Coalgebraic Correspondence Theory and Gaifman Locality

Tadeusz Litak^a, Dirk Pattinson^b, and Lutz Schröder^a

^aFriedrich-Alexander-Universität Erlangen-Nürnberg

^bAustralian National University, Canberra

ALCOP 2015, Delft

Introduction

Modal logic is invariant under bisimulation.

Modal logic is a fragment of FOL:

$$\Box \phi \triangleq \forall y. xRy \rightarrow \phi(y)$$

- Van Benthem: Modal logic is the bisimulation-invariant fragment of FOL.
- Rosen: This remains true over finite structures.

Modal Logic beyond □ and ◇

- Probabilistic modal logic
 - Frames: Markov chains $(X, (P_x)_{x \in X})$
 - Operators: L_p 'with probability at least p'
- Graded modal logic
 - ▶ Frames: Multigraphs $(X, f : X \times X \to \mathbb{N} \cup \{\infty\})$
 - ▶ Operators: ◊_k 'in more than k successors'
- Conditional logic
 - ▶ Frames: e.g. selection function frames $(X, f : X \times \mathcal{P}(X) \to \mathcal{P}(X))$
 - ▶ Operators: ⇒ 'if ... then normally ...'
- Neighbourhood logic
 - ▶ Frames: Neighbourhood frames $(X, R \subseteq X \times \mathcal{P}(X))$
 - Operators:

Modal Logic beyond □ and ◇

- ► Probabilistic modal logic
 - Frames: Markov chains $(X, (P_X)_{X \in X})$
 - Operators: L_p 'with probability at least p'
- Graded modal logic
 - ▶ Frames: Multigraphs $(X, f : X \times X \to \mathbb{N} \cup \{\infty\})$
 - ▶ Operators: \Diamond_k 'in more than k successors'
- Conditional logic
 - ► Frames: e.g. selection function frames $(X, f : X \times \mathcal{P}(X) \to \mathcal{P}(X))$
 - ▶ Operators: ⇒ 'if ... then normally ...'
- Neighbourhood logic
 - ▶ Frames: Neighbourhood frames $(X, R \subseteq X \times \mathcal{P}(X))$
 - ▶ Operators: □

What about FO correspondence theory for these?

Coalgebraic Modal Logic

Similarity type Λ

$$\phi, \psi ::= \bot \mid \phi \land \psi \mid \neg \phi \mid \heartsuit \phi$$
 ($\heartsuit \in \Lambda$).

Interpret over functor $T : \mathbf{Set} \to \mathbf{Set}$ by predicate liftings

$$\llbracket \heartsuit \rrbracket_X : \mathcal{P}(X) \to \mathcal{P}(TX).$$

Semantics: satisfaction relation \models over T-coalgebras $\xi: X \to TX$,

$$x \models \heartsuit \phi :\iff \xi(x) \in \llbracket \heartsuit \rrbracket_X \llbracket \phi \rrbracket$$

where $[\![\phi]\!] = \{ y \in X \mid y \models \phi \}.$

► This covers all examples above, and more.

Coalgebraic Predicate Logic

Generalize Chang's modal FO language (1973) to coalgebraic modalities:

$$\phi ::= \bot \mid \neg \phi \mid \phi_1 \land \phi_2 \mid x = y \mid P(\vec{x}) \mid \forall x. \phi \mid x \heartsuit \lceil y : \phi \rceil$$

- ► Model = FO-model + T-coalgebra
- ▶ Pure CPL: without $P(\vec{x})$

The Standard Translation

$$ST_x(\heartsuit \phi) = x \heartsuit [x : ST_x \phi].$$

CML = Single-variable quantifier-free CPL

Examples

► Kripke semantics $(TX = \mathcal{P}X \times \mathcal{P}V)$: Standard FO correspondence language

$$xRy \quad \hat{=} \quad x \diamondsuit [z : z = y]$$

- ▶ Neighbourhoods ($T = Q \circ Q^{op}$): Chang's modal FO language
- ► Graded ML (*T* = bags): local counting quantifiers

$$\exists^{x} k y. \phi \quad \hat{=} \quad x \diamondsuit_{k-1} [y : \phi]$$

(Axiomatize FO with counting: $\neg \exists^x 2y . y = z$)

► Similarly for probabilistic ML (*T* = distributions),

$$w_y^X(\phi) \ge p \quad \hat{=} \quad x L_p \lceil y : \phi \rceil$$

Outline of Otto's Proof of Rosen's Theorem

- ► Assume w.l.o.g. finitely many propositional variables.
- Note that invariance of ϕ under disjoint sums implies locality, via Gaifman locality.
- ► Use local unravellings to reduce to locally tree-like structures.
- ▶ Combine this to prove that ϕ is already \sim_k -invariant.
- ▶ Conclude that ϕ is equivalent to a (finite) modal formula of depth k.

Recall: Gaifman's Theorem

Gaifman graph of a FO structure:

$$x \longrightarrow y$$
 iff x and y are in some basic relation

 \sim Gaifman distance, Neighbourhoods $N_d^{\mathfrak{M}}(u)$.

Definition: A formula $\phi(x)$ is Gaifman *d*-local if for $u, w \in \mathfrak{M}$,

$$\mathsf{N}_d^{\mathfrak{M}}(u) \cong \mathsf{N}_d^{\mathfrak{M}}(w) \implies (\mathfrak{M}, u \models \phi(x) \iff \mathfrak{M}, w \models \phi(x))$$

Gaifman's theorem: Every $\phi(x) \in FOL$ is Gaifman local.

Gaifman distance in CPL

Wrong idea: "
$$x \longrightarrow y$$
 if $x \heartsuit [y : \phi]$ and $\phi(z)$ "

E.g. in probabilistic logic

$$xL_1[y:\top]$$
 and $\top(z)$,

SO

for all x, z.

Solution: Support

- ▶ $A \subseteq X$ is a support of $t \in TX$ iff $t \in TA \subseteq TX$.
- ► Then by naturality of predicate liftings,

$$t \in \llbracket \heartsuit \rrbracket_X \llbracket \phi \rrbracket$$
 iff $t \in \llbracket \heartsuit \rrbracket_A (\llbracket \phi \rrbracket \cap A)$

▶ Supporting Kripke frame *R* for $\xi: X \to TX$:

$$R(x) = \{y \mid xRy\}$$
 support of $\xi(x)$

Gaifman Locality for Support CPL

- Pure support CPL = Pure CPL plus binary predicate supp interpreted by supporting Kripke frame
- ▶ Inherit Gaifman theorem by translating into multisorted FO language

Neighbourhood compatibility:

Isomorphic nbhds (nearly) remain isomorphic

Theorem (Gaifman theorem for pure support-CPL):

Pure support-CPL is Gaifman local

The Coalgebraic van Benthem/Rosen Theorem

Infinitary version:

A separating, $\phi(x) \in FOL(\Lambda) \approx$ -invariant (over finite models) $\Longrightarrow \phi(x)$ equivalent (over finite models) to some infinitary finite-rank modal formula $\psi(x)$.

Finitary version:

Same with $\psi(x)$ finitary for finite Λ .

▶ The finitary version is immediate from the infinitary version.

Does the finitary van Benthem/Rosen theorem hold for infinite Λ ?

Known Instances

▶ The classical van Benthem/Rosen theorem

► The van Benthem theorem for neighbourhood logic (Hansen/Kupke/Pacuit 2009)

Conclusion

- Coalgebraic predicate logic: FOL over T-coalgebras.
- ► Have proved a coalgebraic van Benthem/Rosen theorem.
- Nagging open problem: for infinite signatures, want to improve to finitary formulas.
- Key ingredient: Gaifman locality for CPL
 - Measure distance via support
 - Inherit from standard FOL by making neighbourhoods explicit

Future Work

- Investigation of CPL:
 - Model theory
 - Decidable fragments
- Sahlqvist theory (working from Dahlqvist/Pattinson 2013)

The Classical Correspondence Language

- ▶ One unary predicate p(x) for each propositional variable p
- ▶ Binary relation R(x, y)
- No axioms or restrictions on models
- Standard translation:

$$ST_X(p) = p(x)$$

 $ST_X(\Box \phi) = \forall y. R(x,y) \rightarrow ST_Y(\phi).$

- ▶ Van Benthem/Rosen: for all $\phi(x) \in FOL$, TFAE:
 - 1. $\phi(x)$ bisimulation-invariant (over finite structures)
 - 2. $\phi(x) \leftrightarrow ST_x(\psi)$ for some modal ψ (over finite structures)
- Janin/Walukiewicz: the bisimulation-invariant fragment of MSOL is the μ-calculus.

Coalgebraic Unravelling

Recall: Coalgebraic modal logic captures behavioural equivalence

- ▶ defined via cospans of morphisms $X \rightarrow \bullet \leftarrow Y$
- ▶ in general weaker than bisimilarity (via spans $X \leftarrow \bullet \rightarrow Y$).

Require bounded behavioural equivalence \approx_k , defined via the terminal sequence

Key facts:

Lemma: For A, B trees of depth $k, A, a \approx B, b$ iff $A, a \approx_k B, b$.

Unravelling Lemma: For $A, a \text{ ex. } A, a \approx B, b \text{ s.t. } N^B_{3k}(b)$ tree of depth k.