defining structural resolution from first principles...

Main credo: we do not impose types or extra annotations, but look
deep for “sub-atomic” structures innate in first-order proofs.

Given a logic program P there is a first-order signature Σ in P...

P A`
=⇒

Σ

`P A

Example

For our example, Σ = {0,s,scons,nat,stream} + Variables.

Tier-1: Term-trees, given Σ:

Let N∗ denote the set of all finite words over N.
A set L⊆ N∗ is a (finitely branching) tree language, satisfying
prefix closedness conditions.
A term tree is a map L→Σ∪Var , satisfying term arity restrictions.

ε

0

0 0 0 1

→
stream

scons

x y

Given two terms t1, t2, and a substitution θ , θ is a unifier if
θ(t1) = θ(t2), and matcher if t1 = θ(t2).

Notation:
Term(Σ) Set of finite term trees over Σ

Term∞(Σ) Set of infinite term trees over Σ
Termω (Σ) Set of finite and infinite term trees over Σ

Tier-1: Term-trees, given Σ:

Let N∗ denote the set of all finite words over N.
A set L⊆ N∗ is a (finitely branching) tree language, satisfying
prefix closedness conditions.
A term tree is a map L→Σ∪Var , satisfying term arity restrictions.

ε

0

0 0 0 1

→
stream

scons

x y

Given two terms t1, t2, and a substitution θ , θ is a unifier if
θ(t1) = θ(t2), and matcher if t1 = θ(t2).

Notation:
Term(Σ) Set of finite term trees over Σ

Term∞(Σ) Set of infinite term trees over Σ
Termω (Σ) Set of finite and infinite term trees over Σ

Tier-1: Term-trees, given Σ:

Let N∗ denote the set of all finite words over N.
A set L⊆ N∗ is a (finitely branching) tree language, satisfying
prefix closedness conditions.
A term tree is a map L→Σ∪Var , satisfying term arity restrictions.

ε

0

0 0 0 1

→
stream

scons

x y

Given two terms t1, t2, and a substitution θ , θ is a unifier if
θ(t1) = θ(t2), and matcher if t1 = θ(t2).

Notation:
Term(Σ) Set of finite term trees over Σ

Term∞(Σ) Set of infinite term trees over Σ
Termω (Σ) Set of finite and infinite term trees over Σ

Constructing the structural resolution from first principles...

I Given a logic program P there is a first-order signature Σ...

I First tier of Terms builds on it...

P A`
=⇒

Σ

`P A

Term(Σ)

Tier-2: rewriting trees

A rewriting tree is a map L→ Term(Σ)∪Clause(Σ)∪VarR ,
subject to conditions (Term-matching).

stream(scons(x,y))

X1 X2 3

nat(x)

X3 X4 X5

stream(y)

X6 X7 X8

our running example

1. nat(s(x))←
2. nat(0)←
3. stream(scons(x,y))←
nat(x),stream(y)

Interesting: all rewriting trees are finite for our “difficult” example!

Notation:

Rew(P) all finite rewriting trees over P and Term(Σ)
Rew∞(P) all infinite rewriting trees over P and Term(Σ)
Rewω (P) all finite and infinite rewriting trees over P and Term(Σ)

Tier-2: rewriting trees

A rewriting tree is a map L→ Term(Σ)∪Clause(Σ)∪VarR ,
subject to conditions (Term-matching).

stream(scons(x,y))

X1 X2 3

nat(x)

X3 X4 X5

stream(y)

X6 X7 X8

our running example

1. nat(s(x))←
2. nat(0)←
3. stream(scons(x,y))←
nat(x),stream(y)

Interesting: all rewriting trees are finite for our “difficult” example!
Notation:

Rew(P) all finite rewriting trees over P and Term(Σ)
Rew∞(P) all infinite rewriting trees over P and Term(Σ)
Rewω (P) all finite and infinite rewriting trees over P and Term(Σ)

Tier-2: rewriting trees

A rewriting tree is a map L→ Term(Σ)∪Clause(Σ)∪VarR ,
subject to conditions (Term-matching).

stream(scons(x,y))

X1 X2 3

nat(x)

X3 X4 X5

stream(y)

X6 X7 X8

our running example

1. nat(s(x))←
2. nat(0)←
3. stream(scons(x,y))←
nat(x),stream(y)

Interesting: all rewriting trees are finite for our “difficult” example!
Notation:

Rew(P) all finite rewriting trees over P and Term(Σ)
Rew∞(P) all infinite rewriting trees over P and Term(Σ)
Rewω (P) all finite and infinite rewriting trees over P and Term(Σ)

Constructing the structural resolution from first principles...

I Given a logic program P there is a first-order signature Σ...

I First tier of Terms builds on it...

I Term-trees give rise to a new tier of rewriting trees...

P A`
=⇒

Σ

`P A

Term(Σ)

Rew(P)

Tier-3: Derivation trees

A derivation tree is a map L→ Rew(P).

ε stream(scons(y,z))

X1 X2 3

nat(y)

X3 X4 X5

stream(z)

X6 X7 X8

↓X3 ↓X4 ↓X8

[0] stream(sc(s(y1)),z))

...
...

...

[1] stream(sc(0,z))
...

...
...

[2] stream(sc(y,sc(y1,z1)))
...

...
...

Note: this derivation tree is infinite.

Tier-3: Derivation trees

A derivation tree is a map L→ Rew(P).

ε stream(scons(y,z))

X1 X2 3

nat(y)

X3 X4 X5

stream(z)

X6 X7 X8

↓X3 ↓X4 ↓X8

[0] stream(sc(s(y1)),z))

...
...

...

[1] stream(sc(0,z))
...

...
...

[2] stream(sc(y,sc(y1,z1)))
...

...
...

Note: this derivation tree is infinite.

Tier-3 laws and notation

Notation:

Der(P) all finite derivation trees over Rew(P)

Der∞(P) all infinite derivation trees over Rew(P)

Derω (P) all finite and infinite derivation trees over Rew(P)

An SLD-derivation for a program P and goal A corresponds to a branch in a
derivation tree for P and A.

nat(s(x))

1

nat(x)

X2 X3

X1

x/s(x ′)→
nat(s(s(x′)))

1

nat(s(x′))

1

nat(x′)

X4 X5

X3

X1

x ′/0→
nat(s(s(0)))

1

nat(s(0))

1

nat(0)

X4 2

X3

X1

Tier-3 laws and notation

Notation:

Der(P) all finite derivation trees over Rew(P)

Der∞(P) all infinite derivation trees over Rew(P)

Derω (P) all finite and infinite derivation trees over Rew(P)

An SLD-derivation for a program P and goal A corresponds to a branch in a
derivation tree for P and A.

nat(s(x))

1

nat(x)

X2 X3

X1

x/s(x ′)→
nat(s(s(x′)))

1

nat(s(x′))

1

nat(x′)

X4 X5

X3

X1

x ′/0→
nat(s(s(0)))

1

nat(s(0))

1

nat(0)

X4 2

X3

X1

Constructing the structural resolution from first principles...

I Given a logic program P there is a first-order signature Σ...

I First tier of Terms builds on it...

I Term-trees give rise to a new tier of rewriting trees.

I And then, derivations by Structural resolution emerge!

Σ

`P A

Term(Σ)

Der(P)
Der∞(P)

Derω (P)
Rew(P)

Gains:

I We found a missing theory of constructive resolution!

I Now to prove P ` A, we need to construct a rewriting tree
rew ∈ Rew(P) that proves A:

P ` rew : A

To prove ListNat ` list(cons(x ,y)), we need to construct a
rewriting tree that proves it:

list(cons(x,y))

X1 X2 X3 4

nat(x)

X4 X5 X6 X7

list(y)

X8 X9 X10X11

x/0→
list(cons(0,y))

X1 X2 X3 4

nat(0)

1 X5 X6 X7

list(y)

X8 X9 X10X11

y/nil→

list(cons(0,nil))

X1 X2 X3 4

nat(0)

1 X5 X6 X7

list(y)

X8 X9 3 X11

Gains

The structural approach allowed to:

I Formulate the theory of Universal Productivity

I Show Finite derivations sound and complete wrt Herbrnad
models;

I Show Infinite derivations sound wrt Complete Herbrand
models;

I Formulate finite coinductive proofs matching infinite
derivations.

New theory of universal productivity for resolution

A program P is productive, if it gives rise to rewriting trees
only in Rew(P).

In the class of Productive LPs, we can further distinguish:

I finite LP that give rise to derivations in Der(P),

I inductive LPs all derivations for which are in Derω (P);

I coinductive LPs all derivations for which are in Der∞(P)

F1. P1. Peano num-
bers.

F2. P2. Infinite
streams.

F3. P3. Bad recursion.

nat(s(x)) ← nat(x)
nat(0)←

stream(scons(x,y)) ←
nat(x),stream(y)

bad(x)← bad(x)

inductive definition coinductive definition non-well-founded

Productive inductive
program

Productive coinductive
program

Non-productive program

rewriting trees in
Rew(P), derivation
trees Derω (P)

rewriting trees in
Rew(P), derivation
trees in Der∞(P)

rewriting trees do not
belong to Rew(P)

New theory of universal productivity for resolution

A program P is productive, if it gives rise to rewriting trees
only in Rew(P).

In the class of Productive LPs, we can further distinguish:

I finite LP that give rise to derivations in Der(P),

I inductive LPs all derivations for which are in Derω (P);

I coinductive LPs all derivations for which are in Der∞(P)

F1. P1. Peano num-
bers.

F2. P2. Infinite
streams.

F3. P3. Bad recursion.

nat(s(x)) ← nat(x)
nat(0)←

stream(scons(x,y)) ←
nat(x),stream(y)

bad(x)← bad(x)

inductive definition coinductive definition non-well-founded

Productive inductive
program

Productive coinductive
program

Non-productive program

rewriting trees in
Rew(P), derivation
trees Derω (P)

rewriting trees in
Rew(P), derivation
trees in Der∞(P)

rewriting trees do not
belong to Rew(P)

New theory of universal productivity for resolution

A program P is productive, if it gives rise to rewriting trees
only in Rew(P).

In the class of Productive LPs, we can further distinguish:

I finite LP that give rise to derivations in Der(P),

I inductive LPs all derivations for which are in Derω (P);

I coinductive LPs all derivations for which are in Der∞(P)

F1. P1. Peano num-
bers.

F2. P2. Infinite
streams.

F3. P3. Bad recursion.

nat(s(x)) ← nat(x)
nat(0)←

stream(scons(x,y)) ←
nat(x),stream(y)

bad(x)← bad(x)

inductive definition coinductive definition non-well-founded

Productive inductive
program

Productive coinductive
program

Non-productive program

rewriting trees in
Rew(P), derivation
trees Derω (P)

rewriting trees in
Rew(P), derivation
trees in Der∞(P)

rewriting trees do not
belong to Rew(P)

Theory of universal Productivity in LP!

Logic programs

Non-productive Productive

Coinductively
defined

Inductively
defined

Finitely
defined

Syntactic semi-decision
via guardedness

YY
&&��
66

88

11

++

Structural Resolution:

Discovery B:

(B) Structures suggested by (A) can give a sound calculus, and
solve problems known to be hard for LP: universal productivity
and coinductive proof inference.

S-Resolution
for LP

A. Coalgebraic
Semantics

structural

properties

B. 3TC

tree

structures

ss

;; OO

More questions still:

I What is the proof-theoretic meaning of S-Resolution?

I What is the constructive content of proofs by resolution?

I How do the rewriting trees relate to term rewriting systems?

I Does the informal analogy of 3TC

P ` rew : A

really have any relation to type theory?

I How exactly does the intuition that rewriting trees may serve
as proof-witnesses in S-derivations relate to the type theory
setting?

Outline

Motivation

Coalgebraic Semantics for Structural Resolution

The Three Tier Tree calculus for Structural Resolution

Type-Theoretic view of Structural Resolution

Conclusions and Future work

Horn formula view of LP

κ1 : ⇒ Nat(0)
κ2 : Nat(x)⇒ Nat(s(x))
κ3 : ⇒ List(nil)
κ4 : Nat(x),List(y)⇒ List(cons(x ,y))

Formalism: LP-Unif, LP-TM and LP-Struct

I Term-matching reduction:
Φ ` {A1, ...,Ai , ...,An}→κ,σ {A1, ...,σB1, ...,σBm, ...,An}, if
there exists κ : ∀x .B1, ...,Bn⇒ C ∈ Φ such that C 7→σ Ai .

I Unification reduction:
Φ ` {A1, ...,Ai , ...,An} κ,γ·γ ′ {γA1, ...,γB1, ...,γBm, ...,γAn}, if
there exists κ : ∀x .B1, ...,Bn⇒ C ∈ Φ such that C ∼γ Ai .

I Substitutional reduction:
Φ ` {A1, ...,Ai , ...,An} ↪→κ,γ·γ ′ {γA1, ...,γAi , ...,γAn}, if there
exists κ : ∀x .B1, ...,Bn⇒ C ∈ Φ such that C ∼γ Ai .

I LP-TM: (Φ,→)
LP-Unif: (Φ,)
LP-Struct: (Φ,→µ · ↪→1)

Formalism: LP-Unif, LP-TM and LP-Struct

I Term-matching reduction:
Φ ` {A1, ...,Ai , ...,An}→κ,σ {A1, ...,σB1, ...,σBm, ...,An}, if
there exists κ : ∀x .B1, ...,Bn⇒ C ∈ Φ such that C 7→σ Ai .

I Unification reduction:
Φ ` {A1, ...,Ai , ...,An} κ,γ·γ ′ {γA1, ...,γB1, ...,γBm, ...,γAn}, if
there exists κ : ∀x .B1, ...,Bn⇒ C ∈ Φ such that C ∼γ Ai .

I Substitutional reduction:
Φ ` {A1, ...,Ai , ...,An} ↪→κ,γ·γ ′ {γA1, ...,γAi , ...,γAn}, if there
exists κ : ∀x .B1, ...,Bn⇒ C ∈ Φ such that C ∼γ Ai .

I LP-TM: (Φ,→)
LP-Unif: (Φ,)
LP-Struct: (Φ,→µ · ↪→1)

Formalism: LP-Unif, LP-TM and LP-Struct

I Term-matching reduction:
Φ ` {A1, ...,Ai , ...,An}→κ,σ {A1, ...,σB1, ...,σBm, ...,An}, if
there exists κ : ∀x .B1, ...,Bn⇒ C ∈ Φ such that C 7→σ Ai .

I Unification reduction:
Φ ` {A1, ...,Ai , ...,An} κ,γ·γ ′ {γA1, ...,γB1, ...,γBm, ...,γAn}, if
there exists κ : ∀x .B1, ...,Bn⇒ C ∈ Φ such that C ∼γ Ai .

I Substitutional reduction:
Φ ` {A1, ...,Ai , ...,An} ↪→κ,γ·γ ′ {γA1, ...,γAi , ...,γAn}, if there
exists κ : ∀x .B1, ...,Bn⇒ C ∈ Φ such that C ∼γ Ai .

I LP-TM: (Φ,→)
LP-Unif: (Φ,)
LP-Struct: (Φ,→µ · ↪→1)

Formalism: LP-Unif, LP-TM and LP-Struct

I Term-matching reduction:
Φ ` {A1, ...,Ai , ...,An}→κ,σ {A1, ...,σB1, ...,σBm, ...,An}, if
there exists κ : ∀x .B1, ...,Bn⇒ C ∈ Φ such that C 7→σ Ai .

I Unification reduction:
Φ ` {A1, ...,Ai , ...,An} κ,γ·γ ′ {γA1, ...,γB1, ...,γBm, ...,γAn}, if
there exists κ : ∀x .B1, ...,Bn⇒ C ∈ Φ such that C ∼γ Ai .

I Substitutional reduction:
Φ ` {A1, ...,Ai , ...,An} ↪→κ,γ·γ ′ {γA1, ...,γAi , ...,γAn}, if there
exists κ : ∀x .B1, ...,Bn⇒ C ∈ Φ such that C ∼γ Ai .

I LP-TM: (Φ,→)
LP-Unif: (Φ,)
LP-Struct: (Φ,→µ · ↪→1)

Execution behavior of LP-TM

I Consider query List(cons(x ,y)):
{List(cons(x ,y))}→κ4,[x/x1,y/y1] {Nat(x),List(y)}
Note Partial nature

I Consider following Stream predicate:
κ : Stream(y)⇒ Stream(cons(x ,y))

I In LP-TM:
{Stream(cons(x ,y))}→κ,[x/x1,y/y1] {Stream(y)}

Note finiteness

Execution behavior of LP-TM

I Consider query List(cons(x ,y)):
{List(cons(x ,y))}→κ4,[x/x1,y/y1] {Nat(x),List(y)}
Note Partial nature

I Consider following Stream predicate:
κ : Stream(y)⇒ Stream(cons(x ,y))

I In LP-TM:
{Stream(cons(x ,y))}→κ,[x/x1,y/y1] {Stream(y)}

Note finiteness

Execution behavior of LP-TM

I Consider query List(cons(x ,y)):
{List(cons(x ,y))}→κ4,[x/x1,y/y1] {Nat(x),List(y)}
Note Partial nature

I Consider following Stream predicate:
κ : Stream(y)⇒ Stream(cons(x ,y))

I In LP-TM:
{Stream(cons(x ,y))}→κ,[x/x1,y/y1] {Stream(y)}

Note finiteness

LP-Struct: BList

For query List(cons(x ,y)), in LP-Struct:

I {List(cons(x ,y))}→ {Nat(x),List(y)}

I ↪→[0/x] {Nat(0),List(y)}→ {List(y)}
I ↪→[0/x ,nil/y] {List(nil)}→ /0

LP-Struct: BList

For query List(cons(x ,y)), in LP-Struct:

I {List(cons(x ,y))}→ {Nat(x),List(y)}
I ↪→[0/x] {Nat(0),List(y)}→ {List(y)}

I ↪→[0/x ,nil/y] {List(nil)}→ /0

LP-Struct: BList

For query List(cons(x ,y)), in LP-Struct:

I {List(cons(x ,y))}→ {Nat(x),List(y)}
I ↪→[0/x] {Nat(0),List(y)}→ {List(y)}
I ↪→[0/x ,nil/y] {List(nil)}→ /0

LP-Struct: Stream

κ : Stream(y)⇒ Stream(cons(x ,y))
For query Stream(cons(x ,y)), in LP-Struct:

I {Stream(cons(x ,y))}→ {Stream(y)}

I ↪→[cons(x1,y1)/y] {Stream(cons(x1,y1))}→ {Stream(y1)}
I ↪→[cons(x2,y2)/y1,cons(x1,cons(x2,y2))/y] {Stream(cons(x2,y2))}→
{Stream(y2)}

I ↪→[cons(x3,y3)/y2,cons(x2,cons(x3,y3))/y1,cons(x1,cons(x2,cons(x3,y3)))/y]

{Stream(cons(x3,y3))}→ {Stream(y3)}
I ...

I Partial answer: cons(x1,cons(x2,cons(x3,y3)))/y

LP-Struct: Stream

κ : Stream(y)⇒ Stream(cons(x ,y))
For query Stream(cons(x ,y)), in LP-Struct:

I {Stream(cons(x ,y))}→ {Stream(y)}
I ↪→[cons(x1,y1)/y] {Stream(cons(x1,y1))}→ {Stream(y1)}

I ↪→[cons(x2,y2)/y1,cons(x1,cons(x2,y2))/y] {Stream(cons(x2,y2))}→
{Stream(y2)}

I ↪→[cons(x3,y3)/y2,cons(x2,cons(x3,y3))/y1,cons(x1,cons(x2,cons(x3,y3)))/y]

{Stream(cons(x3,y3))}→ {Stream(y3)}
I ...

I Partial answer: cons(x1,cons(x2,cons(x3,y3)))/y

LP-Struct: Stream

κ : Stream(y)⇒ Stream(cons(x ,y))
For query Stream(cons(x ,y)), in LP-Struct:

I {Stream(cons(x ,y))}→ {Stream(y)}
I ↪→[cons(x1,y1)/y] {Stream(cons(x1,y1))}→ {Stream(y1)}
I ↪→[cons(x2,y2)/y1,cons(x1,cons(x2,y2))/y] {Stream(cons(x2,y2))}→
{Stream(y2)}

I ↪→[cons(x3,y3)/y2,cons(x2,cons(x3,y3))/y1,cons(x1,cons(x2,cons(x3,y3)))/y]

{Stream(cons(x3,y3))}→ {Stream(y3)}
I ...

I Partial answer: cons(x1,cons(x2,cons(x3,y3)))/y

LP-Struct: Stream

κ : Stream(y)⇒ Stream(cons(x ,y))
For query Stream(cons(x ,y)), in LP-Struct:

I {Stream(cons(x ,y))}→ {Stream(y)}
I ↪→[cons(x1,y1)/y] {Stream(cons(x1,y1))}→ {Stream(y1)}
I ↪→[cons(x2,y2)/y1,cons(x1,cons(x2,y2))/y] {Stream(cons(x2,y2))}→
{Stream(y2)}

I ↪→[cons(x3,y3)/y2,cons(x2,cons(x3,y3))/y1,cons(x1,cons(x2,cons(x3,y3)))/y]

{Stream(cons(x3,y3))}→ {Stream(y3)}

I ...

I Partial answer: cons(x1,cons(x2,cons(x3,y3)))/y

LP-Struct: Stream

κ : Stream(y)⇒ Stream(cons(x ,y))
For query Stream(cons(x ,y)), in LP-Struct:

I {Stream(cons(x ,y))}→ {Stream(y)}
I ↪→[cons(x1,y1)/y] {Stream(cons(x1,y1))}→ {Stream(y1)}
I ↪→[cons(x2,y2)/y1,cons(x1,cons(x2,y2))/y] {Stream(cons(x2,y2))}→
{Stream(y2)}

I ↪→[cons(x3,y3)/y2,cons(x2,cons(x3,y3))/y1,cons(x1,cons(x2,cons(x3,y3)))/y]

{Stream(cons(x3,y3))}→ {Stream(y3)}
I ...

I Partial answer: cons(x1,cons(x2,cons(x3,y3)))/y

Formalization of a Type System

I Term t ::= x | f (t1, ..., tn)
Atomic Formula A,B,C ,D ::= P(t1, ..., tn)
(Horn) Formula F ::= A1, ...,An⇒ A
Proof Term p,e ::= κ | a | λa.e | e e ′

I Girard’s observation on intuitionistic sequent calculus with
atomic formulas

B ` A axiom
B ` C

σB ` σC
subst

A ` D B,D ` C
A,B ` C cut

I Is ` Q provable?

I We internalized “`” as “⇒” and add proof term annotations

κ : ∀x .F axiom
e : F

e : ∀x .F
gen

e : ∀x .F
e : [t/x]F

inst
e1 : A⇒ D e2 : B,D⇒ C

λa.λb.(e2 b) (e1 a) : A,B ⇒ C
cut

Formalization of a Type System

I Term t ::= x | f (t1, ..., tn)
Atomic Formula A,B,C ,D ::= P(t1, ..., tn)
(Horn) Formula F ::= A1, ...,An⇒ A
Proof Term p,e ::= κ | a | λa.e | e e ′

I Girard’s observation on intuitionistic sequent calculus with
atomic formulas

B ` A axiom
B ` C

σB ` σC
subst

A ` D B,D ` C
A,B ` C cut

I Is ` Q provable?

I We internalized “`” as “⇒” and add proof term annotations

κ : ∀x .F axiom
e : F

e : ∀x .F
gen

e : ∀x .F
e : [t/x]F

inst
e1 : A⇒ D e2 : B,D⇒ C

λa.λb.(e2 b) (e1 a) : A,B ⇒ C
cut

Formalization of a Type System

I Term t ::= x | f (t1, ..., tn)
Atomic Formula A,B,C ,D ::= P(t1, ..., tn)
(Horn) Formula F ::= A1, ...,An⇒ A
Proof Term p,e ::= κ | a | λa.e | e e ′

I Girard’s observation on intuitionistic sequent calculus with
atomic formulas

B ` A axiom
B ` C

σB ` σC
subst

A ` D B,D ` C
A,B ` C cut

I Is ` Q provable?

I We internalized “`” as “⇒” and add proof term annotations

κ : ∀x .F axiom
e : F

e : ∀x .F
gen

e : ∀x .F
e : [t/x]F

inst
e1 : A⇒ D e2 : B,D⇒ C

λa.λb.(e2 b) (e1 a) : A,B ⇒ C
cut

Formalization of a Type System

I Term t ::= x | f (t1, ..., tn)
Atomic Formula A,B,C ,D ::= P(t1, ..., tn)
(Horn) Formula F ::= A1, ...,An⇒ A
Proof Term p,e ::= κ | a | λa.e | e e ′

I Girard’s observation on intuitionistic sequent calculus with
atomic formulas

B ` A axiom
B ` C

σB ` σC
subst

A ` D B,D ` C
A,B ` C cut

I Is ` Q provable?

I We internalized “`” as “⇒” and add proof term annotations

κ : ∀x .F axiom
e : F

e : ∀x .F
gen

e : ∀x .F
e : [t/x]F

inst
e1 : A⇒ D e2 : B,D⇒ C

λa.λb.(e2 b) (e1 a) : A,B ⇒ C
cut

Soundness of LP-TM and LP-Unif

I Soundness of LP-Unif
If Φ ` {A} ∗γ /0 , then there exists a proof e : ∀x .⇒ γA given
axioms Φ.

I Soundness of LP-TM
If Φ ` {A}→∗ /0 , then there exists a proof e : ∀x .⇒ A given
axioms Φ.

I For example:
{BList(cons(x ,y))} {Bit(x),BList(y)} [0/x] {BList(y)}
 [0/x ,nil/y] /0

I yields a proof (λa.(κ4 a) κ1) κ3, β -reducible to (κ4κ3)κ1.

I Compare with the 3TC proof-witness:

list(cons(x,y))

X1 X2 X3 4

nat(x)

X4 X5 X6 X7

list(y)

X8 X9 X10X11

x/0→ . . .
y/nil→

list(cons(0,nil))

X1 X2 X3 4

nat(0)

1 X5 X6 X7

list(y)

X8 X9 3 X11

Soundness of LP-TM and LP-Unif

I Soundness of LP-Unif
If Φ ` {A} ∗γ /0 , then there exists a proof e : ∀x .⇒ γA given
axioms Φ.

I Soundness of LP-TM
If Φ ` {A}→∗ /0 , then there exists a proof e : ∀x .⇒ A given
axioms Φ.

I For example:
{BList(cons(x ,y))} {Bit(x),BList(y)} [0/x] {BList(y)}
 [0/x ,nil/y] /0

I yields a proof (λa.(κ4 a) κ1) κ3, β -reducible to (κ4κ3)κ1.

I Compare with the 3TC proof-witness:

list(cons(x,y))

X1 X2 X3 4

nat(x)

X4 X5 X6 X7

list(y)

X8 X9 X10X11

x/0→ . . .
y/nil→

list(cons(0,nil))

X1 X2 X3 4

nat(0)

1 X5 X6 X7

list(y)

X8 X9 3 X11

LP-Struct is equivalent to LP-Unif

... for logic programs subject to realisability transformation

κ1 : ⇒ Nat(0,cκ1)
κ2 : Nat(x ,u)⇒ Nat(s(x), fκ2(u))
κ3 : ⇒ BList(nil,cκ3)
κ4 : Bit(x ,u1),BList(y ,u2)⇒ BList(cons(x ,y , fκ4(u1,u2)))

I {BList(cons(x ,y ,u))} ↪→[fκ4
(u1,u2)/u]

{BList(cons(x ,y , fκ4(u1,u2)))} → {Bit(x,u1),BList(y ,u2)}

I ↪→[0/x ,cκ1
/u1] {Bit(0,cκ1),BList(y ,u2)}→ {BList(y ,u2)}

I ↪→[0/x ,nil/y ,cκ3
/u2] {BList(nil,cκ3)}→ /0

Note the substitution for u/fκ4(cκ1 ,cκ3) matches the earlier
computed proof term (κ4κ3)κ1.

LP-Struct is equivalent to LP-Unif

... for logic programs subject to realisability transformation

κ1 : ⇒ Nat(0,cκ1)
κ2 : Nat(x ,u)⇒ Nat(s(x), fκ2(u))
κ3 : ⇒ BList(nil,cκ3)
κ4 : Bit(x ,u1),BList(y ,u2)⇒ BList(cons(x ,y , fκ4(u1,u2)))

I {BList(cons(x ,y ,u))} ↪→[fκ4
(u1,u2)/u]

{BList(cons(x ,y , fκ4(u1,u2)))} → {Bit(x,u1),BList(y ,u2)}
I ↪→[0/x ,cκ1

/u1] {Bit(0,cκ1),BList(y ,u2)}→ {BList(y ,u2)}
I ↪→[0/x ,nil/y ,cκ3

/u2] {BList(nil,cκ3)}→ /0

Note the substitution for u/fκ4(cκ1 ,cκ3) matches the earlier
computed proof term (κ4κ3)κ1.

Results about Realizability Transformation

I Guarantees productivity = Termination of term-matching
reduction
Directly inherited from 3TC

I Preserves Provability

I Records Proof
in the extra argument substitutions

I Preserves Computational behaviour of LP-Unif

I Helps to prove Operational Equivalence of LP-Unif and
LP-Struct

I Helps to prove soundness of LP-Struct

Gains from type-theoretic semantics for S-Resolution:

1. We established a direct relation to term-rewriting via
LP-Struct;

2. We established a natural typed λ -calculus characterisation;

3. LP-Struct is sound wrt the type system;

4. Proof-witness is now formally defined as type inhabitant;
directly inherited from 3TC

5. S-resolution is not equivalent to SLD-resolution, in general;

6. We exactly described the class of LPs that have structural
properties (for which S-resolution and SLD-resolution are
equivalent);
directly inherited from 3TC

7. and gave an automated and static way to transform LPs to
their constructive variants (via realisability transformation).

Structural Resolution:

Discovery C:

(C) The 3 Tier Tree calculus gives genuine insight into
constructive nature of first-order automated proof:
Horn-formulas as types and proof-witnesses as type
inhabitants.

S-Resolution
for LP

Coalgebraic
Semantics

structural

properties

3TC

tree

structures

Type-theoretic
Semantics

Horn formulas as types

proof-witness

ss

;; OO

##
++

Outline

Motivation

Coalgebraic Semantics for Structural Resolution

The Three Tier Tree calculus for Structural Resolution

Type-Theoretic view of Structural Resolution

Conclusions and Future work

Structural Resolution ABC

S-resolution is Automated proof-search by resolution

in which:

(A) Structural Properties of Programs Uniquely determine
Structural Properties of Computations

(B) These structures define a sound calculus, and solve problems
known to be hard for LP: universal productivity and
coinductive proof inference.

(C) The 3 Tier Tree calculus gives genuine insight into
constructive nature of first-order automated proof

Current work

Applications of the above to Type Inference

Dreams for the Future

Structural resolution as a new —
better structured and more constructive —
foundation for Automated Proof Search, starting from LP and
reaching as far as Resolution-based SAT and SMT solvers.

Thank you!

CoALP webpage:
http://staff.computing.dundee.ac.uk/katya/CoALP/

CoALP authors and contributors:

I John Power

I Martin Schmidt

I Jonathan Heras

I Vladimir Komendantskiy

I Patty Johann

I Andrew Pond

I Peng Fu

I Frantisek Farka

	Motivation
	Coalgebraic Semantics for Structural Resolution
	The Three Tier Tree calculus for Structural Resolution
	Type-Theoretic view of Structural Resolution
	Conclusions and Future work

