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Introduction

Modal logic is invariant under bisimulation.

Modal logic is a fragment of FOL:
0¢ =Vy.xRy — ¢(y)

» Van Benthem:
Modal logic is the bisimulation-invariant fragment of FOL.

» Rosen: This remains true over finite structures.
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Modal Logic beyond 0O and <

\4

Probabilistic modal logic

» Frames: Markov chains (X, (Px)xex)
» Operators: L, ‘with probability at least p’

v

Graded modal logic

» Frames: Multigraphs (X,f: X x X — NU{e})
» Operators: <k ‘in more than k successors’

\4

Conditional logic

» Frames: e.g. selection function frames (X, f: X x P(X) — P(X))
» Operators: = ‘if ...then normally ...’

v

Neighbourhood logic

» Frames: Neighbourhood frames (X, R C X x P(X))
» Operators: O
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» Frames: Markov chains (X, (Px)xex)
» Operators: L, ‘with probability at least p’
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Graded modal logic

» Frames: Multigraphs (X,f: X x X — NU{e})
» Operators: <k ‘in more than k successors’

\4

Conditional logic

» Frames: e.g. selection function frames (X, f: X x P(X) — P(X))
» Operators: = ‘if ...then normally ...’

v

Neighbourhood logic

» Frames: Neighbourhood frames (X, R C X x P(X))
» Operators: O

What about FO correspondence theory for these?
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Coalgebraic Modal Logic

Similarity type A
¢ y=LIoAy[=0[09  (VeA).
Interpret over functor T : Set — Set by predicate liftings
[Clx : P(X) = P(TX).
Semantics: satisfaction relation |= over T-coalgebras & : X — TX,
x|= Q¢ = ¢(x) € [VIx[9]
where [o] = {y € X|y = ¢}.

» This covers all examples above, and more.
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Coalgebraic Predicate Logic

Generalize Chang’s modal FO language (1973)
to coalgebraic modalities:

9u=L[=0[91Ad2|x=y|PX)|Vx.¢|xTV]y: 0]

» Model = FO-model + T-coalgebra
» Pure CPL: without P(X)

> My E=xQfy:¢] it S(v(x) e [VI{ce XM vly—c]|=¢}
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The Standard Translation

STx(V¢)=xV[x: STxo].

CML = Single-variable quantifier-free CPL
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Examples
» Kripke semantics (TX =PX x PV):
Standard FO correspondence language

xRy = xOlz:z=y]|

» Neighbourhoods (T = Q o Q°): Chang’s modal FO language
» Graded ML (T = bags): local counting quantifiers

Fky¢ = xOx q[y: 0]

(Axiomatize FO with counting: =3*2y.y = 2)
» Similarly for probabilistic ML (T = distributions),

wy(@)=p = xLply: 9]
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Outline of Otto’s Proof of Rosen’s Theorem

v

Assume w.l.0.g. finitely many propositional variables.

v

Note that invariance of ¢ under disjoint sums implies locality,
via Gaifman locality.

v

Use local unravellings to reduce to locally tree-like structures.

v

Combine this to prove that ¢ is already ~-invariant.

v

Conclude that ¢ is equivalent to a (finite) modal formula of depth k.
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Recall: Gaifman’s Theorem

Gaifman graph of a FO structure:

x——y iff xand y arein some basic relation
~» Gaifman distance, Neighbourhoods N¥*(u).
Definition: A formula ¢(x) is Gaifman d-local if for u,w € 9,

NG (u) = NG (W) = (M, u=9(x) <= M w = 9(x))

Gaifman’s theorem: Every ¢(x) € FOL is Gaifman local.
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Gaifman distance in CPL

Wrong idea: “x — y if xO[y : ¢] and ¢(2)”
E.g. in probabilistic logic
xLi[y:T] and T(2),

SO

for all x, z.
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Solution: Support

» AC Xisasupportofte TXiffte TAC TX.

» Then by naturality of predicate liftings,

te [Vlxlel it te[Vla(lolNA)

» Supporting Kripke frame R for & : X — TX:

R(x)={y| xRy} supportof &(x)
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Gaifman Locality for Support CPL

» Pure support CPL = Pure CPL plus binary predicate supp
interpreted by supporting Kripke frame

» Inherit Gaifman theorem by translating into multisorted FO language

OCsxn
cCsxn
supp € s X s.

Neighbourhood compatibility:
Isomorphic nbhds (nearly) remain isomorphic

Theorem (Gaifman theorem for pure support-CPL):
Pure support-CPL is Gaifman local
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The Coalgebraic van Benthem/Rosen Theorem

Infinitary version:

A separating, ¢(x) € FOL(A) ~-invariant (over finite models) —-
¢(x) equivalent (over finite models) to some

infinitary finite-rank modal formula y/(x).

Finitary version:
Same with y(x) finitary for finite A.

» The finitary version is immediate from the infinitary version.

Does the finitary van Benthem/Rosen theorem hold for infinite A ?
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Known Instances

» The classical van Benthem/Rosen theorem

» The van Benthem theorem for neighbourhood logic
(Hansen/Kupke/Pacuit 2009)
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Conclusion

» Coalgebraic predicate logic: FOL over T-coalgebras.
» Have proved a coalgebraic van Benthem/Rosen theorem.

» Nagging open problem: for infinite signatures, want to improve to
finitary formulas.

» Key ingredient: Gaifman locality for CPL

» Measure distance via support

» Inherit from standard FOL by making neighbourhoods explicit
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Future Work

» Investigation of CPL:

» Model theory

» Decidable fragments

» Sahlqvist theory (working from Dahlqgvist/Pattinson 2013)
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The Classical Correspondence Language

v

One unary predicate p(x) for each propositional variable p

v

Binary relation R(x,y)

» No axioms or restrictions on models

v

Standard translation:

STx(p) = p(x)
STx(D¢) =Vy.R(x,y) — STy(9).

» Van Benthem/Rosen: for all ¢(x) € FOL, TFAE:

1. ¢(x) bisimulation-invariant (over finite structures)
2. ¢(x) <> STx(y) for some modal y (over finite structures)

» Janin/Walukiewicz:
the bisimulation-invariant fragment of MSOL is the p-calculus.
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Coalgebraic Unravelling

Recall: Coalgebraic modal logic captures behavioural equivalence
» defined via cospans of morphisms X — e < Y
> in general weaker than bisimilarity (via spans X <— e — Y).

Require bounded behavioural equivalence ~, defined via the
terminal sequence

X : X
& / \i Té 1
3
1 T1 Tn

Key facts:
Lemma: For A, B trees of depth k, A a~ B, b iff A a~y B, b.

Unravelling Lemma: For A,aex. A,a~ B,bs.t. NSBk(b) tree of depth k.
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