Coalgebraic Correspondence Theory and Gaifman Locality

Tadeusz Litaka, Dirk Pattinsonb, and Lutz Schrödera

aFriedrich-Alexander-Universität Erlangen-Nürnberg

bAustralian National University, Canberra

ALCOP 2015, Delft
Modal logic is invariant under bisimulation.

Modal logic is a fragment of FOL:

\[\square \phi \equiv \forall y. xRy \rightarrow \phi(y) \]

- **Van Benthem:** Modal logic is the bisimulation-invariant fragment of FOL.

- **Rosen:** This remains true over finite structures.
Modal Logic beyond □ and ◇

- **Probabilistic modal logic**
 - Frames: Markov chains \((X, (P_x)_{x \in X})\)
 - Operators: \(L_p\) ‘with probability at least \(p\)’

- **Graded modal logic**
 - Frames: Multigraphs \((X, f : X \times X \rightarrow \mathbb{N} \cup \{\infty\})\)
 - Operators: \(\Diamond_k\) ‘in more than \(k\) successors’

- **Conditional logic**
 - Frames: e.g. selection function frames \((X, f : X \times \mathcal{P}(X) \rightarrow \mathcal{P}(X))\)
 - Operators: \(\Rightarrow\) ‘if . . . then normally . . .’

- **Neighbourhood logic**
 - Frames: Neighbourhood frames \((X, R \subseteq X \times \mathcal{P}(X))\)
 - Operators: □

What about FO correspondence theory for these?

Litak/Pattinson/Schröder: Coalgebraic Correspondence Theory and Gaifman Locality 3 ALCOP 2015, Delft
Modal Logic beyond □ and ◇

- **Probabilistic modal logic**
 - Frames: Markov chains \((X, (P_x)_{x \in X})\)
 - Operators: \(L_p\) ‘with probability at least \(p\)’

- **Graded modal logic**
 - Frames: Multigraphs \((X, f : X \times X \to \mathbb{N} \cup \{\infty\})\)
 - Operators: \(\lozenge_k\) ‘in more than \(k\) successors’

- **Conditional logic**
 - Frames: e.g. selection function frames \((X, f : X \times \mathcal{P}(X) \to \mathcal{P}(X))\)
 - Operators: \(\Rightarrow\) ‘if ... then normally ...’

- **Neighbourhood logic**
 - Frames: Neighbourhood frames \((X, R \subseteq X \times \mathcal{P}(X))\)
 - Operators: \(\Box\)

What about FO correspondence theory for these?
Coalgebraic Modal Logic

Similarity type \(\Lambda \)

\[
\phi, \psi ::= \bot \mid \phi \land \psi \mid \neg \phi \mid \Diamond \phi \quad (\Diamond \in \Lambda).
\]

Interpret over functor \(T : \textbf{Set} \to \textbf{Set} \) by predicate liftings

\[
[\Diamond]_X : \mathcal{P}(X) \to \mathcal{P}(TX).
\]

Semantics: satisfaction relation \(\models \) over \(T \)-coalgebras \(\xi : X \to TX \),

\[
x \models \Diamond \phi : \iff \xi(x) \in [\Diamond]_X [\phi]
\]

where \([\phi] = \{ y \in X \mid y \models \phi \} \).

- This covers all examples above, and more.
Coalgebraic Predicate Logic

Generalize Chang’s modal FO language (1973) to coalgebraic modalities:

\[
\phi ::= \bot | \neg \phi | \phi_1 \land \phi_2 | x = y | P(\bar{x}) | \forall x. \phi | x \heartsuit [y : \phi]
\]

- Model = FO-model + T-coalgebra
- Pure CPL: without $P(\bar{x})$

- $M, \nu \models x \heartsuit [y : \phi]$ iff $\xi(\nu(x)) \in \llbracket \heartsuit \rrbracket \{ c \in X | M, \nu[y \mapsto c] \models \phi \}$
The Standard Translation

\[ST_x(\bigvee \phi) = x \bigvee [x : ST_x \phi] . \]

CML = Single-variable quantifier-free CPL
Examples

- **Kripke semantics** \((TX = \mathcal{P}X \times \mathcal{P}V)\):
 Standard FO correspondence language
 \[
 xRy \overset{\hat{\cdot}}{=} x \Diamond [z : z = y]
 \]

- **Neighbourhoods** \((T = Q \circ Q^{op})\): Chang’s modal FO language

- **Graded ML** \((T = \text{bags})\): local counting quantifiers
 \[
 \exists^x k y. \phi \overset{\hat{\cdot}}{=} x \Diamond_{k-1} [y : \phi]
 \]
 (Axiomatize FO with counting: \(\neg \exists^x 2 y. y = z\))

- **Similarly for probabilistic ML** \((T = \text{distributions})\),
 \[
 w^x_y(\phi) \geq p \overset{\hat{\cdot}}{=} x L_p [y : \phi]
 \]
Outline of Otto’s Proof of Rosen’s Theorem

- Assume w.l.o.g. finitely many propositional variables.

- Note that invariance of ϕ under disjoint sums implies locality, via Gaifman locality.

- Use local unravellings to reduce to locally tree-like structures.

- Combine this to prove that ϕ is already \sim_k-invariant.

- Conclude that ϕ is equivalent to a (finite) modal formula of depth k.
Recall: Gaifman’s Theorem

Gaifman graph of a FO structure:

\[x \sim y \text{ iff } x \text{ and } y \text{ are in some basic relation} \]

\[\rightsquigglyeq \text{ Gaifman distance, Neighbourhoods } N^m_d(u). \]

Definition: A formula \(\phi(x) \) is **Gaifman d-local** if for \(u, w \in M \),

\[
N^m_d(u) \cong N^m_d(w) \implies (M, u \models \phi(x) \iff M, w \models \phi(x))
\]

Gaifman’s theorem: Every \(\phi(x) \in FOL \) is Gaifman local.
Wrong idea: “$x \sim y$ if $x \Diamond \lceil y : \phi \rceil$ and $\phi(z)$”

E.g. in probabilistic logic

$$x L_1 \lceil y : \top \rceil \quad \text{and} \quad \top(z),$$

so

$$x \sim z$$

for all x, z.
Solution: Support

▸ $A \subseteq X$ is a support of $t \in TX$ iff $t \in TA \subseteq TX$.

▸ Then by naturality of predicate liftings,

$$t \in [[\Diamond]]_X [\phi] \quad \text{iff} \quad t \in [[\Diamond]]_A ([\phi] \cap A)$$

▸ Supporting Kripke frame R for $\xi : X \to TX$:

$$R(x) = \{ y \mid xRy \} \quad \text{support of } \xi(x)$$
Gaifman Locality for Support CPL

- Pure support CPL = Pure CPL plus binary predicate supp interpreted by supporting Kripke frame
- Inherit Gaifman theorem by translating into multisorted FO language

\[\Diamond \subseteq s \times n \]
\[\subseteq \subseteq s \times n \]
\[\text{supp} \subseteq s \times s. \]

Neighbourhood compatibility:
Isomorphic nbhds (nearly) remain isomorphic

Theorem (Gaifman theorem for pure support-CPL):
Pure support-CPL is Gaifman local
The Coalgebraic van Benthem/Rosen Theorem

Infinitary version:
Λ separating, \(\phi(x) \in FOL(\Lambda) \approx \)-invariant (over finite models) \(\implies \)
\(\phi(x) \) equivalent (over finite models) to some
infinitary finite-rank modal formula \(\psi(x) \).

Finitary version:
Same with \(\psi(x) \) finitary for finite \(\Lambda \).

- The finitary version is immediate from the infinitary version.

Does the finitary van Benthem/Rosen theorem hold for infinite \(\Lambda \)?
Known Instances

- The classical van Benthem/Rosen theorem

- The van Benthem theorem for neighbourhood logic (Hansen/Kupke/Pacuit 2009)
Conclusion

- Coalgebraic predicate logic: FOL over T-coalgebras.

- Have proved a coalgebraic van Benthem/Rosen theorem.

- Nagging open problem: for infinite signatures, want to improve to finitary formulas.

- Key ingredient: Gaifman locality for CPL
 - Measure distance via support
 - Inherit from standard FOL by making neighbourhoods explicit
Future Work

- Investigation of CPL:
 - Model theory
 - Decidable fragments

- Sahlqvist theory (working from Dahlqvist/Pattinson 2013)
The Classical Correspondence Language

- One unary predicate $p(x)$ for each propositional variable p
- Binary relation $R(x, y)$
- No axioms or restrictions on models
- Standard translation:
 \[
 ST_x(p) = p(x) \\
 ST_x(\Box \phi) = \forall y. R(x, y) \rightarrow ST_y(\phi).
 \]

- Van Benthem/Rosen: for all $\phi(x) \in FOL$, TFAE:
 1. $\phi(x)$ bisimulation-invariant (over finite structures)
 2. $\phi(x) \leftrightarrow ST_x(\psi)$ for some modal ψ (over finite structures)

- Janin/Walukiewicz:
 the bisimulation-invariant fragment of MSOL is the μ-calculus.
Coalgebraic Unravelling

Recall: Coalgebraic modal logic captures behavioural equivalence

- defined via cospans of morphisms $X \rightarrow \bullet \leftarrow Y$
- in general weaker than bisimilarity (via spans $X \leftarrow \bullet \rightarrow Y$).

Require bounded behavioural equivalence \approx_k, defined via the terminal sequence

$X \xleftarrow{\xi_0} T_1 \leftarrow \cdots \leftarrow T_n \leftarrow \cdots$

Key facts:

Lemma: For A, B trees of depth k, $A, a \approx B, b$ iff $A, a \approx_k B, b$.

Unravelling Lemma: For A, a ex. $A, a \approx B, b$ s.t. $N_{3k}^B(b)$ tree of depth k.