ALGEBRAIC AND KRIPKE SEMANTICS FOR MANY-VALUED PROBABILISTIC LOGICS

Tommaso Flaminio
(Joint works with Lluis Godo and Franco Montagna)

Department of Theoretical and Applied Sciences, University of Insubria. Italy

tommaso.flaminio@uninsubria.it sites.google.com/site/tomflaminio

ALCOP 20015 (Delft, 6–8 May 2015)

OUTLINE

- 1 Lukasiewicz logic, MV-algebras and states
- 2 The modal logic FP(E, E)
 - Probabilistic Kripke Models
- 3 THE ALGEBRAIZABLE LOGIC SFP(Ł, Ł)
 - SMV-algebras
- 4 Comparing the semantics
- **6** OPEN PROBLEMS

The language of Lukasiewicz logic consists in a set $V = \{p_1, p_2, ...\}$ of propositional variables, the binary connective \rightarrow , and the truth-constant \bot (for falsity). Further connectives are defined as follows:

$$\begin{array}{llll} \neg \varphi & \text{is} & \varphi \to \bot \\ \varphi \& \psi & \text{is} & \neg (\varphi \to \neg \psi) \\ \varphi \leftrightarrow \psi & \text{is} & (\varphi \to \psi) \& (\psi \to \varphi) \\ \varphi \oplus \psi & \text{is} & \neg \varphi \to \psi \\ \varphi \ominus \psi & \text{is} & \neg (\varphi \to \psi) \\ \varphi \land \psi & \text{is} & \varphi \& (\varphi \to \psi) \\ \varphi \lor \psi & \text{is} & (\varphi \to \psi) \to \psi \end{array}$$

Axioms of 1:

$$\begin{array}{ll} (\text{£1}) \ \varphi \rightarrow (\psi \rightarrow \varphi), & \text{(£2)} \ (\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi)), \\ (\text{£3)} \ (\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi), & \text{(£4)} \ ((\varphi \rightarrow \psi) \rightarrow \psi) \rightarrow ((\psi \rightarrow \varphi) \rightarrow \varphi). \end{array}$$

The only inference rule is *Modus Ponens*: from φ and $\varphi \to \psi$, derive ψ .

An MV-algebra is a system $A = (A, \oplus, \neg, 0, 1)$ satisfying the following conditions:

- $(A, \oplus, 0)$ is a commutative monoid,
- $\neg(\neg x) = x$ for all $x \in A$,
- $x \oplus 1 = 1$ for all $x \in A$,
- $\neg(x \oplus \neg y) \oplus x = \neg(y \oplus \neg x) \oplus y \text{ for all } x, y \in A.$

The class of MV-algebras forms a variety denoted by MV. In any MV-algebra one can define further operations as follows:

$$x \to y = (\neg x \oplus y), x \ominus y = \neg(x \to y), x \odot y = \neg(\neg x \oplus \neg y),$$

 $x \leftrightarrow y = (x \to y) \odot (y \to x), x \lor y = (x \to y) \to y, \text{ and}$
 $x \land y = \neg(\neg x \lor y).$

Any MV-algebra A can be equipped with a partial order relation: for all $x, y \in A$,

$$x \le y \text{ iff } x \to y = 1.$$

An MV-algebra is said to be an MV-chain if \leq is linear.

An MV-algebra is semisimple if it is isomorphic to an MV-algebra of [0,1]-valued functions on a compact Hausdorff space X.

An MV-algebra is simple if it is isomorphic to an MV-subalgebra of the standard MV-chain:

$$[0,1]_{MV} = ([0,1], \oplus, \neg, 0, 1)$$

where: $\forall x, y \in [0, 1], x \oplus y = \min\{1, x + y\}, \neg x = 1 - x$.

(Notice: $[0,1]_{MV}$ is generic for MV).

STATES ON MV-ALGEBRAS

A state on an MV-algebra A is a map

$$s:A\rightarrow [0,1]$$

Satisfying:

- s(1) = 1,
- For all $x, y \in A$ s.t. $x \odot y = 0$, $s(x \oplus y) = s(x) + s(y)$.

A state s is said faithful if s(x) = 0, implies x = 0.

For every MV-algebra A and every state s, there exists a unique Borel regular probability measure μ on the space of MV-homomorphisms H of A in $[0,1]_{MV}$ such that, for every $a \in A$, $s(a) = \int_H f_a \, \mathrm{d}\mu$.

In other words states represent the expected values of the elements of an MV-algebra, which are regarded as (bounded) random variables.

The modal logic FP(E, E)

The language of $FP(\ell, \ell)$ is obtained by adding a unary modality Pr in the language of Łukasiewicz logic. Formulas are defined by the stipulations:

- Every Łukasiewicz formula is a formula,
- For every Łukasiewicz formula φ , $\Pr(\varphi)$ is an atomic modal formula.
- (Atomic) modal formulas are closed under \oplus , \odot , \rightarrow , \neg .

Axioms for FP(L, L) are:

- All the axioms of Łukasiewicz logic,
- $\Pr(\neg \varphi) \leftrightarrow \neg \Pr(\varphi)$,
- $\Pr(\varphi \to \psi) \to (\Pr(\varphi) \to \Pr(\psi))$,
- $\Pr(\varphi \oplus \psi) \leftrightarrow [(\Pr(\varphi) \rightarrow \Pr(\varphi \odot \psi)) \rightarrow \Pr(\psi)].$

Rules are modus ponens, and the necessitation for Pr: $\frac{\varphi}{\Pr(\varphi)}$.

PROBABILISTIC KRIPKE MODELS

A Probabilistic Kripke Model for FP(L, L) is a system K = (X, s) where:

- X is a non empty set of evaluations of Łukasiewicz formulas into [0,1].
- $s: [0,1]^X \to [0,1]$ is a state of $[0,1]^X$.

If ϕ is a formula of $FP(\xi, \xi)$, if K is a Kripke model, and $x \in X$, the truth-values of Φ in K at x is defined as:

- If Φ is a Łukasiewicz formula, then $\|\Phi\|_{K,x} = x(\Phi)$,
- If Φ is $\Pr(\psi)$ and ψ is Łukasiewicz. Then $\|\Pr(\psi)\|_{K,x} = s(f_{\psi})$, where $f_{\psi}: x \in X \mapsto x(\psi) \in [0,1]$.
- ullet If Φ is compound, then use truth functions of Łukasiewicz connectives.

A probabilistic Kripke model (*X,*s) is a hyperreal-valued probabilistic Kripke model, if each evaluation $x \in X$ and the map *s ranges on a non-trivial ultrapower *[0,1] of the real unit interval.

Hyperreal-completeness for FP(L, L)

The logic FP(L,L) is (strongly) complete with respect to the class of hyperreal-valued probabilistic Kripke model.

The logic SFP(L,L)

The language of $SFP(\xi, \xi)$ is that of $FP(\xi, \xi)$. Formulas are defined in the usual way dropping the restriction on the modality Pr.

Axioms for SFP(L, L) are:

- All the axioms of Łukasiewicz logic,
- $Pr(\bot) \leftrightarrow \bot$,
- $\Pr(\neg \varphi) \leftrightarrow \neg \Pr(\varphi)$,
- $Pr(Pr(\varphi) \oplus Pr(\psi)) \leftrightarrow (Pr(\varphi) \oplus Pr(\psi))$,
- $\Pr(\varphi \oplus \psi) \leftrightarrow \Pr(\varphi) \oplus \Pr(\psi \ominus (\varphi \& \psi))$.

Rules are modus ponens, and the necessitation for Pr: $\frac{\varphi}{\Pr(\varphi)}$.

SEMANTICS FOR SFP(L, L)

There are two main semantics for SFP(L, L):

Probabilistic Kripke models and SMV-algebras.

PROBABILISTIC KRIPKE MODELS

A Probabilistic Kripke Model for $SFP(\xi, \xi)$ is a system $\mathcal{K} = (X, s)$ where:

- X is a non empty set of evaluations of Łukasiewicz formulas into [0,1].
- $s: [0,1]^X \to [0,1]$ is a state.

If ϕ is a formula of $SFP(\xi, \xi)$, if K is a Kripke model, and $x \in X$, the truth-values of Φ in K at x is defined as in the case of $FP(\xi, \xi)$.

KR1SAT denotes the set of all $SFP(\xi, \xi)$ -1-satisfiable formulas. KR1TAUT denotes the set of $SFP(\xi, \xi)$ -tautologies.

SMV-algebras

An SMV-algebras is an algebra

$$\mathcal{A} = (A, \oplus, \neg, \sigma, 0, 1)$$

where:

- $(A, \oplus, \neg, 0, 1)$ is an MV-algebra,
- $\sigma: A \to A$ satisfies the following:
 - $\sigma(0) = 0$,
 - $\sigma(\neg x) = \neg \sigma(x)$,
 - $\sigma(\sigma(x) \oplus \sigma(y)) = \sigma(x) \oplus \sigma(y)$,
 - $\sigma(x \oplus y) = \sigma(x) \oplus \sigma(y \ominus (x \odot y)).$

An SMV-algebra is said faithful if $\sigma(x) = 0$ implies x = 0.

SMV1SAT denotes the set of $SFP(\pounds, \pounds)$ -1-satisfiable formulas in SMV-algebras. SMV1TAUT denotes the set of $SFP(\pounds, \pounds)$ -tautologies in SMV-algebras.

An example

Let X he a non-empty Hausdorff space and let $A = \mathscr{C}(X)$ be the MV-algebra of continuous functions from X to [0,1].

Let $\mu: \mathcal{B}(X) \to [0,1]$ be a regular Borel probability measure on the Borel subsets of X.

Define $\sigma: A \to A$ in the following manner: for every $f \in A$,

$$\sigma(f) = \int_X f \mathrm{d}\mu.$$

(where we identify every real number $\alpha \in [0,1]$ with the function in $\mathscr{C}(X)$ constantly equal to α).

Then (A, σ) is an SMV-algebra. Moreover (A, σ) is simple even though is not linearly ordered.

On the variety of SMV-algebras

Unlike the case of MV-algebras, the variety SMV is NOT generated by its linearly ordered members. For instance

$$\sigma(x \vee y) = \sigma(x) \vee \sigma(y)$$

holds in every SMV-chain, but not in every SMV-algebra.

THEOREM

The class of SMV-algebra is generated as a quasivariety, by its members (A, σ) such that $\sigma(A)$ is an MV-chain.

STANDARD SMV-ALGEBRAS

We already noticed that SMV is not generated by SMV-chains. The following definition introduces a candidate for *standard* SMV-algebras.

DEFINITION

An SMV-algebra (A, σ) is said to be σ -simple if A is semisimple (i.e. an algebra of continuous [0,1]-valued functions), and $\sigma(A)$ is a simple algebra (i.e. an MV-subalgebra of $[0,1]_{MV}$).

ST1SAT denotes the set of *SFP*(ξ, ξ)-1-satisfiable formulas in σ -simple SMV-algebras.

ST1TAUT denotes the set of *SFP*(ξ, ξ)-tautologies in σ -simple SMV-algebras.

Tensor SMV-algebras

An interesting subclass of SMV-algebras can be built from an MV-algebra and an (external) state s of A in the following manner:

Let A be an MV-algebra, and let $s: A \rightarrow [0,1]$ be a state.

Let \mathcal{T} be the MV-algebra defined as $[0,1]_{MV} \otimes A$,

Let $\sigma_s: \mathcal{T} \to \mathcal{T}$ be the internal state defined by: for all $\alpha \otimes a \in \mathcal{T}$,

$$\sigma_s(\alpha \otimes a) = \alpha \cdot s(a) \otimes 1.$$

Any SMV-algebra of this kind is called tensor SMV-algebra.

 ${\it Tensor1SAT}$ denotes the set of 1- satisfiable ${\it SFP}({\it k},{\it k})$ -formulas in tensor SMV-algebras

Tensor1TAUT denotes the set of all $SFP(\xi, \xi)$ -tautologies in tensor SMV-algebras.

1-Satisfiability

Let ϕ be a formula in SFP. The following are equivalent

- $\phi \in ST1SAT$,
- $\phi \in KR1SAT$,
- $\phi \in SMV1SAT$.

1-Tautologies

Let ϕ be a formula in SFP. The following are equivalent

- $\phi \in ST1TAUT$,
- $\phi \in Tensor1TAUT$,
- $\phi \in KR1TAUT$.

Open problems (1)

We know that the logic $SFP({\bf t},{\bf t})$ is complete w.r.t. the class of SMV-algebra. In particular, the following holds

THEOREM

Let ϕ be a formula of SFP, then

- \bullet ϕ is a theorem of SFP(ξ, ξ),
- $\phi \in SMV1TAUT$,
- **3** ϕ is a tautology for those SMV-algebras (A, σ) such that $\sigma(A)$ is an MV-chain.

Q1: Is $SFP(\xi, \xi)$ complete w.r.t. σ -simple SMV-algebras? In other words, is SMV1TAUT = ST1TAUT? equivalently, is SMV1TAUT = KR1TAUT?

OPEN PROBLEMS (2)

We already noticed that $SFP(\xi, \xi)$ extends $FP(\xi, \xi)$. The latter is known to be complete w.r.t. hyperreal-valued probabilistic Kripke models.

Q2: Is $SFP(\xi, \xi)$ a conservative extension of $FP(\xi, \xi)$? In other words, if ϕ is an FP-formula and $\langle {}^*X, {}^*s \rangle$ is a hyperreal-valued Kripke model such that $\langle {}^*X, {}^*s \rangle \not\models \phi$, can we define an SMV-algebra (A, σ) such that $(A, \sigma) \not\models \phi$?

Remark (join work with Lluis Godo): If $\mathbf{Q2}$ is true, then we (*should*) have a proof for the standard completeness of $SFP(\mathsf{L},\mathsf{L})$. (SMV1TAUT=ST1TAUT=KR1TAUT).

- CIGNOLI R., D'OTTAVIANO I.M.L., MUNDICI D., Algebraic Foundations of Many-valued Reasoning. Kluwer, Dordrecht, 2000.
- FLAMINIO T., GODO L., A logic for reasoning on the probability of fuzzy events. Fuzzy Sets and Systems, **158**, 625–638, 2007.
- FLAMINO T., MONTAGNA F., An algebraic approach to states on MV-algebras. In Proceedings of EUSFLAT'07. M. Štěpnička, V. Novák, U. Bodenhofer (Eds.), Vol 2, 201–2006, 2007.
- HÁJEK P., Complexity of fuzzy probability logics II. Fuzzy Sets and Systems, **158**(23), pp. 2605–2611, 2007.
- Mundici D., Averaging the truth-value in Łukasiewicz logic. Studia Logica **55**(1), 113–127, (1995).
- Mundici D., Tensor Products and the Loomis-Sikorski Theorem for MV-Algebras. Advances in Applied Mathematics, 22, 227–248, 1999.

THANK YOU FOR YOUR ATTENTION!